CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY"

Transcription

1 243 CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY B. Chyba, M. Mantler, H. Ebel, R. Svagera Technische Universit Vienna, Austria ABSTRACT The accurate characterization of the spectral distribution of x-rays emitted from X-ray tubes is crucial in many analytical investigations. This includes the primary production of radiation within the tube target as well as absorption by the tube window and eventually applied filters. This paper discusses two calculation methods for tube spectra: an analytical program based on algorithms by H. Ebel and the MCNP software package based on Monte-Carlo code. The calculated data were also compared to measured spectra generated on a SEM with Au and Cu targets at voltages from 10kV to 30kV. INTRODUCTION The most accurate method to simulate x-ray tube spectra is perhaps based on calculating a large number of scattering paths of electrons in the target anode using Monte-Carlo methods (Booth et al., 2003). At each point of interaction bremsstrahlung and/or characteristic radiation can be induced. The varying distances of the photon source to exit points and absorption lead to a direction dependent spectral distribution and intensity of the emitted tube radiation. The accurate calculation is, however, at the cost of computing time. A simplification is to average the electron cloud into a single point inside the target by Figure 1. MC simulation of scattered electron paths inside a target Figure 2. Simplified model using an average penetration depth for impinging electrons introducing an energy dependent mean penetration depth of electrons, shown in Fig. 2. This is accomplished by the analytical calculation model of H. Ebel (1989, 1999, 2003, 2006).

2 This document was presented at the Denver X-ray Conference (DXC) on Applications of X-ray Analysis. Sponsored by the International Centre for Diffraction Data (ICDD). This document is provided by ICDD in cooperation with the authors and presenters of the DXC for the express purpose of educating the scientific community. All copyrights for the document are retained by ICDD. Usage is restricted for the purposes of education and scientific research. DXC Website ICDD Website -

3 244 Calculation times are orders of magnitudes shorter than using MC-methods (about 1s compared to 4h), but the model is currently limited to energies up to 50keV; reliable experimental data for higher energies are extremely rare. Apparently the MC-method is the only alternative to provide spectra at higher energies up to several hundreds of kev. Such tube voltages are common in industrial computed tomography and spectral data are required to support simulations employed for optimizations and improvement of experimental parameters (Chyba et al., 2008). A topical example is computed tomography (CT) where the demand for increased image resolution causes twofold problems: In clinical diagnostics the absorbed dose of the radiation from a CT device by the patient may already come to a critical level according to recommended dose limits, which makes the need for dose calculations obvious. On the other hand, accurate non-destructive material testing in industry based on CT with cone beam geometry requires detailed mathematical modelling of all interactions of the primary beam with the analyzed object including scattering and excitation of secondary radiation; such data can be used for proper interpretation of the measured image as well as for finding optimized conditions for a measurement. This paper investigates the applicability and possible limitations of MC-methods. We used MCNP as well as H.Ebel's analytical model to compute spectra and compared data from both sources with available experimental data within the matching energy ranges which are however limited to 30keV and below. Simulations include also high energy spectra for up to 450kV tube voltage. INSTRUMENTATION The experimental X-ray spectra shown in this work are from two different target materials (Au, Cu); they are part of the collection used for the development of Ebel's model and have been measured on a scanning electron microscope at the Vienna University of Technology with a Si(Li) detector and electron energies from 10 to 30kV. (Detector model: Edax New XL UTW+; detecting unit: PV 9760/69ME; port: back left upper; active area: 10mm 2 ; amplifier model: 194) The same energy dependent detector efficiency that was used by Ebel was applied to the MC data for comparison of the spectra. It is based on a simple 3 layer absorption model (window, inactive absorbing layer, active crystal). The software used for the analytical calculations of tube spectra has been developed at the Institute of Solid State Physics, Vienna University of Technology. It implements the Ebel formula (2006) and uses cross-section and fluorescence data from Cullen et al. (1997). RESULTS

4 245 Measured and simulated spectra obtained at 10kV and 30kV for target materials Au and Cu are shown in Fig. 3. While the good agreement between the analytical model and experiment has already been demonstrated elsewhere (Ebel, 1989, 1999, 2003, 2006) the current interest focuses on the Monte-Carlo spectra. At higher energies their match with the others is excellent as well. The differences at low energies are due to the energy cut off at 1keV (affecting all Cu L-lines) and several M-lines (of Au) missing in the database of MCNP. While the Ebel model is specified to work for energies below 50keV, it was also tried to apply the algorithm to higher energies and compare the result with MCNP. Fig. 4 shows the 100kV spectrum of a W-target as well as the region around the K- and L-absorption edges and emission lines in high magnification. Again good agreement is achieved between both computational methods except for the characteristic lines. MCNP seems to replace the many individual L-lines by a few lines summing up their intensities, and omit most or all M-lines. Both programs cut off energies below 1keV. Figure 3: Comparison of measured and computed x-ray spectra for Au and Cu targets at voltages of 10 and 30kV; electron beam is perpendicular to target surface, photon takeoff angle is 30.

5 246 Figure 4: Top: Comparison of theoretical tube spectra (W-target, 100kV) computed with the analytical model and MCNP. Bottom: Enlarged regions near the L- and K- absorption edges. CONCLUSION The important result is that MC models seem to be well suited for simulating the spectral distribution of tube radiation at very high excitation voltages up to several 100 kv. As far as experimental data were available the agreement with the simulation of continuous radiation was very good. For applications where computing times are a limiting factor, the Ebel model may be an alternative; so far it showed good agreement for tungsten targets up to 100keV but a general extension of its validity to higher energies requires further investigations. The MCNP code allows a rather detailed definition of the tube geometry but exhibits serious deficits with respect to individual L- and M-line representations. A general disadvantage is the low energy cut-off at 1 kev.

6 247 REFERENCES Booth, T. E., Brown, F. B., Bull, J. S., Forster, R. A., Goorley, J. T., Hughes, H.G.,Mosteller,R.D.,Prael,R.E.,Sood,A.,Sweezy,J.E.,Zukaitis, A., Marsha Boggs, M., and Roger Martz, R. (2003). MCNP - A general Monte Carlo N-particle transport code, Report LAUR , Los Alamos National Laboratory, Los Alamos, NM. Chyba, B., Mantler, M., Reiter, M. (2008). Monte-Carlo Simulation of Projections in Computed Tomography, Powder Diffraction 23 (2), Cullen, D. E., Hubbel, J. H., Kissel, L. D. (1997): EPDL97: The Evaluated Photon Data Library, '97 Version, Report UCRL-50400, Vol. 6, Rev. 5, Lawrence Livermore National Laboratory, Livermore, CA Ebel, H., Ebel, M.F., Wernisch, J., Poehn, Ch., Wiederschwinger, H. (1989). of continuous and characteristic tube spectra for fundamental parameter analysis, X-Ray Spectrom. 18, Ebel,H.(1999). X-ray tube spectra X-Ray Spectrom. 27, Ebel,H.(2003). X-Ray Spectrom. 32, Ebel,H.(2006). Fundamental Parameter Programs: Algorithms for the Description of K, L andmspectraof X-rayTubes, Adv.X-Ray Anal.49, ACKNOWLEDGEMENT This work was supported by the project SCK/KUG. Correspondence: Michael Mantler Vienna University of Technology Wiedner Hauptstrasse 8-10/138 A 1040 Vienna, Austria Phone (43-1) Fax: (43-1)

Spectral distribution from end window X-ray tubes

Spectral distribution from end window X-ray tubes Copyright (C) JCPDS-International Centre for Diffraction Data 1999 393 Spectral distribution from end window X-ray tubes N. Broll 1, P. de Chateaubourg 2 1 FORTEX - E.N.S.A.I.S. 24, bld de la Victoire,

More information

AN INNOVATED LABORATORY XAFS APPARATUS

AN INNOVATED LABORATORY XAFS APPARATUS Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 397 AN INNOVATED LABORATORY XAFS APPARATUS TAGUCHI Takeyoshi XRD Division, Rigaku Corporation HARADA

More information

1- AND 2-DIMENSIONAL DETECTION SYSTEMS AND THE PROBLEM OF SAMPLE FLUORESCENCE IN X-RAY DIFFRACTOMETRY

1- AND 2-DIMENSIONAL DETECTION SYSTEMS AND THE PROBLEM OF SAMPLE FLUORESCENCE IN X-RAY DIFFRACTOMETRY Copyright JCPDS - International Centre for Diffraction Data 24, Advances in X-ray Analysis, Volume 47. 224 1- AND 2-DIMENSIONAL DETECTION SYSTEMS AND THE PROBLEM OF SAMPLE FLUORESCENCE IN X-RAY DIFFRACTOMETRY

More information

COMPARISON OF THREE UNIVERSAL CURVES FOR THE ESCAPE PROBABILITY OF X-RAY EXCITED ELECTRONS - I. THEORY

COMPARISON OF THREE UNIVERSAL CURVES FOR THE ESCAPE PROBABILITY OF X-RAY EXCITED ELECTRONS - I. THEORY Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 380 COMPARISON OF THREE UNIVERSAL CURVES FOR THE ESCAPE PROBABILITY OF X-RAY EXCITED ELECTRONS - I. THEORY

More information

MONTE CARLO SIMULATION OF X-RAY SPECTRA IN DIAGNOSTIC RADIOLOGY AND MAMMOGRAPHY USING GEANT4

MONTE CARLO SIMULATION OF X-RAY SPECTRA IN DIAGNOSTIC RADIOLOGY AND MAMMOGRAPHY USING GEANT4 2005 International Nuclear Atlantic Conference - INAC 2005 Santos, SP, Brazil, August 28 to September 2, 2005 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 85-99141-01-5 MONTE CARLO SIMULATION

More information

CHARACTERIZING PROCESS SEMICONDUCTOR THIN FILMS WITH A CONFOCAL MICRO X-RAY FLUORESCENCE MICROSCOPE

CHARACTERIZING PROCESS SEMICONDUCTOR THIN FILMS WITH A CONFOCAL MICRO X-RAY FLUORESCENCE MICROSCOPE 218 CHARACTERIZING PROCESS SEMICONDUCTOR THIN FILMS WITH A CONFOCAL MICRO X-RAY FLUORESCENCE MICROSCOPE Chris M. Sparks 1, Elizabeth P. Hastings 2, George J. Havrilla 2, and Michael Beckstead 2 1. ATDF,

More information

SPECTRAL INTERFERENCE IN X-RAY FLUORESCENCE ANALYSIS OF COMMON MATERIALS

SPECTRAL INTERFERENCE IN X-RAY FLUORESCENCE ANALYSIS OF COMMON MATERIALS Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume 46. 38 SPECTRAL INTERFERENCE IN X-RAY FLUORESCENCE ANALYSIS OF COMMON MATERIALS Frank R. Feret and Hafida

More information

Coating Thickness and Composition Analysis by Micro-EDXRF

Coating Thickness and Composition Analysis by Micro-EDXRF Application Note: XRF Coating Thickness and Composition Analysis by Micro-EDXRF www.edax.com Coating Thickness and Composition Analysis by Micro-EDXRF Introduction: The use of coatings in the modern manufacturing

More information

ON-STREAM XRF ANALYSIS OF HEAVY METALS AT PPM CONCENTRATIONS

ON-STREAM XRF ANALYSIS OF HEAVY METALS AT PPM CONCENTRATIONS Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 130 ABSTRACT ON-STREAM XRF ANALYSIS OF HEAVY METALS AT PPM CONCENTRATIONS G Roach and J Tickner

More information

XRF MAPPING: NEW TOOLS FOR DISTRIBUTION ANALYSIS

XRF MAPPING: NEW TOOLS FOR DISTRIBUTION ANALYSIS Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol.42 19 Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol.42

More information

Lectures about XRF (X-Ray Fluorescence)

Lectures about XRF (X-Ray Fluorescence) 1 / 38 Lectures about XRF (X-Ray Fluorescence) Advanced Physics Laboratory Laurea Magistrale in Fisica year 2013 - Camerino 2 / 38 X-ray Fluorescence XRF is an acronym for X-Ray Fluorescence. The XRF technique

More information

Applications of New, High Intensity X-Ray Optics - Normal and thin film diffraction using a parabolic, multilayer mirror

Applications of New, High Intensity X-Ray Optics - Normal and thin film diffraction using a parabolic, multilayer mirror Applications of New, High Intensity X-Ray Optics - Normal and thin film diffraction using a parabolic, multilayer mirror Stephen B. Robie scintag, Inc. 10040 Bubb Road Cupertino, CA 95014 Abstract Corundum

More information

Introduction to the QuanX

Introduction to the QuanX Introduction to the QuanX Energy-Dispersive X-ray Fluorescence Spectrometry Theory Introduction Overview: Theory Presentation EDS overview Basic overview History of X-ray spectrometry Atomic Structure

More information

Energy Dispersive X-ray X Analysis in the TEM. Lecture 19

Energy Dispersive X-ray X Analysis in the TEM. Lecture 19 Energy Dispersive X-ray X Analysis in the TEM Lecture 19 Example x-ray x spectra (EDS) Several examples of EDS spectra Note: Relative # of counts Energy range of each spectrum Pure Ge Al film on Si Silica

More information

MICRO X-RAY BEAM PRODUCED WITH A SINGLE GLASS CAPILLARY FOR XRF ANALYSIS

MICRO X-RAY BEAM PRODUCED WITH A SINGLE GLASS CAPILLARY FOR XRF ANALYSIS Copyright JCPDS-International Centre for Diffraction Data 2013 ISSN 1097-0002 225 MICRO X-RAY BEAM PRODUCED WITH A SINGLE GLASS CAPILLARY FOR XRF ANALYSIS Shintaro Komatani 1),2), Shintaro Hirano 1), Tomoki

More information

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9 Module 9 This module presents information on what X-rays are and how they are produced. Introduction Module 9, Page 2 X-rays are a type of electromagnetic radiation. Other types of electromagnetic radiation

More information

Chapter 16 Physics of Diagnostic X-Rays

Chapter 16 Physics of Diagnostic X-Rays 1895, W. C. Roentgen Discovery of x-ray The first x-ray image: Fig.16.1 Radiology Diagnostic radiology (radiologist) Radiation therapy (therapeutic radiologist) Nuclear medicine 1. Production of X-Ray

More information

Appendix A. An Overview of Monte Carlo N-Particle Software

Appendix A. An Overview of Monte Carlo N-Particle Software Appendix A. An Overview of Monte Carlo N-Particle Software A.1 MCNP Input File The input to MCNP is an ASCII file containing command lines called "cards". The cards provide a description of the situation

More information

90 degrees Bremsstrahlung Source Term Produced in Thick Targets by 50 MeV to 10 GeV Electrons

90 degrees Bremsstrahlung Source Term Produced in Thick Targets by 50 MeV to 10 GeV Electrons SLAC-PUB-7722 January 9 degrees Bremsstrahlung Source Term Produced in Thick Targets by 5 MeV to GeV Electrons X. S. Mao et al. Presented at the Ninth International Conference on Radiation Shielding, Tsukuba,

More information

emission of light from atoms discrete line spectra - energy levels, Franck-Hertz experiment

emission of light from atoms discrete line spectra - energy levels, Franck-Hertz experiment Introduction Until the early 20 th century physicists used to explain the phenomena in the physical world around them using theories such a mechanics, electromagnetism, thermodynamics and statistical physics

More information

Bryn Mawr College Department of Physics Undergraduate Teaching Laboratories X-ray Crystallography

Bryn Mawr College Department of Physics Undergraduate Teaching Laboratories X-ray Crystallography Bryn Mawr College Department of Physics Undergraduate Teaching Laboratories X-ray Crystallography Introduction In this lab you will explore the X-ray spectrum produced by copper in an X-ray tube and investigate

More information

EDS system. CRF Oxford Instruments INCA CRF EDAX Genesis EVEX- NanoAnalysis Table top system

EDS system. CRF Oxford Instruments INCA CRF EDAX Genesis EVEX- NanoAnalysis Table top system EDS system Most common X-Ray measurement system in the SEM lab. Major elements (10 wt% or greater) identified in ~10 secs. Minor elements identifiable in ~100 secs. Rapid qualitative and accurate quantitative

More information

AN INVESTIGATION INTO THE USEFULNESS OF THE ISOCS MATHEMATICAL EFFICIENCY CALIBRATION FOR LARGE RECTANGULAR 3 x5 x16 NAI DETECTORS

AN INVESTIGATION INTO THE USEFULNESS OF THE ISOCS MATHEMATICAL EFFICIENCY CALIBRATION FOR LARGE RECTANGULAR 3 x5 x16 NAI DETECTORS AN INVESTIGATION INTO THE USEFULNESS OF THE ISOCS MATHEMATICAL EFFICIENCY CALIBRATION FOR LARGE RECTANGULAR 3 x5 x16 NAI DETECTORS Frazier L. Bronson CHP Canberra Industries, Inc. 800 Research Parkway,

More information

Basic Fundamental Parameters in X-Ray Fluorescence

Basic Fundamental Parameters in X-Ray Fluorescence 46 Spectroscopy 22(5) May 2007 Basic Fundamental Parameters in X-Ray Fluorescence The fundamental parameters approach to calibration in X-ray fluorescence is unique because it is based upon the theoretical

More information

HOW SENSITIVE IS THE GAMMA-RAD?

HOW SENSITIVE IS THE GAMMA-RAD? HOW SENSITIVE IS THE GAMMA-RAD? This is one of the most commonly asked questions. Sensitivity is very important, arguably the most important performance parameter in many applications of gamma-ray spectroscopy.

More information

X-ray Production. Target Interactions. Principles of Imaging Science I (RAD119) X-ray Production & Emission

X-ray Production. Target Interactions. Principles of Imaging Science I (RAD119) X-ray Production & Emission Principles of Imaging Science I (RAD119) X-ray Production & Emission X-ray Production X-rays are produced inside the x-ray tube when high energy projectile electrons from the filament interact with the

More information

Fundamentals of modern UV-visible spectroscopy. Presentation Materials

Fundamentals of modern UV-visible spectroscopy. Presentation Materials Fundamentals of modern UV-visible spectroscopy Presentation Materials The Electromagnetic Spectrum E = hν ν = c / λ 1 Electronic Transitions in Formaldehyde 2 Electronic Transitions and Spectra of Atoms

More information

Production of X-Rays. Yoichi Watanabe, Ph.D. Masonic Memorial Building M10-M (612) MPHY 5170/TRAD 7170, Fall semester

Production of X-Rays. Yoichi Watanabe, Ph.D. Masonic Memorial Building M10-M (612) MPHY 5170/TRAD 7170, Fall semester Production of X-Rays Yoichi Watanabe, Ph.D. Masonic Memorial Building M10-M (612)626-6708 watan016@umn.edu MPHY 5170/TRAD 7170, Fall semester Contents 1) Physics of X-ray production 2) The X-ray tube 3)

More information

2012: How is most SEM/EDS Quantitative Analysis performed? By means of Standardless Analysis!

2012: How is most SEM/EDS Quantitative Analysis performed? By means of Standardless Analysis! 2012: How is most SEM/EDS Quantitative Analysis performed? By means of Standardless Analysis! Al reflective coating, 20-50 nm YBa 2 Cu 3 O 7 E 0 = 20 kev X-rays Active silicon (intrinsic), 3 mm Au electrode,

More information

Electron Microscopy 3. SEM. Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts

Electron Microscopy 3. SEM. Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts Electron Microscopy 3. SEM Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts 3-1 SEM is easy! Just focus and shoot "Photo"!!! Please comment this picture... Any

More information

CALIBRATION OF A HIGH TEMPERATURE X-RAY DIFFRACTION STAGE BY DIFFERENTIAL THERMAL EXPANSION A.R. Drews

CALIBRATION OF A HIGH TEMPERATURE X-RAY DIFFRACTION STAGE BY DIFFERENTIAL THERMAL EXPANSION A.R. Drews Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 44 CALIBRATION OF A HIGH TEMPERATURE X-RAY DIFFRACTION STAGE BY DIFFERENTIAL THERMAL EXPANSION A.R. Drews

More information

Diagnostic X-rays and CT Scans - X-ray vision

Diagnostic X-rays and CT Scans - X-ray vision - X-ray vision http://www.uab.edu/surgonc/cases/gi/case2/ctscanof.htm http://www.museumboerhaave.nl/aacollection/aajpegs/m22/9955.jpg - motivation and outline X-rays have been known for over 110 years.

More information

Upgrade of diffraction grating spectrometers for multiple purposes

Upgrade of diffraction grating spectrometers for multiple purposes Upgrade of diffraction grating spectrometers for multiple purposes S. Desmond Smith, Alan Kerr, Matt Shelton, Roger Fenske Abstract The overall quality of spectroscopic instruments based on diffraction

More information

How lasers work. The laser medium. Population Inversion. L 36 Modern Physics [2] Spontaneous vs Stimulated Emission.

How lasers work. The laser medium. Population Inversion. L 36 Modern Physics [2] Spontaneous vs Stimulated Emission. L 36 Modern Physics [2] How lasers work Medical applications of lasers Applications of high power lasers Medical imaging techniques CAT scans MRI s How lasers work First we must understand the difference

More information

Feasibility Study of Neutron Dose for Real Time Image Guided. Proton Therapy: A Monte Carlo Study

Feasibility Study of Neutron Dose for Real Time Image Guided. Proton Therapy: A Monte Carlo Study Feasibility Study of Neutron Dose for Real Time Image Guided Proton Therapy: A Monte Carlo Study Jin Sung Kim, Jung Suk Shin, Daehyun Kim, EunHyuk Shin, Kwangzoo Chung, Sungkoo Cho, Sung Hwan Ahn, Sanggyu

More information

A HIGH-TEMPERATURE POWDER DIFFRACTION FURNACE

A HIGH-TEMPERATURE POWDER DIFFRACTION FURNACE Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume 46. 50 A HIGH-TEMPERATURE POWDER DIFFRACTION FURNACE M. D. Dolan, S. Zdzieszynski, and S. T. Misture

More information

THEORY OF XRF. Getting acquainted with the principles. Peter Brouwer

THEORY OF XRF. Getting acquainted with the principles. Peter Brouwer THEORY OF XRF Getting acquainted with the principles Peter Brouwer THEORY OF XRF Getting acquainted with the principles Peter Brouwer First published in The Netherlands under the title Theory of XRF. Copyright

More information

CHAPTER 2 DRUG SUBSTANCES AND INSTRUMENTS EMPLOYED

CHAPTER 2 DRUG SUBSTANCES AND INSTRUMENTS EMPLOYED CHAPTER 2 DRUG SUBSTANCES AND INSTRUMENTS EMPLOYED 2.1 Preparation of Pure polymorphic forms Lamivudine polymorphic Form I and Form II drug substances were prepared in Aurobindo Pharma Limited Research

More information

Calculation of Source-detector Solid Angle, Using Monte Carlo Method, for Radioactive Sources with Various Geometries and Cylindrical Detector

Calculation of Source-detector Solid Angle, Using Monte Carlo Method, for Radioactive Sources with Various Geometries and Cylindrical Detector International Journal of Pure and Applied Physics ISSN 0973-1776 Volume 3, Number 2 (2007), pp. 201 208 Research India Publications http://www.ripublication.com/ijpap.htm Calculation of Source-detector

More information

EDXRF of Used Automotive Catalytic Converters

EDXRF of Used Automotive Catalytic Converters EDXRF of Used Automotive Catalytic Converters Energy Dispersive X-Ray Fluorescence (EDXRF) is a very powerful technique for measuring the concentration of elements in a sample. It is fast, nondestructive,

More information

Chapter 5 X-ray imaging 5.1 The physics of diagnostic X-rays

Chapter 5 X-ray imaging 5.1 The physics of diagnostic X-rays Chapter 5 X-ray imaging 5.1 The physics of diagnostic X-rays Learning objectives: How are X-rays produced in an X-ray tube? How is the energy of the photons from an X-ray tube controlled? Why are photons

More information

CIVA 10 RX module : Preliminary validation in a nuclear context

CIVA 10 RX module : Preliminary validation in a nuclear context CIVA 10 RX module : Preliminary validation in a nuclear context D. Tisseur, CEA-LIST, France F. Buyens, CEA-LIST, France G. Cattiaux, IRSN, France T. Sollier, IRSN, France 1 Outline Context presentation

More information

COLLEGE PHYSICS. Chapter 29 INTRODUCTION TO QUANTUM PHYSICS

COLLEGE PHYSICS. Chapter 29 INTRODUCTION TO QUANTUM PHYSICS COLLEGE PHYSICS Chapter 29 INTRODUCTION TO QUANTUM PHYSICS Quantization: Planck s Hypothesis An ideal blackbody absorbs all incoming radiation and re-emits it in a spectrum that depends only on temperature.

More information

Lecture 5 Different types of microscopes: UV, dark field, phase contrast, fluorescence and electron microscope.

Lecture 5 Different types of microscopes: UV, dark field, phase contrast, fluorescence and electron microscope. Lecture 5 Different types of microscopes: UV, dark field, phase contrast, fluorescence and electron microscope. Learning objectives: In continuation last class on the principles and basic types of microscopes,

More information

X-Rays were discovered accidentally in 1895 by Wilhelm Conrad Röntgen

X-Rays were discovered accidentally in 1895 by Wilhelm Conrad Röntgen X-Rays were discovered accidentally in 1895 by Wilhelm Conrad Röntgen Due to their short wavelength, on the order of magnitude of cells, and their high energy, they can penetrate skin and other soft tissue.

More information

Electron Microscopy SEM and TEM

Electron Microscopy SEM and TEM Electron Microscopy SEM and TEM Content 1. Introduction: Motivation for electron microscopy 2. Interaction with matter 3. SEM: Scanning Electron Microscopy 3.1 Functional Principle 3.2 Examples 3.3 EDX

More information

UV/Vis Spectroscopy. Varka Evi-Maria Ph.D. Chemist AUTH Thessaloniki 2012

UV/Vis Spectroscopy. Varka Evi-Maria Ph.D. Chemist AUTH Thessaloniki 2012 UV/Vis Spectroscopy Varka Evi-Maria Ph.D. Chemist AUTH Thessaloniki 2012 Introduction of Spectroscopy The structure of new synthesised molecules or isolated compounds from natural sources in the lab must

More information

Coating Thickness Measurement with High-performance for Latest Electronic Fine Components of Mobile Devices

Coating Thickness Measurement with High-performance for Latest Electronic Fine Components of Mobile Devices Hitachi Review Vol. 65 (2016), No. 7 267 Featured Articles Coating Thickness Measurement with High-performance for Latest Electronic Fine Components of Mobile Devices FT150 Series Fluorescent X-ray Coating

More information

Application Note # EDS-10 Advanced light element and low energy X-ray analysis of a TiB 2 TiC SiC ceramic material using EDS spectrum imaging

Application Note # EDS-10 Advanced light element and low energy X-ray analysis of a TiB 2 TiC SiC ceramic material using EDS spectrum imaging Quantitative analysis Ceramics sample Peak deconvolution EDS map Phase analysis Application Note # EDS-10 Advanced light element and low energy X-ray analysis of a TiB 2 TiC SiC ceramic material using

More information

Electron Microprobe Analysis X-ray spectrometry:

Electron Microprobe Analysis X-ray spectrometry: Electron Microprobe Analysis X-ray spectrometry: 1. X-ray generation and emission 2. X-ray detection and measurement X-ray energy and wavelength E=hν h : Planck's constant (6.626x10-34 Joule.sec or, 6.626x10-34

More information

Digital Tomosynthesis: Advanced Breast Cancer Imaging Technique. Max Wiedmann

Digital Tomosynthesis: Advanced Breast Cancer Imaging Technique. Max Wiedmann Digital Tomosynthesis: Advanced Breast Cancer Imaging Technique Max Wiedmann Digital Tomosynthesis An imaging technique in which multiple X-rays of one object are take from a discrete number angles. These

More information

Scanning Electron Microscopy: an overview on application and perspective

Scanning Electron Microscopy: an overview on application and perspective Scanning Electron Microscopy: an overview on application and perspective Elvio Carlino Center for Electron Microscopy - IOM-CNR Laboratorio Nazionale TASC - Trieste, Italy Location of the Center for Electron

More information

What does DXA mean and why is it important? Principles of operation of DXA systems. How can we measure bone mineral density? What is radiation?

What does DXA mean and why is it important? Principles of operation of DXA systems. How can we measure bone mineral density? What is radiation? What does DXA mean and why is it important? Principles of operation of DXA systems Dr Wil Evans Head of Medical Physics University Hospital of Wales, Cardiff DXA stands for Dual energy X-ray Absorptiometry

More information

Irradiation Field Size: 5cmX5cm 10cmX10cm 15cmX15cm 20cmX20cm. Focus-Surface Distance: 100cm. 20cm Volume of Ion Chamber : 1cmX1cmX1cm

Irradiation Field Size: 5cmX5cm 10cmX10cm 15cmX15cm 20cmX20cm. Focus-Surface Distance: 100cm. 20cm Volume of Ion Chamber : 1cmX1cmX1cm Proceedings of the Ninth EGS4 Users' Meeting in Japan, KEK Proceedings 200-22, p.5-8 MONTE CARLO SIMULATION ANALYSIS OF BACKSCATTER FACTOR FOR LOW-ENERGY X-RAY K. Shimizu, K. Koshida and T. Miyati Department

More information

No Brain Too Small PHYSICS ATOMS: PHOTONS AND THE PHOTOELECTRIC EFFECT QUESTIONS

No Brain Too Small PHYSICS ATOMS: PHOTONS AND THE PHOTOELECTRIC EFFECT QUESTIONS ATOMS: PHOTONS AND THE PHOTOELECTRIC EFFECT QUESTIONS SODIUM LAMPS (2012;2) Low pressure sodium lamps are widely used in street lighting. The lamps produce light when an electric current is passed through

More information

Gamma Ray Attenuation Properties of Common Shielding Materials

Gamma Ray Attenuation Properties of Common Shielding Materials Gamma Ray Attenuation Properties of Common Shielding Materials Daniel R. McAlister, Ph.D. PG Research Foundation, Inc. 955 University Lane Lisle, IL 60532, USA Introduction In areas where people are likely

More information

Outline. Exponential Attenuation. Introduction. Simple exponential attenuation. Simple exponential attenuation. Simple exponential attenuation

Outline. Exponential Attenuation. Introduction. Simple exponential attenuation. Simple exponential attenuation. Simple exponential attenuation Outline Exponential Attenuation Chapter 3 F.A. Attix, Introduction to Radiological Physics and Radiation Dosimetry Simple exponential attenuation and plural modes of absorption arrow-beam vs. broad-beam

More information

Direct Determination of Phosphorus Content in Electroless Nickel Plating Using X-ray Fluorescence (XRF) Spectroscopy

Direct Determination of Phosphorus Content in Electroless Nickel Plating Using X-ray Fluorescence (XRF) Spectroscopy Direct Determination of Phosphorus Content in Electroless Nickel Plating Using X-ray Fluorescence (XRF) Spectroscopy Michael Haller Jim Bogert, Ryan Boyle Fischer Technology, Windsor CT, USA Volker Rößiger,

More information

LAUE DIFFRACTION INTRODUCTION CHARACTERISTICS X RAYS BREMSSTRAHLUNG

LAUE DIFFRACTION INTRODUCTION CHARACTERISTICS X RAYS BREMSSTRAHLUNG LAUE DIFFRACTION INTRODUCTION X-rays are electromagnetic radiations that originate outside the nucleus. There are two major processes for X-ray production which are quite different and which lead to different

More information

LYNXEYE XE-T. < 380 ev. Innovation with Integrity. Energy. Resolution. High-Resolution Position Sensitive Detector with Superb Energy Resolution XRD

LYNXEYE XE-T. < 380 ev. Innovation with Integrity. Energy. Resolution. High-Resolution Position Sensitive Detector with Superb Energy Resolution XRD Energy < 380 ev Resolution LYNXEYE XE-T High-Resolution Position Sensitive Detector with Superb Energy Resolution The LYNXEYE XE-T is the next generation "Compound Silicon Strip" detector with superb energy

More information

Complimentary Methods

Complimentary Methods Complimentary Methods Today I m going to briefly discuss some structural characterization techniques that are complimentary to X-ray powder diffraction. Neutron Diffraction Electron Diffraction X-ray Fluorescence,

More information

Advanced Physics Laboratory. XRF X-Ray Fluorescence: Energy-Dispersive analysis (EDXRF)

Advanced Physics Laboratory. XRF X-Ray Fluorescence: Energy-Dispersive analysis (EDXRF) Advanced Physics Laboratory XRF X-Ray Fluorescence: Energy-Dispersive analysis (EDXRF) Bahia Arezki Contents 1. INTRODUCTION... 2 2. FUNDAMENTALS... 2 2.1 X-RAY PRODUCTION... 2 2. 1. 1 Continuous radiation...

More information

THIN FILM COMPONENTS FOR Li-ion MICROBATTERIES

THIN FILM COMPONENTS FOR Li-ion MICROBATTERIES THIN FILM COMPONENTS FOR Li-ion MICROBATTERIES J. Přidal a, J. Prachařová a, J. Bludská b, I. Jakubec b a Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 180 00 Prague 8,

More information

X-RAY DIFFRACTION IMAGING AS A TOOL OF MESOSTRUCTURE ANALYSIS

X-RAY DIFFRACTION IMAGING AS A TOOL OF MESOSTRUCTURE ANALYSIS Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 241 X-RAY DIFFRACTION IMAGING AS A TOOL OF MESOSTRUCTURE ANALYSIS ABSTRACT J. Fiala, S. Němeček Škoda

More information

Quantitative Analysis Software for X-Ray Fluorescence. XRF-FP is a full-featured quantitative analysis package for XRF

Quantitative Analysis Software for X-Ray Fluorescence. XRF-FP is a full-featured quantitative analysis package for XRF Quantitative Analysis Software for X-Ray Fluorescence XRF-FP XRF-FP is a full-featured quantitative analysis package for XRF APPLICATIONS X-Ray Fluorescence Thin-film Analysis RoHS/WEEE Analysis Teaching

More information

RESULTS OF FIRST EXPERIMENTS ON NEUTRON GENERATION IN THE VITA NEUTRON SOURCE

RESULTS OF FIRST EXPERIMENTS ON NEUTRON GENERATION IN THE VITA NEUTRON SOURCE RESULTS OF FIRST EXPERIMENTS ON NEUTRON GENERATION IN THE VITA NEUTRON SOURCE B. F. Bayanov 1, A. V. Burdakov 1, V. Ya. Chudaev 1, A. A. Ivanov 1, S. G. Konstantinov 1, A. S. Kuznetsov 1, A. N. Makarov

More information

Experiment report. R. Moeckli, F.R. Verdun, J.-F. Valley Institut de Radiophysique Appliquée Centre Universitaire. CH Lausanne.

Experiment report. R. Moeckli, F.R. Verdun, J.-F. Valley Institut de Radiophysique Appliquée Centre Universitaire. CH Lausanne. Experiment report Introduction R. Moeckli, F.R. Verdun, J.-F. Valley Institut de Radiophysique Appliquée Centre Universitaire. CH - 1015 Lausanne Beam time has been allocated on BM5 in September 1998,

More information

Variance reduction techniques used in BEAMnrc

Variance reduction techniques used in BEAMnrc Variance reduction techniques used in BEAMnrc D.W.O. Rogers Carleton Laboratory for Radiotherapy Physics. Physics Dept, Carleton University Ottawa, Canada http://www.physics.carleton.ca/~drogers ICTP,Trieste,

More information

Lateral Resolution of EDX Analysis with Low Acceleration Voltage SEM

Lateral Resolution of EDX Analysis with Low Acceleration Voltage SEM Original Paper Lateral Resolution of EDX Analysis with Low Acceleration Voltage SEM Satoshi Hashimoto 1, Tsuguo Sakurada 1, and Minoru Suzuki 2 1 JFE-Techno research corporation, 1-1 Minamiwatarida, Kawasaki,

More information

Analysis of Diagnostic X-Ray Spectra of Implosions at the National Ignition Facility

Analysis of Diagnostic X-Ray Spectra of Implosions at the National Ignition Facility Analysis of Diagnostic X-Ray Spectra of Implosions at the National Ignition Facility 100.00 Symcap Intensity (J/keV/ster) 10.00 1.00 0.10 Ge a Ge He a + satellite Ge edge I 0 ~ e ho/kt Ge-doped ablator

More information

COMPARISON OF FOUR DATA ANALYSIS SOFTWARE FOR COMBINED X-RAY REFLECTIVITY AND GRAZING INCIDENCE X-RAY FLUORESCENCE MEASUREMENTS

COMPARISON OF FOUR DATA ANALYSIS SOFTWARE FOR COMBINED X-RAY REFLECTIVITY AND GRAZING INCIDENCE X-RAY FLUORESCENCE MEASUREMENTS COMPARISON OF FOUR DATA ANALYSIS SOFTWARE FOR COMBINED X-RAY REFLECTIVITY AND GRAZING INCIDENCE X-RAY FLUORESCENCE MEASUREMENTS Bérenger Caby (1), Fabio Brigidi (2), Dieter Ingerle (3), Blanka Detlefs

More information

Radiology. Floron C. Faries, Jr. DVM, MS

Radiology. Floron C. Faries, Jr. DVM, MS Radiology Floron C. Faries, Jr. DVM, MS Objectives Determine the appropriate machine settings for making a radiograph Describe essential radiograph accessories Describe the positions used to perform radiographs

More information

Using the Bruker Tracer III-SD Handheld X-Ray Fluorescence Spectrometer using PC Software for Data Collection

Using the Bruker Tracer III-SD Handheld X-Ray Fluorescence Spectrometer using PC Software for Data Collection Using the Bruker Tracer III-SD Handheld X-Ray Fluorescence Spectrometer using PC Software for Data Collection Scott A Speakman, Ph.D Center for Materials Science and Engineering at MIT speakman@mit.edu

More information

Lecture 5: X-ray measurement techniques

Lecture 5: X-ray measurement techniques Lecture 5: X-ray measurement techniques Contents 1 Introduction 1 2 Powder photographs 2 2.1 Debye-Scherrer method...................... 2 2.2 Focussing method......................... 4 2.3 Pinhole photographs.......................

More information

IMPROVEMENTS IN LOW POWER, END-WINDOW, TRANSMISSION-TARGET X-RAY TUBES

IMPROVEMENTS IN LOW POWER, END-WINDOW, TRANSMISSION-TARGET X-RAY TUBES Copyright JCPDS - International Centre for Diffraction Data 24, Advances in X-ray Analysis, Volume 47. 64 ABSTRACT IMPROVEMENTS IN LOW POWER, END-WINDOW, TRANSMISSION-TARGET X-RAY TUBES Charles Jensen,

More information

DESIGN AND CONSTRUCTION OF A DIAGNOSTIC PULSED X-RAY TUBE

DESIGN AND CONSTRUCTION OF A DIAGNOSTIC PULSED X-RAY TUBE Journal of Al-Nahrain University Vol13 (3), September, 2010, pp51-57 Science DESIGN AND CONSTRUCTION OF A DIAGNOSTIC PULSED X-RAY TUBE Mohamed Ibrahim Department of Chemical Engineering, University of

More information

On the Use of a Diagnostic X-Ray Machine for Calibrating Personal Dosimeters

On the Use of a Diagnostic X-Ray Machine for Calibrating Personal Dosimeters On the Use of a Diagnostic X-Ray Machine for Calibrating Personal Dosimeters A. T. Baptista Neto, T. A. Da Silva Centro de Desenvolvimento da Tecnologia Nuclear, Comissão Nacional de Energia Nuclear, Rua

More information

Advanced variance reduction techniques applied to Monte Carlo simulation of linacs

Advanced variance reduction techniques applied to Monte Carlo simulation of linacs MAESTRO Advanced variance reduction techniques applied to Monte Carlo simulation of linacs Llorenç Brualla, Francesc Salvat, Eric Franchisseur, Salvador García-Pareja, Antonio Lallena Institut Gustave

More information

A NEW AREA DETECTOR FOR HIGH-SPEED AND HIGH-SENSITIVITY X-RAY DIFFRACTION ANALYSIS

A NEW AREA DETECTOR FOR HIGH-SPEED AND HIGH-SENSITIVITY X-RAY DIFFRACTION ANALYSIS 380 A NEW AREA DETECTOR FOR HIGH-SPEED AND HIGH-SENSITIVITY X-RAY DIFFRACTION ANALYSIS TAGUCHI Takeyoshi Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666, Japan ABSTRACT A state-of-art

More information

X-rays Images. Prof. Dr. Lucas Ferrari de Oliveira UFPR Informatics Department

X-rays Images. Prof. Dr. Lucas Ferrari de Oliveira UFPR Informatics Department Prof. Dr. Lucas Ferrari de Oliveira UFPR Informatics Department Discovery: German physicist Wilhelm Röntgen in 1895; "X-rays" signify an unknown quantity; X-rays were found emanating from Crookes tubes

More information

A PORTABLE X-RAY APPARATUS FOR BOTH STRESS MEASUREMENT AND PHASE ANALYSIS UNDER FIELD CONDITIONS.

A PORTABLE X-RAY APPARATUS FOR BOTH STRESS MEASUREMENT AND PHASE ANALYSIS UNDER FIELD CONDITIONS. Copyright(c)JCPDS-International Centre for Diffraction Data 2000,Advances in X-ray Analysis,Vol.43 66 A PORTABLE X-RAY APPARATUS FOR BOTH STRESS MEASUREMENT AND PHASE ANALYSIS UNDER FIELD CONDITIONS. V.

More information

Atomic Emission Spectra

Atomic Emission Spectra Atomic Emission Spectra Objectives The objectives of this laboratory are as follows: To build and calibrate a simple box spectroscope capable of measuring wavelengths of visible light. To use this spectroscope

More information

CHAPTER - 5 SAMPLE PREPARATION AND TESTING

CHAPTER - 5 SAMPLE PREPARATION AND TESTING 50 CHAPTER - 5 SAMPLE PREPARATION AND TESTING 5.1 Procurement of material 5.2 Assessment of mechanical properties 51 SAMPLE PREPARATION AND TESTING 5.1 PROCUREMENT OF MATERIAL A list of suppliers for Raw

More information

Jorge E. Fernández Laboratory of Montecuccolino (DIENCA), Alma Mater Studiorum University of Bologna, via dei Colli, 16, 40136 Bologna, Italy

Jorge E. Fernández Laboratory of Montecuccolino (DIENCA), Alma Mater Studiorum University of Bologna, via dei Colli, 16, 40136 Bologna, Italy Information technology (IT) for teaching X- and gamma-ray transport: the computer codes MUPLOT and SHAPE, and the web site dedicated to photon transport Jorge E. Fernández Laboratory of Montecuccolino

More information

Acquiring molecular interference functions of X-ray coherent scattering for breast tissues by combination of simulation and experimental methods

Acquiring molecular interference functions of X-ray coherent scattering for breast tissues by combination of simulation and experimental methods Short report Acquiring molecular interference functions of X-ray coherent scattering for breast tissues by combination of simulation and experimental methods A. Chaparian 1*,M.A. Oghabian 1, V. Changizi

More information

ZINC/IRON PHASE TRANSFORMATION STUDIES ON GALVANNEALED STEEL COATINGS BY X-RAY DIFFRACTION

ZINC/IRON PHASE TRANSFORMATION STUDIES ON GALVANNEALED STEEL COATINGS BY X-RAY DIFFRACTION Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume 46. 291 ZINC/IRON PHASE TRANSFORMATION STUDIES ON GALVANNEALED STEEL COATINGS BY X-RAY DIFFRACTION S.

More information

UV/VIS/IR SPECTROSCOPY ANALYSIS OF NANOPARTICLES

UV/VIS/IR SPECTROSCOPY ANALYSIS OF NANOPARTICLES UV/VIS/IR SPECTROSCOPY ANALYSIS OF NANOPARTICLES SEPTEMBER 2012, V 1.1 4878 RONSON CT STE K SAN DIEGO, CA 92111 858-565 - 4227 NANOCOMPOSIX.COM Note to the Reader: We at nanocomposix have published this

More information

SH1009, Modern Fysik. X-Ray Diffraction Muhammad Yasir, Lway al Maeeni, Joakim Wahlström

SH1009, Modern Fysik. X-Ray Diffraction Muhammad Yasir, Lway al Maeeni, Joakim Wahlström SH1009, Modern Fysik X-Ray Diffraction Muhammad Yasir, Lway al Maeeni, Joakim Wahlström 24 th april, 2009 Introduction In this lab we study the x-rays and their ability to penetrate materials. We also

More information

Neutron-Based Imaging May Lead to Earlier Breast Cancer Diagnosis

Neutron-Based Imaging May Lead to Earlier Breast Cancer Diagnosis Neutron-Based Imaging May Lead to Earlier Breast Cancer Diagnosis Carey Floyd (carey.floyd@duke.edu) 12, C Howell 2, A Kapadia 2, B Harrawood 1, J Xia 2, G Tourassi 1, (1)Duke University Medical Center,

More information

ION-EXCHANGE FILMS FOR ELEMENT CONCENTRATION IN X-RAY FLUORESCENCE ANALYSIS WITH TOTAL REFLECTION OF THE PRIMARY BEAM.

ION-EXCHANGE FILMS FOR ELEMENT CONCENTRATION IN X-RAY FLUORESCENCE ANALYSIS WITH TOTAL REFLECTION OF THE PRIMARY BEAM. 822 ION-EXCHANGE FILMS FOR ELEMENT CONCENTRATION IN X-RAY FLUORESCENCE ANALYSIS WITH TOTAL REFLECTION OF THE PRIMARY BEAM. Abstract A.P.Morovov, L.D.Danilin, V.V.Zhmailo, Yu.V.Ignatiev, A.E.Lakhtikov,

More information

X-Ray Fluorescence (XRF): Understanding Characteristic X-Rays

X-Ray Fluorescence (XRF): Understanding Characteristic X-Rays X-Ray Fluorescence (XRF): Understanding Characteristic X-Rays What is XRF? X-Ray Fluorescence is defined as The emission of characteristic "secondary" (or fluorescent) X-rays from a material that has been

More information

Confocal μ-xrf for 3D analysis of elements distribution in hot environmental particles

Confocal μ-xrf for 3D analysis of elements distribution in hot environmental particles LLNL-TR-400056 LAWRENCE LIVERMORE NATIONAL LABORATORY Confocal μ-xrf for 3D analysis of elements distribution in hot environmental particles M. Bielewski M. Eriksson J. Himbert R. Simon M. Betti T.F. Hamilton

More information

SIMULTANEOUS XRD/XRF WITH LOW-POWER X-RAY TUBES

SIMULTANEOUS XRD/XRF WITH LOW-POWER X-RAY TUBES Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 34 SIMULTANEOUS XRD/XRF WITH LOW-POWER X-RAY TUBES S. Cornaby 1, A. Reyes-Mena 1, P. W. Moody 1,

More information

Towards a Metric to Estimate Atomic Number from Backscattered Photons

Towards a Metric to Estimate Atomic Number from Backscattered Photons LLNL-TR-41581 Towards a Metric to Estimate Atomic Number from Backscattered Photons S. Walston, D. Dietrich, R. Wurtz August 19, 29 Disclaimer This document was prepared as an account of work sponsored

More information

Introduction to Powder X-Ray Diffraction History Basic Principles

Introduction to Powder X-Ray Diffraction History Basic Principles Introduction to Powder X-Ray Diffraction History Basic Principles Folie.1 History: Wilhelm Conrad Röntgen Wilhelm Conrad Röntgen discovered 1895 the X-rays. 1901 he was honoured by the Noble prize for

More information

COMPARISON OF TEXTURE IN COPPER AND ALUMINUM THIN FILMS DETERMINED BY XRD AND EBSD *

COMPARISON OF TEXTURE IN COPPER AND ALUMINUM THIN FILMS DETERMINED BY XRD AND EBSD * 201 COMPARISON OF TEXTURE IN COPPER AND ALUMINUM THIN FILMS DETERMINED BY XRD AND EBSD * J. Müller 1, D. Balzar 1,2, R.H. Geiss 1, D.T. Read 1, and R.R. Keller 1 1 Materials Reliability Division, National

More information

Radiology Physics. Just take a deep breath. Books to Consider. Why worry about physics? The Game Plan. 1 st Period

Radiology Physics. Just take a deep breath. Books to Consider. Why worry about physics? The Game Plan. 1 st Period Radiology Physics Just take a deep breath OR: I DIDN T SIGN UP TO LEARN THIS STUFF Chris Ober, DVM, PhD, DACVR 7 February 2011 Why worry about physics? Know what the system can give you Know what the system

More information

3D INTERACTIVE DATA LANGUAGE POLE FIGURE VISUALIZATION

3D INTERACTIVE DATA LANGUAGE POLE FIGURE VISUALIZATION 111 3D INTERACTIVE DATA LANGUAGE POLE FIGURE VISUALIZATION ABSTRACT Colleen S. Frazer, Mark A. Rodriguez, and Ralph G. Tissot Sandia National Laboratories, Albuquerque, NM 87185-1411 The Interactive Data

More information

UNIT: Electromagnetic Radiation and Photometric Equipment

UNIT: Electromagnetic Radiation and Photometric Equipment UNIT: Electromagnetic Radiation and Photometric Equipment 3photo.wpd Task Instrumentation I To review the theory of electromagnetic radiation and the principle and use of common laboratory instruments

More information

3 - Atomic Absorption Spectroscopy

3 - Atomic Absorption Spectroscopy 3 - Atomic Absorption Spectroscopy Introduction Atomic-absorption (AA) spectroscopy uses the absorption of light to measure the concentration of gas-phase atoms. Since samples are usually liquids or solids,

More information