CT scanning. By Mikael Jensen & Jens E. Wilhjelm Risø National laboratory Ørsted DTU. (Ver /9/07) by M. Jensen and J. E.

Size: px
Start display at page:

Download "CT scanning. By Mikael Jensen & Jens E. Wilhjelm Risø National laboratory Ørsted DTU. (Ver. 1.2 4/9/07) 2002-2007 by M. Jensen and J. E."

Transcription

1 1 Overview CT scanning By Mikael Jensen & Jens E. Wilhjelm Risø National laboratory Ørsted DTU (Ver /9/07) by M. Jensen and J. E. Wilhjelm) As it can be imagined, planar X-ray imaging has an inherent limitation in resolving overlying structures as everything seen in the images are the result of a projection. It is, however, possible to resolve the 3D distribution of X-ray attenuation from a set of projections. This is actually what we do mentally when we access the 3D structure of an object, for example the head of a person, by walking around the object and looking at it from all different angles. The CT scan is exactly such a reconstruction of the 3D distribution based on a large set of X-ray projections obtained at many angles covering a complete circle around the patient. CT is an abbreviation of computed tomography. In Anglo-American literature one also occasionally finds the abbreviation CAT denoting computed axial tomography. Tomography by itself means the rendering of slices: naturally the 3D information cannot easily be displayed 3 dimensionally on a screen, instead it is most often displayed as a series of axial slices. The CT scanner was developed in the early 1970ies by Geoffrey Hounsfield and and his colleague Alan Cormack in England (actually working for EMI on funds stemming from music record sales). For this they were awarded the Nobel Prize in Medicine in The basic three components of a CT scanner are still the same as in planar X-ray imaging: An X-ray tube, an object (patient) and a detection system. In the earliest scanners the output of the X-ray tube was collimated to a narrow, pencil-like beam and detected by a single detector. X-ray tube and detector were translated in unison (see Figure 1) across the object making a linear scan. After each scan, Figure 1 Early CT scanner geometry 1/8

2 Rotating X-ray tube Rotating X-ray tube Patient Patient Static ring of detectors Rotating arc of detectors Active detectors Figure 2 Geometry of gantry in CT scanner. Left: The third generation is of type rotate-rotate, where both X-ray tube and detectors rotate. Right: The fourth generation is of type rotate-fixed, where only the X-ray tube rotate. The x-ray tube emits a fan-shaped beam. typically lasting 10 seconds, the entire setup was rotated a few degrees, the scan repeated, and so forth. From a set of such 256 scans the final image (a single slice) would be reconstructed by overnight computing. This reconstruction - which derives an image from a large set of projections - will be considered in Subsection 2.3. Modern scanners are now essentially of two types: the rotate-rotate system and the rotate-fixed system. These are illustrated in Figure 2. Both systems use narrow fan-shaped beams collimated to spread across the full width of the patient. In the rotate-rotate system as many as 700 detectors may be placed in an arc centered at the focal spot of the X-ray tube. The tube is run continuously as both it and the detectors revolve around the patient. The fast electronics of the detectors take as many as thousand readings per detector for a total of readings in one second. In the rotatefixed system as many as 2000 fixed detectors form a circle completely around the patient. The X-ray tube is rotating concentrically within the detector ring. The detectors are normally focused at the centre of the ring. Acquiring the detector responses every one third of a degree produces more than readings per second. 1.1 Hounsfield value Using mathematical algorithms (as will be shown latere in Subsection 2.3), the computer can calculate the linear attenuation coefficient for each point (pixel) in the object and assign an attenuation value to it. Normally, this attenuation is not depicted as attenuation coefficients, instead radiology uses a special unit, now called Hounsfield unit (HU). The corresponding Hounsfield value is defined as follows: HV = 1000 (μ m -μ w )/ μ w (1) where μ m is the (average) linear attenuation coefficient within the voxel it represents and μ w is the linear attenuation coefficient for water at the same spectrum of photon energies. The Hounsfield unit is dimensionless. From the above definition, one should think, that the Houndsfield values are very well-defined. This is not so, as can be seen from Figure 3, which represent data from two different teaching books. There can be a number of reasons for these differences: Different spectra of emitted energy (the center frequency (or energy) of the spectrum, the shape of the spectrum). 2/8

3 (a) (b) Figure 3 Hounsfield values according to different text books: (a) is from [2] while (b) is from [3]. As can be seen, the values does not fully agree. Different definitions of what a given tissue type actually represents. Tissue types seldomly consist of just one component (e.g. muscular tissue can contain various amount of lipid, but still be described as muscular tissue ). 1.2 Single slice versus multi-slice system Originally the CT scanner only acquired one slice at a time, making extended axial field of view a time consuming process. Today the scanners, whether of the third or fourth generation, acquire many slices (16 to 256) at a time using an X-ray tube with an extended axial beam and multiple stacked detector chains. Rotation time is now down to fractions of a seconds making acquisition of of multi-slice 3/8

4 representation of the heart, almost motion arrested. If the patient is continuously slid through the gantry ring during the rotation, a so-called spiral CT scan is acquired. Proper reconstruction can thus yield large series of closely lying slices over extended parts of the body, in principle from head to foot. 2 System details 2.1 CT scanner X-ray tube Proper reconstruction of the CT scans is only possible if a very large number of photons are available for the detectors. If the acquired projections are not statistically well-determined, the reading from a detector will be noisy and the reconstruction algorithm will propagate this noise, leading to unacceptable high noise in the final image. Thus, normally, the CT scan is done with a high output from the CT tube corresponding to large kilovolts and milliampere settings. As the scan are normally extended for many slices and many revolutions, the final dose can be as high as 50 to 100 millisievert (see definition of Sievert in nuclear medicine chapter of this book). As the number of CT scans has been increasing with the wide spread installation of potent multi-slice and/or spiral scanners, the total collective radiation dose from CT scans to the entire medical irradiation constitutes a major part The high current and voltage and the extended exposure time, deposits very large amounts of primary electron beam energy in the anode of the X-ray tube. Special tubes have been developed for these X-ray scanners, with large, fast rotating anodes of high melting point materials. Special problems are related to the technology of bringing electricity of high voltage forward to the X-ray tube, rotating at an orbital diameter of more than one meter with the speed of more than two revolutions per minute. The rapid revolution of X-ray tube and perhaps detector chain also puts a large mechanical strain on the entire X-ray gantry, which must be of extraordinary sturdy construction. 2.2 Detector chain technology Today, at least three types of detectors are used. These detectors can be classified according to the type of material stopping the X-rays: Gas (Xenon) I0 I0 I0 μ11 μ12 Ir1 = I0 exp(-μ11dx -μ12dx) I0 μ21 μ22 Ir2= I0 exp(-μ21dx -μ22dx) Ic2 = I0 exp(-μ12dx -μ22dx) Ic1 = I0 exp(-μ11dx -μ21dx) Figure 4 For a medium assumed to consist of four different types of materials, four measurements will allow enough information to obtain four equations with four unknowns. 4/8

5 Scintillator (transforms the X-ray energy into visible light, detected by a photo diode) Solid state semiconductor The gas detectors are less efficient than the other two types of detectors, but by using high pressure, and extended radial dimensions efficiencies as high as 40 % can be achieved. These deep detectors has the important property of being most sensitive to radially incoming X-rays thus providing inherence protection against too much scattered radiation. With the other two detectors, which are more like surface detectors, the scattered radiation cannot be separated, and must be removed by the mathematical reconstruction algorithm. This is possible, because the scattered radiation has little spatial structure, and can thus be detected and subtracted as a uniform blanket in the image matrix. With many detectors in each chain and many slices the total data sampling rate of a modern CT scanner is extremely high. At present, it is exactly this data sampling rate which limits the performance of state-of-the-art CT scanner technology. 2.3 Reconstruction The reconstruction of the slices from a large number of different projections forms an algebraic problem. This can be seen by considering a CT image with two by two pixels. If the object is irradiated with X-rays from two perpendicular directions, the detectors will measure the four values indicated in Figure 4. The four attenuation values of the CT image can now be found by solving four equations of four unknowns. The corresponding equations are: ln(i 0 /I r1 ) dx 1 = μ 11 + μ 12 (2) ln(i 0 /I r2 ) dx 1 = μ 21 + μ 22 (3) ln(i 0 /I c1 ) dx 1 = μ 11 + μ 21 (4) ln(i 0 /I c2 ) dx 1 = μ 12 + μ 22 (5) Note that the basic physics does not require sampling of projections for more than 180, as the measurement is basically a transmission measurement covering the entire depth forwards to backwards of For all projections, the measured values are added to all contributing pixels Figure 5 Back projection. Each attenuation value is put back into the cells of the image that are located at the line of sight. The same values are put into each cell. 5/8

6 Figure 6 Evolution of backprojection. The first five images are derived from filtered projections, whille the last is derived from raw projections. the object. However, because of system stability, artifact suppression and noise reduction, scans are normally acquired based on 360 acquisitions. However beautiful the algebraic reconstruction looks the practical application is difficult due to the larger number of equations and unknowns. Reconstructing a single slice represented by a 512 by 512 matrix corresponds to the diagonalization of such a matrix, which is no simple task. Some algorithms, however, obtain this goal by iterative measures: first making a guess of the distribution of attenuation values, subtracting the corresponding projections from the actual projections measured and then iteratively minimizing this error difference. 2.4 Filtered backprojection Because it is computationally more effective, the most used algorithm is the so-called filtered backprojection. Consider an image matrix whit pure zeros. Backprojection by itself simply fills the attenuation values of individual projections into each cell of the matrix along the line of sight. The values filled in, are added to those already in the image matrix. This is sought illustrated in Figure 5. When the backprojection is performed on a large number of projections, the final image begins to emerge, 6/8

7 Window width LL UL Greyscale value Window centerline Houndsfield units Figure 7 Windowing. Only HU between -300 and 600 are visualized in the gray scale bar. LL = lower level. UL = upper level (drawing not fully to scale). as seen in Figure 6. However, the image is blurred: a single point object with high attenuation (e.g. a thin tube of water in air) will by this reconstruction be depicted as a 1/r distribution. By filtering the measured projections before backprojection, this blurring can be reduced. The filtering is actually a convolution of the individual projection with a suitable spatial filter, amplifying high spatial frequencies and damping low spatial frequencies. The final reconstruction algorithm is often called LSFB, an abbreviation for linear superposition of filtered backprojections. The exact choice of filter function should be matched with the scanner characteristics, field of view and object of interest. There is no need to reconstruct with filters using higher spatial frequencies than the inherent limits given by the finite detector size in the detection chain. The reconstructed image represents the attenuation coefficients. These are re-calculated to Hounsfield units, and this image is displayed as gray values on the screen. However, the range of Hounsfields units (or attenuation) can be very large, and if only soft tissue is to be visualized, only a small window of values are displayed, as illustrated in Figure 7. Because of the large dymaic range of the CT scanner, it is often better from the beginning of the reconstruction to limit the interest area of the image values to a suitable range. For this reason reconstruction is often formed in brain window, lung window or bone window. 3 Example of clinical CT image Finally, a comparison between an anatomical photograph and a CT image from exactly the same plane is included in Figure 8. The data is from the Visible Human Project. From the CT image, it is very clear which types of tissue, that is best distinguished in the CT image. 4 Acknowledgements Student Jonas Henriksen is greatfully acknowledged for the help with the tables for Hounsfield values. 7/8

8 Figure 8 An anatomical photograph and corresponding CT image at a horizontal scan plane of the head. Data from: [1] 5 References [1] The visible human project: [2] Willi A. Kalender, "Computed Tomography", 2005, 2nd edition, Publicis Corporate Publishing, Erlangen. [3] Erich Krestel, "Imaging Systems for Medical Diagnostics", 1990, Siemens Aktiengesellschaft, Berlin and Munich. 8/8

X-ray imaging: Fundamentals and planar imaging

X-ray imaging: Fundamentals and planar imaging X-ray imaging: Fundamentals and planar imaging By Mikael Jensen and Jens E. Wilhjelm Risø National laboratory Ørsted DTU (Ver..2.1 3/12/07) 2004-2006 by M. Jensen and J. E. Wilhjelm 1 Overview X-ray imaging

More information

Contents. X-ray and Computed Tomography. Characterization of X-rays. Production of X-rays

Contents. X-ray and Computed Tomography. Characterization of X-rays. Production of X-rays J. E. Wilhjelm Ørsted TU Technical University of enmark, Bldg. 348, K-2800 Kongens Lyngby, enmark. X-ray and Computed Tomography Contents History and characterization of X-rays Conventional (projection)

More information

MEDICAL IMAGING 2nd Part Computed Tomography

MEDICAL IMAGING 2nd Part Computed Tomography MEDICAL IMAGING 2nd Part Computed Tomography Introduction 2 In the last 30 years X-ray Computed Tomography development produced a great change in the role of diagnostic imaging in medicine. In convetional

More information

Computerized Tomography, X-rays, and the Radon Transform

Computerized Tomography, X-rays, and the Radon Transform 1 Computerized Tomography, X-rays, and the Radon Transform 1.1 Introduction The purpose of this chapter is to give an informal introduction to the subject of tomography. There are very few mathematical

More information

Scan Time Reduction and X-ray Scatter Rejection in Dual Modality Breast Tomosynthesis. Tushita Patel 4/2/13

Scan Time Reduction and X-ray Scatter Rejection in Dual Modality Breast Tomosynthesis. Tushita Patel 4/2/13 Scan Time Reduction and X-ray Scatter Rejection in Dual Modality Breast Tomosynthesis Tushita Patel 4/2/13 Breast Cancer Statistics Second most common cancer after skin cancer Second leading cause of cancer

More information

PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS Vol. III - Medical and Industrial Tomography - W.B.Gilboy

PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS Vol. III - Medical and Industrial Tomography - W.B.Gilboy MEDICAL AND INDUSTRIAL TOMOGRAPHY Department of Physics, University of Surrey, Guildford, Surrey, U.K. Keywords: Radiography, transmission tomography, emission tomography, microtomography, SPECT (single

More information

MDCT Technology. Kalpana M. Kanal, Ph.D., DABR Assistant Professor Department of Radiology University of Washington Seattle, Washington

MDCT Technology. Kalpana M. Kanal, Ph.D., DABR Assistant Professor Department of Radiology University of Washington Seattle, Washington MDCT Technology Kalpana M. Kanal, Ph.D., DABR Assistant Professor Department of Radiology University of Washington Seattle, Washington ACMP Annual Meeting 2008 - Seattle, WA Educational Objectives Historical

More information

Spiral CT: Single and Multiple Detector Systems. AAPM Refresher Course Nashville, TN July 28,1999

Spiral CT: Single and Multiple Detector Systems. AAPM Refresher Course Nashville, TN July 28,1999 Spiral CT: Single and Multiple Detector Systems AAPM Refresher Course Nashville, TN July 28,1999 Mike McNitt-Gray, PhD, DABR Assistant Professor UCLA Radiological Sciences mmcnittgray@mednet.ucla.edu X-Ray

More information

Data. microcat +SPECT

Data. microcat +SPECT Data microcat +SPECT microcat at a Glance Designed to meet the throughput, resolution and image quality requirements of academic and pharmaceutical research, the Siemens microcat sets the standard for

More information

Experimental study of beam hardening artefacts in photon counting breast computed tomography

Experimental study of beam hardening artefacts in photon counting breast computed tomography Experimental study of beam hardening artefacts in photon counting breast computed tomography M.G. Bisogni a, A. Del Guerra a,n. Lanconelli b, A. Lauria c, G. Mettivier c, M.C. Montesi c, D. Panetta a,

More information

Thinking ahead. Focused on life. REALIZED: GROUNDBREAKING RESOLUTION OF 80 µm VOXEL

Thinking ahead. Focused on life. REALIZED: GROUNDBREAKING RESOLUTION OF 80 µm VOXEL Thinking ahead. Focused on life. REALIZED: GROUNDBREAKING RESOLUTION OF 80 µm VOXEL X-ray ZOOM RECONSTRUCTION Flat Panel Detector (FPD) Automatic Positioning Function For ø 40 x H 40 mm, ø 60 x H 60 mm,

More information

Cone Beam Reconstruction Jiang Hsieh, Ph.D.

Cone Beam Reconstruction Jiang Hsieh, Ph.D. Cone Beam Reconstruction Jiang Hsieh, Ph.D. Applied Science Laboratory, GE Healthcare Technologies 1 Image Generation Reconstruction of images from projections. textbook reconstruction advanced acquisition

More information

CT RADIATION DOSE REPORT FROM DICOM. Frank Dong, PhD, DABR Diagnostic Physicist Imaging Institute Cleveland Clinic Foundation Cleveland, OH

CT RADIATION DOSE REPORT FROM DICOM. Frank Dong, PhD, DABR Diagnostic Physicist Imaging Institute Cleveland Clinic Foundation Cleveland, OH CT RADIATION DOSE REPORT FROM DICOM Frank Dong, PhD, DABR Diagnostic Physicist Imaging Institute Cleveland Clinic Foundation Cleveland, OH CT Patient comes out... Patient goes in... Big Black Box Radiology

More information

CT Protocol Optimization over the Range of CT Scanner Types: Recommendations & Misconceptions

CT Protocol Optimization over the Range of CT Scanner Types: Recommendations & Misconceptions CT Protocol Optimization over the Range of CT Scanner Types: Recommendations & Misconceptions Frank N. Ranallo, Ph.D. Associate Professor of Medical Physics & Radiology University of Wisconsin School of

More information

Computed Tomography Resolution Enhancement by Integrating High-Resolution 2D X-Ray Images into the CT reconstruction

Computed Tomography Resolution Enhancement by Integrating High-Resolution 2D X-Ray Images into the CT reconstruction Digital Industrial Radiology and Computed Tomography (DIR 2015) 22-25 June 2015, Belgium, Ghent - www.ndt.net/app.dir2015 More Info at Open Access Database www.ndt.net/?id=18046 Computed Tomography Resolution

More information

Rb 82 Cardiac PET Scanning Protocols and Dosimetry. Deborah Tout Nuclear Medicine Department Central Manchester University Hospitals

Rb 82 Cardiac PET Scanning Protocols and Dosimetry. Deborah Tout Nuclear Medicine Department Central Manchester University Hospitals Rb 82 Cardiac PET Scanning Protocols and Dosimetry Deborah Tout Nuclear Medicine Department Central Manchester University Hospitals Overview Rb 82 myocardial perfusion imaging protocols Acquisition Reconstruction

More information

Automation of a CT Acquisition: A System-based User-Support. 1. Introduction. Bärbel KRATZ 1, Frank HEROLD 1, Malte KURFISS 1

Automation of a CT Acquisition: A System-based User-Support. 1. Introduction. Bärbel KRATZ 1, Frank HEROLD 1, Malte KURFISS 1 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic Automation of a CT Acquisition: A System-based User-Support More Info at Open Access Database

More information

Purchasing a cardiac CT scanner: What the radiologist needs to know

Purchasing a cardiac CT scanner: What the radiologist needs to know Purchasing a cardiac CT scanner: What the radiologist needs to know Maria Lewis ImPACT St George s Hospital, London maria.lewis@stgeorges.nhs.uk CT scanner development Slice wars 1998 Increased z-coverage

More information

PET/CT QC/QA. Quality Control in PET. Magnus Dahlbom, Ph.D. Verify the operational integrity of the system. PET Detectors

PET/CT QC/QA. Quality Control in PET. Magnus Dahlbom, Ph.D. Verify the operational integrity of the system. PET Detectors Quality Control in PET PET/CT QC/QA Magnus Dahlbom, Ph.D. Division of Nuclear Medicine Ahmanson Biochemical Imaging Clinic David Geffen School of Medicine at UCLA Los Angeles Verify the operational integrity

More information

State-of-the-Art Technology in Cardiac CT

State-of-the-Art Technology in Cardiac CT 1 2 Next Step Evolution or Revolution? State-of-the-Art Technology in Cardiac CT Stefan Ulzheimer, PhD Global Director of Collaborations CT Siemens Medical Solutions Major Innovations in CT Head The 80

More information

QUANTITATIVE IMAGING IN MULTICENTER CLINICAL TRIALS: PET

QUANTITATIVE IMAGING IN MULTICENTER CLINICAL TRIALS: PET Centers for Quantitative Imaging Excellence (CQIE) LEARNING MODULE QUANTITATIVE IMAGING IN MULTICENTER CLINICAL TRIALS: PET American College of Radiology Clinical Research Center v.1 Centers for Quantitative

More information

TISSUE MIMICKING GEL QUALITY LE PHANTOM SERIES DESIGN. performance the ultrasound labs ofand. icking material has the same attenuation mim-

TISSUE MIMICKING GEL QUALITY LE PHANTOM SERIES DESIGN. performance the ultrasound labs ofand. icking material has the same attenuation mim- QUALITY Tissue Benefits Mimicking of s RMI recognized RMI as the ultrasound standard phantoms for quality are performance the ultrasound labs ofand hospitals, manufacturers. clinics Sophisticated and ultrasound

More information

IMAGE PROCESSING AND DATA ANALYSIS IN COMPUTED TOMOGRAPHY

IMAGE PROCESSING AND DATA ANALYSIS IN COMPUTED TOMOGRAPHY IMAGE PROCESSING AND DATA ANALYSIS IN COMPUTED TOMOGRAPHY E. D. SELEÞCHI 1, O. G. DULIU 2 1 University of Bucharest, Faculty of Physics, Romania 2 University of Bucharest, Department of Atomic and Nuclear

More information

Fundamentals of Cone-Beam CT Imaging

Fundamentals of Cone-Beam CT Imaging Fundamentals of Cone-Beam CT Imaging Marc Kachelrieß German Cancer Research Center (DKFZ) Heidelberg, Germany www.dkfz.de Learning Objectives To understand the principles of volumetric image formation

More information

AN INVESTIGATION INTO THE USEFULNESS OF THE ISOCS MATHEMATICAL EFFICIENCY CALIBRATION FOR LARGE RECTANGULAR 3 x5 x16 NAI DETECTORS

AN INVESTIGATION INTO THE USEFULNESS OF THE ISOCS MATHEMATICAL EFFICIENCY CALIBRATION FOR LARGE RECTANGULAR 3 x5 x16 NAI DETECTORS AN INVESTIGATION INTO THE USEFULNESS OF THE ISOCS MATHEMATICAL EFFICIENCY CALIBRATION FOR LARGE RECTANGULAR 3 x5 x16 NAI DETECTORS Frazier L. Bronson CHP Canberra Industries, Inc. 800 Research Parkway,

More information

DICOM Correction Item

DICOM Correction Item Correction Number DICOM Correction Item CP-626 Log Summary: Type of Modification Clarification Rationale for Correction Name of Standard PS 3.3 2004 + Sup 83 The description of pixel spacing related attributes

More information

How To Improve Your Ct Image Quality

How To Improve Your Ct Image Quality Translating Protocols Between Scanner Manufacturer and Model Cynthia H. McCollough, PhD, FACR, FAAPM Professor of Radiologic Physics Director, CT Clinical Innovation Center Department of Radiology Mayo

More information

Lecture 14. Point Spread Function (PSF)

Lecture 14. Point Spread Function (PSF) Lecture 14 Point Spread Function (PSF), Modulation Transfer Function (MTF), Signal-to-noise Ratio (SNR), Contrast-to-noise Ratio (CNR), and Receiver Operating Curves (ROC) Point Spread Function (PSF) Recollect

More information

CT Image Reconstruction. Terry Peters Robarts Research Institute London Canada

CT Image Reconstruction. Terry Peters Robarts Research Institute London Canada CT Image Reconstruction Terry Peters Robarts Research Institute London Canada 1 Standard X-ray Views Standard Radiograph acquires projections of the body, but since structures are overlaid on each other,

More information

Overview. Creation of 3D printed phantoms for clinical radiation therapy 7/7/2015. Eric Ehler, PhD Assistant Professor University of Minnesota

Overview. Creation of 3D printed phantoms for clinical radiation therapy 7/7/2015. Eric Ehler, PhD Assistant Professor University of Minnesota Creation of 3D printed phantoms for clinical radiation therapy Eric Ehler, PhD Assistant Professor University of Minnesota ehler 046@umn.edu Overview Background of 3D Printing Practical Information Current

More information

Digital Image Processing: Introduction

Digital Image Processing: Introduction Digital : Introduction Slides by Brian Mac Namee Brian.MacNamee@comp.dit.ie Materials found at: Slides: http://www.comp.dit.ie/bmacnamee/materials/dip/lectures/1-introduction.ppt Lectures: http://homepages.inf.ed.ac.uk/rbf/books/vernon/

More information

DENTAL Cone beam 3D X-RAY SYSTEM with

DENTAL Cone beam 3D X-RAY SYSTEM with VERSATILE INTUITIVE efficient DENTAL Cone beam 3D X-RAY SYSTEM with dedicated panoramic imaging With thirty years of experience in designing and manufacturing state-of-the-art dental panoramic and tomographic

More information

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9 Module 9 This module presents information on what X-rays are and how they are produced. Introduction Module 9, Page 2 X-rays are a type of electromagnetic radiation. Other types of electromagnetic radiation

More information

The elements used in commercial codes can be classified in two basic categories:

The elements used in commercial codes can be classified in two basic categories: CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

More information

Industrial X-ray for Nondestructive Testing Unrestricted Siemens AG 2014. All rights reserved

Industrial X-ray for Nondestructive Testing Unrestricted Siemens AG 2014. All rights reserved Overview of X-ray Technology and Competence offered by Corporate Technology Industrial X-ray for Nondestructive Testing Nondestructive Testing (NDT) with X-rays: Our offer at a glance High-tech X-ray lab

More information

X-ray Tomography in Industrial Metrology

X-ray Tomography in Industrial Metrology verlag moderne industrie X-ray Tomography in Industrial Metrology Precise, Economical and Universal Ralf Christoph and Hans Joachim Neumann This book was produced with technical collaboration of Werth

More information

C1 Medical Imaging Modalities & Characteristics. 4005-759 Linwei Wang

C1 Medical Imaging Modalities & Characteristics. 4005-759 Linwei Wang C1 Medical Imaging Modalities & Characteristics 4005-759 Linwei Wang Major Types of Medical Imaging Modalities X-ray Imaging Computed Tomography (CT) Magnetic Resonance Imaging (MRI) Nuclear Imaging Positron

More information

Jorge E. Fernández Laboratory of Montecuccolino (DIENCA), Alma Mater Studiorum University of Bologna, via dei Colli, 16, 40136 Bologna, Italy

Jorge E. Fernández Laboratory of Montecuccolino (DIENCA), Alma Mater Studiorum University of Bologna, via dei Colli, 16, 40136 Bologna, Italy Information technology (IT) for teaching X- and gamma-ray transport: the computer codes MUPLOT and SHAPE, and the web site dedicated to photon transport Jorge E. Fernández Laboratory of Montecuccolino

More information

Master s Program in Medical Physics. Physics of Imaging Systems Basic Principles of Computer Tomography (CT) III. Prof. Dr. Lothar Schad.

Master s Program in Medical Physics. Physics of Imaging Systems Basic Principles of Computer Tomography (CT) III. Prof. Dr. Lothar Schad. 1 12/9/2008 Page 1 Master s Program in Medical Physics Physics of Imaging Systems Basic Principles of Computer Tomography (CT) III Chair in Faculty of Medicine Mannheim University of Heidelberg Theodor-Kutzer-Ufer

More information

Computed Tomography. 62.1 Instrumentation. Ian A. Cunningham. Data-Acquisition Geometries. Ian A. Cunningham

Computed Tomography. 62.1 Instrumentation. Ian A. Cunningham. Data-Acquisition Geometries. Ian A. Cunningham 62 Computed Tomography Ian A. Cunningham Victoria Hospital, the John P. Robarts Research Institute, and the University of Western Ontario Philip F. Judy Brigham and Women s Hospital and Harvard Medical

More information

5 Factors Affecting the Signal-to-Noise Ratio

5 Factors Affecting the Signal-to-Noise Ratio 5 Factors Affecting the Signal-to-Noise Ratio 29 5 Factors Affecting the Signal-to-Noise Ratio In the preceding chapters we have learned how an MR signal is generated and how the collected signal is processed

More information

Introduction to Medical Imaging. Lecture 11: Cone-Beam CT Theory. Introduction. Available cone-beam reconstruction methods: Our discussion:

Introduction to Medical Imaging. Lecture 11: Cone-Beam CT Theory. Introduction. Available cone-beam reconstruction methods: Our discussion: Introduction Introduction to Medical Imaging Lecture 11: Cone-Beam CT Theory Klaus Mueller Available cone-beam reconstruction methods: exact approximate algebraic Our discussion: exact (now) approximate

More information

P R E S E N T S Dr. Mufa T. Ghadiali is skilled in all aspects of General Surgery. His General Surgery Services include: General Surgery Advanced Laparoscopic Surgery Surgical Oncology Gastrointestinal

More information

MODERN VOXEL BASED DATA AND GEOMETRY ANALYSIS SOFTWARE TOOLS FOR INDUSTRIAL CT

MODERN VOXEL BASED DATA AND GEOMETRY ANALYSIS SOFTWARE TOOLS FOR INDUSTRIAL CT MODERN VOXEL BASED DATA AND GEOMETRY ANALYSIS SOFTWARE TOOLS FOR INDUSTRIAL CT C. Reinhart, C. Poliwoda, T. Guenther, W. Roemer, S. Maass, C. Gosch all Volume Graphics GmbH, Heidelberg, Germany Abstract:

More information

Experiment 5. Lasers and laser mode structure

Experiment 5. Lasers and laser mode structure Northeastern University, PHYS5318 Spring 2014, 1 1. Introduction Experiment 5. Lasers and laser mode structure The laser is a very important optical tool that has found widespread use in science and industry,

More information

CONFOCAL LASER SCANNING MICROSCOPY TUTORIAL

CONFOCAL LASER SCANNING MICROSCOPY TUTORIAL CONFOCAL LASER SCANNING MICROSCOPY TUTORIAL Robert Bagnell 2006 This tutorial covers the following CLSM topics: 1) What is the optical principal behind CLSM? 2) What is the spatial resolution in X, Y,

More information

Cardiac CT for Calcium Scoring

Cardiac CT for Calcium Scoring Scan for mobile link. Cardiac CT for Calcium Scoring Cardiac computed tomography (CT) for Calcium Scoring uses special x-ray equipment to produce pictures of the coronary arteries to determine if they

More information

Minnesota Academic Standards

Minnesota Academic Standards A Correlation of to the Minnesota Academic Standards Grades K-6 G/M-204 Introduction This document demonstrates the high degree of success students will achieve when using Scott Foresman Addison Wesley

More information

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND THE THREE-DIMENSIONAL DISTRIBUTION OF THE RADIANT FLUX DENSITY AT THE FOCUS OF A CONVERGENCE BEAM

More information

The Whys, Hows and Whats of the Noise Power Spectrum. Helge Pettersen, Haukeland University Hospital, NO

The Whys, Hows and Whats of the Noise Power Spectrum. Helge Pettersen, Haukeland University Hospital, NO The Whys, Hows and Whats of the Noise Power Spectrum Helge Pettersen, Haukeland University Hospital, NO Introduction to the Noise Power Spectrum Before diving into NPS curves, we need Fourier transforms

More information

A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA

A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA N. Zarrinpanjeh a, F. Dadrassjavan b, H. Fattahi c * a Islamic Azad University of Qazvin - nzarrin@qiau.ac.ir

More information

X-ray Production. Target Interactions. Principles of Imaging Science I (RAD119) X-ray Production & Emission

X-ray Production. Target Interactions. Principles of Imaging Science I (RAD119) X-ray Production & Emission Principles of Imaging Science I (RAD119) X-ray Production & Emission X-ray Production X-rays are produced inside the x-ray tube when high energy projectile electrons from the filament interact with the

More information

Signal to Noise Instrumental Excel Assignment

Signal to Noise Instrumental Excel Assignment Signal to Noise Instrumental Excel Assignment Instrumental methods, as all techniques involved in physical measurements, are limited by both the precision and accuracy. The precision and accuracy of a

More information

3D Accuitomo FPD XYZ Slice View Tomograph. Super-High Resolution Images of Region of Interest

3D Accuitomo FPD XYZ Slice View Tomograph. Super-High Resolution Images of Region of Interest 3D Accuitomo FPD XYZ Slice View Tomograph. Super-High Resolution Images of Region of Interest Thinking ahead. Focused on life. Thinking ahead. Focused on life. The new era of user-friendly, 3-dimensional

More information

Reprint (R22) Avoiding Errors in UV Radiation Measurements. By Thomas C. Larason July 2001. Reprinted from Photonics Spectra, Laurin Publishing

Reprint (R22) Avoiding Errors in UV Radiation Measurements. By Thomas C. Larason July 2001. Reprinted from Photonics Spectra, Laurin Publishing Reprint (R22) Avoiding Errors in UV Radiation Measurements By Thomas C. Larason July 2001 Reprinted from Photonics Spectra, Laurin Publishing Gooch & Housego 4632 36 th Street, Orlando, FL 32811 Tel: 1

More information

MODELING AND IMPLEMENTATION OF THE MECHANICAL SYSTEM AND CONTROL OF A CT WITH LOW ENERGY PROTON BEAM

MODELING AND IMPLEMENTATION OF THE MECHANICAL SYSTEM AND CONTROL OF A CT WITH LOW ENERGY PROTON BEAM MODELING AND IMPLEMENTATION OF THE MECHANICAL SYSTEM AND CONTROL OF A CT WITH LOW ENERGY PROTON BEAM João Antônio Palma Setti, j.setti@pucpr.br Pontifícia Universidade Católica do Paraná / Rua Imaculada

More information

Acousto-optic modulator

Acousto-optic modulator 1 of 3 Acousto-optic modulator F An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency).

More information

Cynthia H. McCollough b) and Michael R. Bruesewitz Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905

Cynthia H. McCollough b) and Michael R. Bruesewitz Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905 The phantom portion of the American College of Radiology ACR Computed Tomography CT accreditation program: Practical tips, artifact examples, and pitfalls to avoid a Cynthia H. McCollough b) and Michael

More information

Clinical Physics. Dr/Aida Radwan Assistant Professor of Medical Physics Umm El-Qura University

Clinical Physics. Dr/Aida Radwan Assistant Professor of Medical Physics Umm El-Qura University Clinical Physics Dr/Aida Radwan Assistant Professor of Medical Physics Umm El-Qura University Physics of Radiotherapy using External Beam Dose distribution PHANTOMS Basic dose distribution data are usually

More information

HIGH PERFORMANCE MOBILE SURGICAL C-ARM KMC-950

HIGH PERFORMANCE MOBILE SURGICAL C-ARM KMC-950 HIGH PERFORMANCE MOBILE SURGICAL C-ARM 1K x 1k CCD Digital Camera System H.F. GENERATOR & ROTATING ANODE TUBE WITH DIGITAL WORKSTATION DESCRIPTION: Mobile Surgical C-arm systems are integrated with a triple

More information

Zeiss 780 Training Notes

Zeiss 780 Training Notes Zeiss 780 Training Notes 780 Start Up Sequence Do you need the argon laser, 458,488,514nm lines? No Turn on the Systems PC Switch Turn on Main Power Switch Yes Turn on the laser main power switch and turn

More information

CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY

CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY 243 CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY B. Chyba, M. Mantler, H. Ebel, R. Svagera Technische Universit Vienna, Austria ABSTRACT The accurate characterization of the spectral distribution

More information

Introduction. Stefano Ferrari. Università degli Studi di Milano stefano.ferrari@unimi.it. Elaborazione delle immagini (Image processing I)

Introduction. Stefano Ferrari. Università degli Studi di Milano stefano.ferrari@unimi.it. Elaborazione delle immagini (Image processing I) Introduction Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Elaborazione delle immagini (Image processing I) academic year 2011 2012 Image processing Computer science concerns

More information

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

More information

X-ray Imaging Systems

X-ray Imaging Systems Principles of Imaging Science I (RAD 119) X-ray Tube & Equipment X-ray Imaging Systems Medical X-ray Equipment Classified by purpose or energy/current levels kvp, ma Radiographic Non-dynamic procedures

More information

High Quality Image Magnification using Cross-Scale Self-Similarity

High Quality Image Magnification using Cross-Scale Self-Similarity High Quality Image Magnification using Cross-Scale Self-Similarity André Gooßen 1, Arne Ehlers 1, Thomas Pralow 2, Rolf-Rainer Grigat 1 1 Vision Systems, Hamburg University of Technology, D-21079 Hamburg

More information

Computer Animation and Visualisation. Lecture 1. Introduction

Computer Animation and Visualisation. Lecture 1. Introduction Computer Animation and Visualisation Lecture 1 Introduction 1 Today s topics Overview of the lecture Introduction to Computer Animation Introduction to Visualisation 2 Introduction (PhD in Tokyo, 2000,

More information

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007 PUMPED Nd:YAG LASER Last Revision: August 21, 2007 QUESTION TO BE INVESTIGATED: How can an efficient atomic transition laser be constructed and characterized? INTRODUCTION: This lab exercise will allow

More information

CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY. 3.1 Basic Concepts of Digital Imaging

CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY. 3.1 Basic Concepts of Digital Imaging Physics of Medical X-Ray Imaging (1) Chapter 3 CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY 3.1 Basic Concepts of Digital Imaging Unlike conventional radiography that generates images on film through

More information

Digital radiography conquers the veterinary world

Digital radiography conquers the veterinary world Digital radiography conquers the veterinary world Author: Dirk De Langhe Increasingly, veterinarians are using medical imaging to diagnose their patients. There is a corresponding tendency towards replacing

More information

Archimedes Palimpsest Metadata Standard XRF Extensions DRAFT

Archimedes Palimpsest Metadata Standard XRF Extensions DRAFT Archimedes Palimpsest Metadata Standard XRF Extensions DRAFT [These metadata extensions to the Archimedes Palimpsest Metadata Standard 1.0X are currently under review. Comments may be provided to Bob Morton

More information

CT: Size Specific Dose Estimate (SSDE): Why We Need Another CT Dose Index. Acknowledgements

CT: Size Specific Dose Estimate (SSDE): Why We Need Another CT Dose Index. Acknowledgements CT: Size Specific Dose Estimate (SSDE): Why We Need Another CT Dose Index Keith J. Strauss, MSc, FAAPM, FACR Clinical Imaging Physicist Cincinnati Children s Hospital University of Cincinnati College of

More information

Prentice Hall: Middle School Math, Course 1 2002 Correlated to: New York Mathematics Learning Standards (Intermediate)

Prentice Hall: Middle School Math, Course 1 2002 Correlated to: New York Mathematics Learning Standards (Intermediate) New York Mathematics Learning Standards (Intermediate) Mathematical Reasoning Key Idea: Students use MATHEMATICAL REASONING to analyze mathematical situations, make conjectures, gather evidence, and construct

More information

R/F. Efforts to Reduce Exposure Dose in Chest Tomosynthesis Targeting Lung Cancer Screening. 3. Utility of Chest Tomosynthesis. 1.

R/F. Efforts to Reduce Exposure Dose in Chest Tomosynthesis Targeting Lung Cancer Screening. 3. Utility of Chest Tomosynthesis. 1. R/F Efforts to Reduce Exposure Dose in Chest Tomosynthesis Targeting Lung Cancer Screening Department of Radiology, National Cancer Center Hospital East Kaoru Shimizu Ms. Kaoru Shimizu 1. Introduction

More information

Scientific Data Visualization Foundation

Scientific Data Visualization Foundation Scientific Data Visualization Foundation Data Sources Scientific Visualization Pipelines Data Acquisition Methods GeoVisualization 1 Scientific Data Sources Common data sources: Scanning devices Computation

More information

Introduction to acoustic imaging

Introduction to acoustic imaging Introduction to acoustic imaging Contents 1 Propagation of acoustic waves 3 1.1 Wave types.......................................... 3 1.2 Mathematical formulation.................................. 4 1.3

More information

BIOMEDICAL ULTRASOUND

BIOMEDICAL ULTRASOUND BIOMEDICAL ULTRASOUND Goals: To become familiar with: Ultrasound wave Wave propagation and Scattering Mechanisms of Tissue Damage Biomedical Ultrasound Transducers Biomedical Ultrasound Imaging Ultrasonic

More information

physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves

physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves Chapter 20 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 20 Traveling Waves Chapter Goal: To learn the basic properties of traveling waves. Slide

More information

Proper Implementation of Industrial CT Scanning to Reduce Inspection Costs & Get to Production Faster. Jesse Garant, JG&A Metrology Center

Proper Implementation of Industrial CT Scanning to Reduce Inspection Costs & Get to Production Faster. Jesse Garant, JG&A Metrology Center Proper Implementation of Industrial CT Scanning to Reduce Inspection Costs & Get to Production Faster Jesse Garant, JG&A Metrology Center Traditional Metrology and Inspection Tactile Devices (Touch Probe)

More information

Chapter 3 SYSTEM SCANNING HARDWARE OVERVIEW

Chapter 3 SYSTEM SCANNING HARDWARE OVERVIEW Qiang Lu Chapter 3. System Scanning Hardware Overview 79 Chapter 3 SYSTEM SCANNING HARDWARE OVERVIEW Since all the image data need in this research were collected from the highly modified AS&E 101ZZ system,

More information

State of Stress at Point

State of Stress at Point State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

More information

Electron Microscopy 3. SEM. Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts

Electron Microscopy 3. SEM. Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts Electron Microscopy 3. SEM Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts 3-1 SEM is easy! Just focus and shoot "Photo"!!! Please comment this picture... Any

More information

ENG4BF3 Medical Image Processing. Image Visualization

ENG4BF3 Medical Image Processing. Image Visualization ENG4BF3 Medical Image Processing Image Visualization Visualization Methods Visualization of medical images is for the determination of the quantitative information about the properties of anatomic tissues

More information

Airport Scanner Safety

Airport Scanner Safety Scan for mobile link. Airport Scanner Safety Airport scanners When it comes to airport scanner safety, there are four questions you should consider, including: What are airport scanners? Are there different

More information

The professional for your diagnostics.

The professional for your diagnostics. CAD/CAM SYSTEMS INSTRUMENTS HYGIENE SYSTEMS TREATMENT CENTERS IMAGING SYSTEMS DIGITAL PANORAMIC X-RAY MADE SIMPLE The professional for your diagnostics. System concept ORTHOPHOS XG 5 completes the next

More information

SECTION 1: REQUIREMENTS FOR CERTIFICATES OF COMPLIANCE FOR CLASSES OF RADIATION APPARATUS

SECTION 1: REQUIREMENTS FOR CERTIFICATES OF COMPLIANCE FOR CLASSES OF RADIATION APPARATUS Department of Health and Human services Population Health Radiation Protection Act 2005 Section 17 CERTIFICATE OF COMPLIANCE: STANDARD FOR RADIATION APPARATUS - X-RAY MEDICAL DIAGNOSTIC (MAMMOGRAPHY) SECTION

More information

Ultrasonic Wave Propagation Review

Ultrasonic Wave Propagation Review Ultrasonic Wave Propagation Review Presented by: Sami El-Ali 1 1. Introduction Ultrasonic refers to any study or application of sound waves that are higher frequency than the human audible range. Ultrasonic

More information

Synthetic Sensing: Proximity / Distance Sensors

Synthetic Sensing: Proximity / Distance Sensors Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,

More information

Amptek Application Note XRF-1: XRF Spectra and Spectra Analysis Software By R.Redus, Chief Scientist, Amptek Inc, 2008.

Amptek Application Note XRF-1: XRF Spectra and Spectra Analysis Software By R.Redus, Chief Scientist, Amptek Inc, 2008. Amptek Application Note XRF-1: XRF Spectra and Spectra Analysis Software By R.Redus, Chief Scientist, Amptek Inc, 2008. X-Ray Fluorescence (XRF) is a very simple analytical technique: X-rays excite atoms

More information

The Basics of FEA Procedure

The Basics of FEA Procedure CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

2 Absorbing Solar Energy

2 Absorbing Solar Energy 2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could

More information

Study of the Human Eye Working Principle: An impressive high angular resolution system with simple array detectors

Study of the Human Eye Working Principle: An impressive high angular resolution system with simple array detectors Study of the Human Eye Working Principle: An impressive high angular resolution system with simple array detectors Diego Betancourt and Carlos del Río Antenna Group, Public University of Navarra, Campus

More information

Methods of Computerized Images for Medical Diagnosis Seminar: Medical Images Summer Semester 2005

Methods of Computerized Images for Medical Diagnosis Seminar: Medical Images Summer Semester 2005 + Methods of Computerized Images for Medical Diagnosis Seminar: Medical Images Summer Semester 2005 Author: Tu-Binh Dang Matr.: 6147230 For: Professor Domik University of Paderborn Tutor: Gitta Domik domik@upb.de

More information

Physics 441/2: Transmission Electron Microscope

Physics 441/2: Transmission Electron Microscope Physics 441/2: Transmission Electron Microscope Introduction In this experiment we will explore the use of transmission electron microscopy (TEM) to take us into the world of ultrasmall structures. This

More information

Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections

Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections Maximilian Hung, Bohyun B. Kim, Xiling Zhang August 17, 2013 Abstract While current systems already provide

More information

Concepts for High-Resolution Low-Dose CT of the Breast

Concepts for High-Resolution Low-Dose CT of the Breast RSNA 2012 Refresher Course 721B, Chicago, Nov. 30, 2012 Concepts for High-Resolution Low-Dose CT of the Breast Disclosures WAK is founder, shareholder and CEO of CT Imaging GmbH, Erlangen, Germany. Willi

More information

Fundamentals of modern UV-visible spectroscopy. Presentation Materials

Fundamentals of modern UV-visible spectroscopy. Presentation Materials Fundamentals of modern UV-visible spectroscopy Presentation Materials The Electromagnetic Spectrum E = hν ν = c / λ 1 Electronic Transitions in Formaldehyde 2 Electronic Transitions and Spectra of Atoms

More information

Grazing incidence wavefront sensing and verification of X-ray optics performance

Grazing incidence wavefront sensing and verification of X-ray optics performance Grazing incidence wavefront sensing and verification of X-ray optics performance Timo T. Saha, Scott Rohrbach, and William W. Zhang, NASA Goddard Space Flight Center, Greenbelt, Md 20771 Evaluation of

More information

SECTION 1: REQUIREMENTS FOR CERTIFICATES OF COMPLIANCE FOR CLASSES OF RADIATION SOURCES

SECTION 1: REQUIREMENTS FOR CERTIFICATES OF COMPLIANCE FOR CLASSES OF RADIATION SOURCES Department of Health and Human Services Population Health Radiation Protection Act 2005 Section 17 CERTIFICATE OF COMPLIANCE: STANDARD FOR RADIATION APPARATUS - X-RAY DIAGNOSTIC (VETERINARY) SECTION 1:

More information