Pre-Calculus III Linear Functions and Quadratic Functions
|
|
|
- Victor Barber
- 9 years ago
- Views:
Transcription
1 Linear Functions.. 1 Finding Slope...1 Slope Intercept 1 Point Slope Form.1 Parallel Lines.. Line Parallel to a Given Line.. Perpendicular Lines. Line Perpendicular to a Given Line 3 Quadratic Equations.3 Solving quadratic equations by factoring... 3 Solving Quadratic equations by completing the square... 4 Solving Quadratic equations by the quadratic formula... 5 Page 0 of 6
2 Linear Functions Pre-Calculus III A function of the form f(x) = mx + b where m is a nonzero number and m and b are real numbers, is a linear function of x. Example: f(x) = x + Finding the Slope of a Line A slope m of the line passing through the points P 1 (x 1, y 1 ) and P (x, y ) with x 1 x is given by y y1 m = x x1 The lines that have a positive slope slant upward from left to right. The lines that have a negative slope slant downward from left to right. Example: Find the slope of the line passing through the points whose coordinates are given as (- 3, 4) and (1, -). y y m = = = = x x1 1 ( 3) 4 Since m < 0 (negative), the line slants downwards from left to right. Slope-Intercept Form The equation f(x) = mx + b is called the slope intercept form of the equation of a line because the graph f(x) = mx + b is a line with slope m and y-intercept (0, b). Example: f(x)= x 1 The equation y=x-1 is in slope intercept form, with b=-1 and m=. Thus the y-intercept is (0, - 1), and the slope is. m = 1 = Point Slope Form We can find an equation of a line provided we know its slope and at least one point on the line. If (x 1, y 1 ) is a point on a line of slope m, and (x, y) is any other point on the line, then y y1 = m where x x1 x x1 Which is also (y- y 1 ) = m(x- x 1 ) Example: Find an equation of the line with slope -3 that passes through (-1, 4) Use the point slope form with m = -3, x 1 = -1 and y 1 = 4 y- y 1 = m (x- x 1 ) y- 4 = 3[x-(-1)] Page 1 of 6
3 y 4 = -3x 3 y = -3x + 1 Parallel Lines Pre-Calculus III Two non-vertical lines are parallel if and only if their slopes are equal and they have different y-intercept. Let Line L 1 represent f 1 (x) = m 1 x + b and L represent f (x) = m x + b. Then, lines L 1 and L are parallel if and only if m 1 = m Example: f 1 (x) = 3x + 1 and f (x) = 3x 4. Here, m 1 = m = 3. Hence the lines are parallel. Line Parallel to a Given Line Example: Find an equation of the line that has the point (, -3) and is parallel to the line x+y=6. 1. Write the given equation in slope-intercept form. x + y = 6 y = x + 6 Solve for y to bring it to the form y = mx + b. Since the lines are parallel, the slope of the line we need to find is the same as the slope of the given line. The slope of the given line is -. Therefore the slope of the parallel line is - 3. Use the point slope form to find the equation of parallel line that has the point (,-3) y y 1 = m(x x 1 ) Point- slope form y + 3 = (x ) m=-, x 1 =, y 1 = -3 y + 3 = x + 4 y = x +1 Slope intercept form x+y = 1 Equation of the line parallel to the given line Perpendicular Lines Two non-vertical lines are perpendicular if and only if the product of their slopes is -1. Let Line L 1 represent f 1 (x) = m 1 x + b and L represent f (x) = m x + b. Then, lines L 1 and L are 1 perpendicular if and only if m 1 = - m or m 1 = - m Example: f 1 (x) = 3x + 1 and f (x) = 3 1 x 4. 1 Here, m 1 = - = 3. Hence the lines are perpendicular. m 1 Page of 6
4 Line Perpendicular to a Given Line Example: Find an equation with the point (1,-) that is perpendicular to the line x + 3y = Write the given equation in slope- intercept form x + 3y = 6 3y = -x + 6 Solve for y to bring it to the form y = mx + b y = x +. Since the lines are perpendicular, the slope of the line we need to find and the slope of the given line has a product equal to -1. The slope of the given line is m 1 = Let the slope of the perpendicular line be m. Then m 1.m = m = -1 m = 3 Therefore slope of the perpendicular line is Use point-slope form to find the equation of the perpendicular line that has the point (1, - ). y y 1 = m(x x 1 ) Point- slope form y ( ) = 3(x 1) m=3, y 1 =-, x 1 =1 y + = 3x 3 y = 3x 5 Slope-intercept form 3x y = 5 Equation of the line perpendicular to the given line Quadratic Equations A quadratic function of x is a function that can be represented by an equation of the form, f (x) = a x + bx + c, where a, b, and c are real numbers and a 0 The graph of the above function is a parabola. Solving Quadratic Equations by Factoring 1. Write the equation in standard form.. Factor the quadratic expression completely, so that the factors are only binomials and constants. [If there is a trinomial as one of the factors which cannot be factored anymore then, you have to solve the equation using the Quadratic Formula, which we ll be seeing later.] 3. Set each factor found in () equal to zero and solve each equation for the variable. 4. Check all solutions by using the original equation. Page 3 of 6
5 Example: Solve 4x Solution: 4x + 10x 6 = 0 (x + 5x - 3) = 0 (x 1) (x + 3) = 0 (x 1) (x + 3) = 0 x 1 = 0 x + 3 = ½ Final answer is ½, -3 Try This: Solve x 7 0 Solving Quadratic Equations by Completing the Square 1. Transform the equation into the form x + b c, where the coefficient of x is one.. Complete the square. a. Take one half the coefficient of x, i.e., b/ b. Square this number, i.e., (b/) c. Add this value to each side of the equation, i.e., x + bx + (b/) = c + (b/) 3. Factor the perfect square trinomial into a binomial squared and combine like terms. 4. Solve by using the square root method. 5. Check the solution(s) in the original equations. Example: Solve x + 10x 7 = 0 by completing the square. Solution: Isolate the constant term. x + 10x 7 = 0 x Complete the square by adding [1/ (10)] = 5 = 5 to both sides of the equation. x x + 10x + 5 = (x+5) = 3 Solve by using the square root method. (x + 5) = 3 ( x + 5) = ± 3 x + 5 = ± 16 x + 5 = ± 4 x + 5 = 4 x + 5 = Final answer: 4 5 ; 4 5 Try this: Solve x + 6x 1 = 0 Page 4 of 6
6 Solving Quadratic Equations by the Quadratic Formula 1. Express the quadratic equation in standard form (ax + bx + c = 0).. Identify the values for a, b and c. b ± 3. Replace the values for a, b and c directly into the quadratic formula parentheses to maintain form. 4. Perform the indicated operations. 5. Simplify any resulting radicals. 6. Check the solution(s) in the original equation. b 4ac a. Use Example: Solve x 4x + 4 = 0 by the quadratic formula. Solution: With the equation in standard form, we identify the values for a, b, and c. a = 1, b = -4, c =4 Substitute these values directly into the quadratic formula. b ± b 4ac a 4 ± ( 4) ± 4 ± 0 4 ( 4) (1) 4(1)(4) Final answer: Try this: x by the quadratic formula. Page 5 of 6
Warm Up. Write an equation given the slope and y-intercept. Write an equation of the line shown.
Warm Up Write an equation given the slope and y-intercept Write an equation of the line shown. EXAMPLE 1 Write an equation given the slope and y-intercept From the graph, you can see that the slope is
Slope-Intercept Equation. Example
1.4 Equations of Lines and Modeling Find the slope and the y intercept of a line given the equation y = mx + b, or f(x) = mx + b. Graph a linear equation using the slope and the y-intercept. Determine
Section 1.1 Linear Equations: Slope and Equations of Lines
Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of
What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.
PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of
Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.
Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear
Vocabulary Words and Definitions for Algebra
Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms
The Point-Slope Form
7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope
Mathematics Placement
Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.
Solving Equations Involving Parallel and Perpendicular Lines Examples
Solving Equations Involving Parallel and Perpendicular Lines Examples. The graphs of y = x, y = x, and y = x + are lines that have the same slope. They are parallel lines. Definition of Parallel Lines
Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year.
Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year. Goal The goal of the summer math program is to help students
Algebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
Graphing Linear Equations
Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope
HIBBING COMMUNITY COLLEGE COURSE OUTLINE
HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE: - Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,
Factoring Polynomials and Solving Quadratic Equations
Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3
Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}
Linear Equations Domain and Range Domain refers to the set of possible values of the x-component of a point in the form (x,y). Range refers to the set of possible values of the y-component of a point in
Slope-Intercept Form of a Linear Equation Examples
Slope-Intercept Form of a Linear Equation Examples. In the figure at the right, AB passes through points A(0, b) and B(x, y). Notice that b is the y-intercept of AB. Suppose you want to find an equation
1.3 LINEAR EQUATIONS IN TWO VARIABLES. Copyright Cengage Learning. All rights reserved.
1.3 LINEAR EQUATIONS IN TWO VARIABLES Copyright Cengage Learning. All rights reserved. What You Should Learn Use slope to graph linear equations in two variables. Find the slope of a line given two points
Tool 1. Greatest Common Factor (GCF)
Chapter 4: Factoring Review Tool 1 Greatest Common Factor (GCF) This is a very important tool. You must try to factor out the GCF first in every problem. Some problems do not have a GCF but many do. When
What are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
Write the Equation of the Line Review
Connecting Algebra 1 to Advanced Placement* Mathematics A Resource and Strategy Guide Objective: Students will be assessed on their ability to write the equation of a line in multiple methods. Connections
Homework #1 Solutions
Homework #1 Solutions Problems Section 1.1: 8, 10, 12, 14, 16 Section 1.2: 2, 8, 10, 12, 16, 24, 26 Extra Problems #1 and #2 1.1.8. Find f (5) if f (x) = 10x x 2. Solution: Setting x = 5, f (5) = 10(5)
Lecture 9: Lines. m = y 2 y 1 x 2 x 1
Lecture 9: Lines If we have two distinct points in the Cartesian plane, there is a unique line which passes through the two points. We can construct it by joining the points with a straight edge and extending
Factoring Quadratic Expressions
Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the
Graphing - Parallel and Perpendicular Lines
. Graphing - Parallel and Perpendicular Lines Objective: Identify the equation of a line given a parallel or perpendicular line. There is an interesting connection between the slope of lines that are parallel
ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form
ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola
Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper
Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic
MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)
MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,
EQUATIONS and INEQUALITIES
EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line
7.1 Graphs of Quadratic Functions in Vertex Form
7.1 Graphs of Quadratic Functions in Vertex Form Quadratic Function in Vertex Form A quadratic function in vertex form is a function that can be written in the form f (x) = a(x! h) 2 + k where a is called
Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.
MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called
PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71. Applications. F = mc + b.
PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71 Applications The formula y = mx + b sometimes appears with different symbols. For example, instead of x, we could use the letter C.
1.3 Algebraic Expressions
1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,
Algebra 2/Trig Unit 2 Notes Packet Period: Quadratic Equations
Algebra 2/Trig Unit 2 Notes Packet Name: Date: Period: # Quadratic Equations (1) Page 253 #4 6 **Check on Graphing Calculator (GC)** (2) Page 253 254 #20, 26, 32**Check on GC** (3) Page 253 254 #10 12,
Indiana State Core Curriculum Standards updated 2009 Algebra I
Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and
MATH 108 REVIEW TOPIC 10 Quadratic Equations. B. Solving Quadratics by Completing the Square
Math 108 T10-Review Topic 10 Page 1 MATH 108 REVIEW TOPIC 10 Quadratic Equations I. Finding Roots of a Quadratic Equation A. Factoring B. Quadratic Formula C. Taking Roots II. III. Guidelines for Finding
Answers to Basic Algebra Review
Answers to Basic Algebra Review 1. -1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract
Solving Quadratic Equations
9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation
1.1 Practice Worksheet
Math 1 MPS Instructor: Cheryl Jaeger Balm 1 1.1 Practice Worksheet 1. Write each English phrase as a mathematical expression. (a) Three less than twice a number (b) Four more than half of a number (c)
Algebra 1. Curriculum Map
Algebra 1 Curriculum Map Table of Contents Unit 1: Expressions and Unit 2: Linear Unit 3: Representing Linear Unit 4: Linear Inequalities Unit 5: Systems of Linear Unit 6: Polynomials Unit 7: Factoring
Make sure you look at the reminders or examples before each set of problems to jog your memory! Solve
Name Date Make sure you look at the reminders or examples before each set of problems to jog your memory! I. Solving Linear Equations 1. Eliminate parentheses. Combine like terms 3. Eliminate terms by
Algebra 1 If you are okay with that placement then you have no further action to take Algebra 1 Portion of the Math Placement Test
Dear Parents, Based on the results of the High School Placement Test (HSPT), your child should forecast to take Algebra 1 this fall. If you are okay with that placement then you have no further action
This is a square root. The number under the radical is 9. (An asterisk * means multiply.)
Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize
Algebra 2 PreAP. Name Period
Algebra 2 PreAP Name Period IMPORTANT INSTRUCTIONS FOR STUDENTS!!! We understand that students come to Algebra II with different strengths and needs. For this reason, students have options for completing
Algebra Cheat Sheets
Sheets Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts
Algebra II A Final Exam
Algebra II A Final Exam Multiple Choice Identify the choice that best completes the statement or answers the question. Evaluate the expression for the given value of the variable(s). 1. ; x = 4 a. 34 b.
1.6 A LIBRARY OF PARENT FUNCTIONS. Copyright Cengage Learning. All rights reserved.
1.6 A LIBRARY OF PARENT FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Identify and graph linear and squaring functions. Identify and graph cubic, square root, and reciprocal
MATH 10034 Fundamental Mathematics IV
MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.
Algebra 1 Course Title
Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept
Writing the Equation of a Line in Slope-Intercept Form
Writing the Equation of a Line in Slope-Intercept Form Slope-Intercept Form y = mx + b Example 1: Give the equation of the line in slope-intercept form a. With y-intercept (0, 2) and slope -9 b. Passing
NSM100 Introduction to Algebra Chapter 5 Notes Factoring
Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the
Factoring Trinomials: The ac Method
6.7 Factoring Trinomials: The ac Method 6.7 OBJECTIVES 1. Use the ac test to determine whether a trinomial is factorable over the integers 2. Use the results of the ac test to factor a trinomial 3. For
Section 3.1 Quadratic Functions and Models
Section 3.1 Quadratic Functions and Models DEFINITION: A quadratic function is a function f of the form fx) = ax 2 +bx+c where a,b, and c are real numbers and a 0. Graphing Quadratic Functions Using the
Florida Algebra 1 End-of-Course Assessment Item Bank, Polk County School District
Benchmark: MA.912.A.2.3; Describe the concept of a function, use function notation, determine whether a given relation is a function, and link equations to functions. Also assesses MA.912.A.2.13; Solve
Florida Math for College Readiness
Core Florida Math for College Readiness Florida Math for College Readiness provides a fourth-year math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness
Answer Key for California State Standards: Algebra I
Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.
BEST METHODS FOR SOLVING QUADRATIC INEQUALITIES.
BEST METHODS FOR SOLVING QUADRATIC INEQUALITIES. I. GENERALITIES There are 3 common methods to solve quadratic inequalities. Therefore, students sometimes are confused to select the fastest and the best
Higher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
MA107 Precalculus Algebra Exam 2 Review Solutions
MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write
Review of Intermediate Algebra Content
Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6
Week 1: Functions and Equations
Week 1: Functions and Equations Goals: Review functions Introduce modeling using linear and quadratic functions Solving equations and systems Suggested Textbook Readings: Chapter 2: 2.1-2.2, and Chapter
Algebra 2: Q1 & Q2 Review
Name: Class: Date: ID: A Algebra 2: Q1 & Q2 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which is the graph of y = 2(x 2) 2 4? a. c. b. d. Short
A synonym is a word that has the same or almost the same definition of
Slope-Intercept Form Determining the Rate of Change and y-intercept Learning Goals In this lesson, you will: Graph lines using the slope and y-intercept. Calculate the y-intercept of a line when given
( ) FACTORING. x In this polynomial the only variable in common to all is x.
FACTORING Factoring is similar to breaking up a number into its multiples. For example, 10=5*. The multiples are 5 and. In a polynomial it is the same way, however, the procedure is somewhat more complicated
6.1 Add & Subtract Polynomial Expression & Functions
6.1 Add & Subtract Polynomial Expression & Functions Objectives 1. Know the meaning of the words term, monomial, binomial, trinomial, polynomial, degree, coefficient, like terms, polynomial funciton, quardrtic
Algebra and Geometry Review (61 topics, no due date)
Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties
Chapter 4.1 Parallel Lines and Planes
Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about
Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
Understanding Basic Calculus
Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other
3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style
Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.
Algebra I. In this technological age, mathematics is more important than ever. When students
In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,
REVIEW OF ANALYTIC GEOMETRY
REVIEW OF ANALYTIC GEOMETRY The points in a plane can be identified with ordered pairs of real numbers. We start b drawing two perpendicular coordinate lines that intersect at the origin O on each line.
Assessment Schedule 2013
NCEA Level Mathematics (9161) 013 page 1 of 5 Assessment Schedule 013 Mathematics with Statistics: Apply algebraic methods in solving problems (9161) Evidence Statement ONE Expected Coverage Merit Excellence
Mathematics Online Instructional Materials Correlation to the 2009 Algebra I Standards of Learning and Curriculum Framework
Provider York County School Division Course Syllabus URL http://yorkcountyschools.org/virtuallearning/coursecatalog.aspx Course Title Algebra I AB Last Updated 2010 - A.1 The student will represent verbal
Prerequisites: TSI Math Complete and high school Algebra II and geometry or MATH 0303.
Course Syllabus Math 1314 College Algebra Revision Date: 8-21-15 Catalog Description: In-depth study and applications of polynomial, rational, radical, exponential and logarithmic functions, and systems
Intro to Linear Equations Algebra 6.0
Intro to Linear Equations Algebra 6.0 Linear Equations: y x 7 y x 5 x y Linear Equations generally contain two variables: x and y. In a linear equation, y is called the dependent variable and x is the
MA.8.A.1.2 Interpret the slope and the x- and y-intercepts when graphing a linear equation for a real-world problem. Constant Rate of Change/Slope
MA.8.A.1.2 Interpret the slope and the x- and y-intercepts when graphing a linear equation for a real-world problem Constant Rate of Change/Slope In a Table Relationships that have straight-lined graphs
ALGEBRA I (Created 2014) Amherst County Public Schools
ALGEBRA I (Created 2014) Amherst County Public Schools The 2009 Mathematics Standards of Learning Curriculum Framework is a companion document to the 2009 Mathematics Standards of Learning and amplifies
Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.
Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method
Answer Key Building Polynomial Functions
Answer Key Building Polynomial Functions 1. What is the equation of the linear function shown to the right? 2. How did you find it? y = ( 2/3)x + 2 or an equivalent form. Answers will vary. For example,
Coordinate Plane, Slope, and Lines Long-Term Memory Review Review 1
Review. What does slope of a line mean?. How do you find the slope of a line? 4. Plot and label the points A (3, ) and B (, ). a. From point B to point A, by how much does the y-value change? b. From point
SOLVING QUADRATIC EQUATIONS BY THE NEW TRANSFORMING METHOD (By Nghi H Nguyen Updated Oct 28, 2014))
SOLVING QUADRATIC EQUATIONS BY THE NEW TRANSFORMING METHOD (By Nghi H Nguyen Updated Oct 28, 2014)) There are so far 8 most common methods to solve quadratic equations in standard form ax² + bx + c = 0.
Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III
Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial
COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level 2
COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level This study guide is for students trying to test into College Algebra. There are three levels of math study guides. 1. If x and y 1, what
expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.
A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are
1.3 Polynomials and Factoring
1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.
Math 113 Review for Exam I
Math 113 Review for Exam I Section 1.1 Cartesian Coordinate System, Slope, & Equation of a Line (1.) Rectangular or Cartesian Coordinate System You should be able to label the quadrants in the rectangular
IOWA End-of-Course Assessment Programs. Released Items ALGEBRA I. Copyright 2010 by The University of Iowa.
IOWA End-of-Course Assessment Programs Released Items Copyright 2010 by The University of Iowa. ALGEBRA I 1 Sally works as a car salesperson and earns a monthly salary of $2,000. She also earns $500 for
This unit has primarily been about quadratics, and parabolas. Answer the following questions to aid yourselves in creating your own study guide.
COLLEGE ALGEBRA UNIT 2 WRITING ASSIGNMENT This unit has primarily been about quadratics, and parabolas. Answer the following questions to aid yourselves in creating your own study guide. 1) What is the
MATD 0390 - Intermediate Algebra Review for Pretest
MATD 090 - Intermediate Algebra Review for Pretest. Evaluate: a) - b) - c) (-) d) 0. Evaluate: [ - ( - )]. Evaluate: - -(-7) + (-8). Evaluate: - - + [6 - ( - 9)]. Simplify: [x - (x - )] 6. Solve: -(x +
Algebra 2 Year-at-a-Glance Leander ISD 2007-08. 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks
Algebra 2 Year-at-a-Glance Leander ISD 2007-08 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks Essential Unit of Study 6 weeks 3 weeks 3 weeks 6 weeks 3 weeks 3 weeks
5. Equations of Lines: slope intercept & point slope
5. Equations of Lines: slope intercept & point slope Slope of the line m rise run Slope-Intercept Form m + b m is slope; b is -intercept Point-Slope Form m( + or m( Slope of parallel lines m m (slopes
Name Intro to Algebra 2. Unit 1: Polynomials and Factoring
Name Intro to Algebra 2 Unit 1: Polynomials and Factoring Date Page Topic Homework 9/3 2 Polynomial Vocabulary No Homework 9/4 x In Class assignment None 9/5 3 Adding and Subtracting Polynomials Pg. 332
Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross
CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal
Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder).
Math 50, Chapter 8 (Page 1 of 20) 8.1 Common Factors Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Find all the factors of a. 44 b. 32
SAT Subject Math Level 2 Facts & Formulas
Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses
Successful completion of Math 7 or Algebra Readiness along with teacher recommendation.
MODESTO CITY SCHOOLS COURSE OUTLINE COURSE TITLE:... Basic Algebra COURSE NUMBER:... RECOMMENDED GRADE LEVEL:... 8-11 ABILITY LEVEL:... Basic DURATION:... 1 year CREDIT:... 5.0 per semester MEETS GRADUATION
MATH 60 NOTEBOOK CERTIFICATIONS
MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5
Aim: How do we find the slope of a line? Warm Up: Go over test. A. Slope -
Aim: How do we find the slope of a line? Warm Up: Go over test A. Slope - Plot the points and draw a line through the given points. Find the slope of the line.. A(-5,4) and B(4,-3) 2. A(4,3) and B(4,-6)
Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.
Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.
