AB2.7: Laplace Transforms. Inverse Transform. Linearity. Shifting

Size: px
Start display at page:

Download "AB2.7: Laplace Transforms. Inverse Transform. Linearity. Shifting"

Transcription

1 AB2.7: Laplace Tranform. Invere Tranform. Linearity. Shifting The function F () = L (f) = e t f(t)dt () i called the Laplace tranform of the original function f(t) and i denoted by L (f). The original function f(t) in () i called the invere tranform of F (), and we hall write f(t) = L (F ). EXAMPLE Laplace tranform Let f(t) = for t. Find F (). F () = L (f) = L () = e t dt = e t =, >. The integral in () i called the improper integral and, by definition, i evaluated according to the rule T e t f(t)dt = lim e t f(t)dt. T From thi definition, it follow e t dt = lim [ ] T e t = lim [ T e T + ] e = ( > ). Note that for the limit in the definition of the improper integral doe not exit, and the improper integral itelf doe not exit. EXAMPLE 2 Laplace tranform of an exponential function Let f(t) = e at for t, a = cont. Find F (). F () = L (e at ) = e t e at dt = a e ( a)t = a, > a. Linearity of the Laplace tranform L (af(t) + bg(t)) = al f(t) + bl g(t). EXAMPLE 3 Hyperbolic function Find the Laplace tranform of f(t) = coh at = 2 (eat + e at )

2 . L (coh at) = 2 L (eat ) + 2 L (e at ) = 2 ( a + ) = + a For the Laplace tranform of the hyperbolic ine, we have L (inh at) = 2 L (eat ) 2 L (e at ) = 2 ( a ) = + a 2 a 2, > a. a 2 a 2, > a. EXAMPLE 4 Coine and ine Setting a = iω (i = ), we obtain On the other hand, L (e iωt ) = iω = + iω ( iω)( + iω) = + iω 2 + ω = ω + i ω ω. 2 L (e iωt ) = L (co ωt + i in ωt) = L (co ωt) + il (in ωt), o that L (co ωt) = 2 + ω, L (in ωt) = ω ω. 2 For the Laplace tranform of the hyperbolic ine, we have L (inh at) = 2 L (eat ) 2 L (e at ) = 2 ( a ) = + a a 2 a 2, > a. Shifting THEOREM 5..2 If f(t) ha a tranform F (), where > k, then e at f(t) ha the tranform F ( a), where a > k: L (e at f(t)) = F ( a) PROOF e at f(t) = L (F ( a)). We obtain F ( a) by replacing by a in the integral of the Laplace tranform () of the original function f(t), to obtain F ( a) = F () = L (f) = e ( a)t f(t)dt = e t f(t)dt, e t e at f(t)dt = L (e at f(t)).

3 Taking the invere of boith ide we obtain L (F ( a)) = e at f(t). EXAMPLE 5 Damped vibration Since we have L (co ωt) = L (e at co ωt) = 2 + ω, L (in ωt) = ω ω, 2 a ( a) 2 + ω 2, L (eat in ωt) = For a < the function e at co ωt decribe damped vibration. Important tranform ω ( a) 2 + ω 2. Calculate the Laplace tranform () of the function t n for n =, 2,... uing the induction and integration by part. We have L (t n+ ) = e t t n+ + t= Proceeding further we obtain L (t n+ ) = n + L (t n ) = (n + )n! n The gamma function i defined a e t t n+ dt = e t dt n+ = + n + t n+ d( e t ) = (n + )n L (t n ) =... = Γ(z) = = (n + )n! n+ = e x x z dx. (n + )! n+2. e t t n dt = n + L (t n ). (n + )n! n L () = Uing the gamma function, we obtain the Laplace tranform of t a for arbitrary a > : becaue L (t a ) = e t t a dt = e x x a dx = a+ Γ(z + ) = e x ( x Γ(a + ) a+ e x x z dx. ) a dx =

4 Important Laplace tranform f(t) = : F () = L () = f(t) = t : F () = L (t) = f(t) = t 2 : F () = L (t) = f(t) = t n : F () = L (t n ) = f(t) = t a : F () = L (t a ) = f(t) = e at : F () = L (e at ) = f(t) = co ωt : L (co ωt) = f(t) = in ωt : L (in ωt) = f(t) = coh at : L (coh at) = f(t) = inh at : L (inh at) = f(t) = e at co ωt : L (e at co ωt) = f(t) = e at in ωt : L (e at in ωt) = e t t a dt = f(t) = t n e at : F () = L (t n e at ) = f(t) = te at : F () = L (te at ) = e t dt =. e t tdt = 2. e t t 2 dt = 2! 3. e t t n dt = n! n+. Γ(a + ) a+ (a > ). e t e at dt = a, > a. e t co ωtdt = e t in ωtdt = e t coh atdt = e t inh atdt = e t e at co ωtdt = e t e at in ωtdt = e t t n e at dt = e t te at dt = 2 + ω 2. ω 2 + ω 2, 2 a 2. a 2 a 2. a ( a) 2 + ω 2. ω ( a) 2 + ω 2. n! ( a) n+. ( a) 2.

5 Exitence of Laplace tranform THEOREM 5..3 Let f(t) be a function that i piecewie continuou on every finite interval for t and atifie f(t) Me kt (t ) for ome poitive contant k and M. Then the Laplace tranform of f(t) exit for all > k. PROOF Since f(t) i a piecewie continuou function, e t f(t) i integrable on every finite interval for t. From the condition f(t) Me kt (t ) and auming that > k we obtain L (f) = e t f(t)dt f(t) e t dt Me kt e t dt = M e ( k)t dt = M k, where the condition > k i needed to provide the exitence of the lat integral. Note important particular cae: coh t e t, t > (M = k = ); t n n!e t, t > (M = n!, k = ).

6 PROBLEM 5.. Find the Laplace tranform of f(t) = 2t + 6. L (2t + 6) = 2L (t) + 6L () = PROBLEM 5..2 Find the Laplace tranform of f(t) = a + bt + ct 2. L (a + bt + ct 2 ) = al () + bl (t) + cl (t 2 ) = a + b + 2c 2c + b + a2 = PROBLEM 5..4 Find the Laplace tranform of f(t) = co 2 ωt. L (co 2 ωt) = L ( + co 2ωt) = 2 2 L () + 2 L (co 2ωt) = ω. 2 PROBLEM 5..5 Find the Laplace tranform of f(t) = e a bt. L (e a bt ) = L (e a e bt ) = e a L (e bt ) = ea + b. PROBLEM 5..9 Find the Laplace tranform of f(t) = t for t, f(t) = for t. L (f(t)) = e t ( t)dt = e t dt ( e ) + ( e ) + [ t e t [ e ] ( e ) te t dt = ( e ) ] e t dt = = + e 2. td( e t ) =

7 PROBLEM 5.. Find the Laplace tranform of f(t) = for < t < 4, f(t) = for t > 4 and t <. L (f(t)) = 4 e t dt = e t 4 = e e 4. PROBLEM Find the Laplace tranform of f(t) = t 2 e 3t. f(t) = t 2 : F () = L (t) = e t t 2 dt = 2! 3. Uing the hifting theorem with a = 3 and f(t) = t 2, we obtain the reult L (e at f(t)) = L (e 3t t 2 ) = F ( a) = 2 ( + 3) 3. PROBLEM 5..3 Find the Laplace tranform of f(t) = e αt co βt. Solution. Uing the hifting theorem with a = α and f(t) = co βt, we obtain the reult f(t) = e αt co βt : L (e αt co βt) = e t e αt co βtdt = + α ( + α) 2 + β 2. PROBLEM Find the invere Laplace tranform of F () = ( + ) 2. Solution. By definition of the invere Laplace tranform, f(t) = L (F ). On the other hand, by the hifting theorem with a = and f(t) = t, we have F () = L (te t ) = e t te t dt = So that, by the uniquene of the invere Laplace tranform, f(t) = L (F ) = te t. ( + ) 2.

8 PROBLEM Find the invere Laplace tranform of L (t 3 ) = F () = 2 ( 3) 4. By the hifting theorem with a = 3 and f(t) = 2t 3, F () = 2L (t 3 e 3t ) = 2 e t t 3 dt = 3! 3+ = 6 4. e t t 3 e 3t 6 dt = 2 ( 3). 4 So that, by the uniquene of the invere Laplace tranform, f(t) = L (F ) = 2t 3 e 3t. PROBLEM Find the invere Laplace tranform of F () = = ( + 3) From the table of the Laplace tranform, we have f(t) = in 3t : L (in 3t) = By the hifting theorem with a = 3 and f(t) = in 3t, F () = L (e 3t in 3t) = e t in 3tdt = e t e 3t in 3tdt = So that, by the uniquene of the invere Laplace tranform, f(t) = L (F ) = e 3t in 3t. 3 ( + 3)

Math 22B, Homework #8 1. y 5y + 6y = 2e t

Math 22B, Homework #8 1. y 5y + 6y = 2e t Math 22B, Homework #8 3.7 Problem # We find a particular olution of the ODE y 5y + 6y 2e t uing the method of variation of parameter and then verify the olution uing the method of undetermined coefficient.

More information

Solutions to Sample Problems for Test 3

Solutions to Sample Problems for Test 3 22 Differential Equation Intructor: Petronela Radu November 8 25 Solution to Sample Problem for Tet 3 For each of the linear ytem below find an interval in which the general olution i defined (a) x = x

More information

Methods of Solution of Selected Differential Equations Carol A. Edwards Chandler-Gilbert Community College

Methods of Solution of Selected Differential Equations Carol A. Edwards Chandler-Gilbert Community College Methods of Solution of Selected Differential Equations Carol A. Edwards Chandler-Gilbert Community College Equations of Order One: Mdx + Ndy = 0 1. Separate variables. 2. M, N homogeneous of same degree:

More information

MECH 2110 - Statics & Dynamics

MECH 2110 - Statics & Dynamics Chapter D Problem 3 Solution 1/7/8 1:8 PM MECH 11 - Static & Dynamic Chapter D Problem 3 Solution Page 7, Engineering Mechanic - Dynamic, 4th Edition, Meriam and Kraige Given: Particle moving along a traight

More information

TRANSFORM AND ITS APPLICATION

TRANSFORM AND ITS APPLICATION LAPLACE TRANSFORM AND ITS APPLICATION IN CIRCUIT ANALYSIS C.T. Pan. Definition of the Laplace Tranform. Ueful Laplace Tranform Pair.3 Circuit Analyi in S Domain.4 The Tranfer Function and the Convolution

More information

Tables of Common Transform Pairs

Tables of Common Transform Pairs ble of Common rnform Pir 0 by Mrc Ph. Stoecklin mrc toecklin.net http://www.toecklin.net/ 0--0 verion v.5.3 Engineer nd tudent in communiction nd mthemtic re confronted with tion uch the -rnform, the ourier,

More information

Laplace Transform. f(t)e st dt,

Laplace Transform. f(t)e st dt, Chapter 7 Laplace Tranform The Laplace tranform can be ued to olve differential equation. Beide being a different and efficient alternative to variation of parameter and undetermined coefficient, the Laplace

More information

Review of Fourier series formulas. Representation of nonperiodic functions. ECE 3640 Lecture 5 Fourier Transforms and their properties

Review of Fourier series formulas. Representation of nonperiodic functions. ECE 3640 Lecture 5 Fourier Transforms and their properties ECE 3640 Lecture 5 Fourier Transforms and their properties Objective: To learn about Fourier transforms, which are a representation of nonperiodic functions in terms of trigonometric functions. Also, to

More information

5.3 Improper Integrals Involving Rational and Exponential Functions

5.3 Improper Integrals Involving Rational and Exponential Functions Section 5.3 Improper Integrals Involving Rational and Exponential Functions 99.. 3. 4. dθ +a cos θ =, < a

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

2008 AP Calculus AB Multiple Choice Exam

2008 AP Calculus AB Multiple Choice Exam 008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus

More information

LS.6 Solution Matrices

LS.6 Solution Matrices LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions

More information

Section 5.1 Continuous Random Variables: Introduction

Section 5.1 Continuous Random Variables: Introduction Section 5. Continuous Random Variables: Introduction Not all random variables are discrete. For example:. Waiting times for anything (train, arrival of customer, production of mrna molecule from gene,

More information

HW6 Solutions. MATH 20D Fall 2013 Prof: Sun Hui TA: Zezhou Zhang (David) November 14, 2013. Checklist: Section 7.8: 1c, 2, 7, 10, [16]

HW6 Solutions. MATH 20D Fall 2013 Prof: Sun Hui TA: Zezhou Zhang (David) November 14, 2013. Checklist: Section 7.8: 1c, 2, 7, 10, [16] HW6 Solutions MATH D Fall 3 Prof: Sun Hui TA: Zezhou Zhang David November 4, 3 Checklist: Section 7.8: c,, 7,, [6] Section 7.9:, 3, 7, 9 Section 7.8 In Problems 7.8. thru 4: a Draw a direction field and

More information

Solutions of Equations in One Variable. Fixed-Point Iteration II

Solutions of Equations in One Variable. Fixed-Point Iteration II Solutions of Equations in One Variable Fixed-Point Iteration II Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information

A note on profit maximization and monotonicity for inbound call centers

A note on profit maximization and monotonicity for inbound call centers A note on profit maximization and monotonicity for inbound call center Ger Koole & Aue Pot Department of Mathematic, Vrije Univeriteit Amterdam, The Netherland 23rd December 2005 Abtract We conider an

More information

A First Course in Elementary Differential Equations. Marcel B. Finan Arkansas Tech University c All Rights Reserved

A First Course in Elementary Differential Equations. Marcel B. Finan Arkansas Tech University c All Rights Reserved A First Course in Elementary Differential Equations Marcel B. Finan Arkansas Tech University c All Rights Reserved 1 Contents 1 Basic Terminology 4 2 Qualitative Analysis: Direction Field of y = f(t, y)

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 5 Life annuities Extract from: Arcones Manual for the SOA Exam MLC Fall 2009 Edition available at http://wwwactexmadrivercom/ 1/94 Due n year temporary annuity Definition 1 A due n year term annuity

More information

EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION

EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION Sixth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 5 (7), pp. 5 65. ISSN: 7-669. UL: http://ejde.math.txstate.edu

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS ORDINARY DIFFERENTIAL EQUATIONS GABRIEL NAGY Mathematics Department, Michigan State University, East Lansing, MI, 48824. SEPTEMBER 4, 25 Summary. This is an introduction to ordinary differential equations.

More information

RANDOM INTERVAL HOMEOMORPHISMS. MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis

RANDOM INTERVAL HOMEOMORPHISMS. MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis RANDOM INTERVAL HOMEOMORPHISMS MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis This is a joint work with Lluís Alsedà Motivation: A talk by Yulij Ilyashenko. Two interval maps, applied

More information

6. Differentiating the exponential and logarithm functions

6. Differentiating the exponential and logarithm functions 1 6. Differentiating te exponential and logaritm functions We wis to find and use derivatives for functions of te form f(x) = a x, were a is a constant. By far te most convenient suc function for tis purpose

More information

Two Fundamental Theorems about the Definite Integral

Two Fundamental Theorems about the Definite Integral Two Fundamental Theorems about the Definite Integral These lecture notes develop the theorem Stewart calls The Fundamental Theorem of Calculus in section 5.3. The approach I use is slightly different than

More information

The Derivative as a Function

The Derivative as a Function Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a+) f(a)

More information

6.2 Permutations continued

6.2 Permutations continued 6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of

More information

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)! Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

More information

Solution of the Heat Equation for transient conduction by LaPlace Transform

Solution of the Heat Equation for transient conduction by LaPlace Transform Solution of the Heat Equation for tranient conduction by LaPlace Tranform Thi notebook ha been written in Mathematica by Mark J. McCready Profeor and Chair of Chemical Engineering Univerity of Notre Dame

More information

HOMOTOPY PERTURBATION METHOD FOR SOLVING A MODEL FOR HIV INFECTION OF CD4 + T CELLS

HOMOTOPY PERTURBATION METHOD FOR SOLVING A MODEL FOR HIV INFECTION OF CD4 + T CELLS İtanbul icaret Üniveritei Fen Bilimleri Dergii Yıl: 6 Sayı: Güz 7/. 9-5 HOMOOPY PERURBAION MEHOD FOR SOLVING A MODEL FOR HIV INFECION OF CD4 + CELLS Mehmet MERDAN ABSRAC In thi article, homotopy perturbation

More information

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is. Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,

More information

Introduction to Time Series Analysis. Lecture 6.

Introduction to Time Series Analysis. Lecture 6. Introduction to Time Series Analysis. Lecture 6. Peter Bartlett www.stat.berkeley.edu/ bartlett/courses/153-fall2010 Last lecture: 1. Causality 2. Invertibility 3. AR(p) models 4. ARMA(p,q) models 1 Introduction

More information

Lecture 6: Discrete & Continuous Probability and Random Variables

Lecture 6: Discrete & Continuous Probability and Random Variables Lecture 6: Discrete & Continuous Probability and Random Variables D. Alex Hughes Math Camp September 17, 2015 D. Alex Hughes (Math Camp) Lecture 6: Discrete & Continuous Probability and Random September

More information

Student name: Earlham College. Fall 2011 December 15, 2011

Student name: Earlham College. Fall 2011 December 15, 2011 Student name: Earlham College MATH 320: Differential Equations Final exam - In class part Fall 2011 December 15, 2011 Instructions: This is a regular closed-book test, and is to be taken without the use

More information

AP Calculus BC 2013 Free-Response Questions

AP Calculus BC 2013 Free-Response Questions AP Calculus BC 013 Free-Response Questions About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS. Solve (D 2 + D 2)y = 0. 2. Solve (D 2 + 6D + 9)y = 0. PART A 3. Solve (D 4 + 4)x = 0 where D = d dt 4. Find Particular Integral:

More information

Parametric Curves. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015

Parametric Curves. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015 Parametric Curves (Com S 477/577 Notes) Yan-Bin Jia Oct 8, 2015 1 Introduction A curve in R 2 (or R 3 ) is a differentiable function α : [a,b] R 2 (or R 3 ). The initial point is α[a] and the final point

More information

ECG590I Asset Pricing. Lecture 2: Present Value 1

ECG590I Asset Pricing. Lecture 2: Present Value 1 ECG59I Asset Pricing. Lecture 2: Present Value 1 2 Present Value If you have to decide between receiving 1$ now or 1$ one year from now, then you would rather have your money now. If you have to decide

More information

AP CALCULUS AB 2006 SCORING GUIDELINES. Question 4

AP CALCULUS AB 2006 SCORING GUIDELINES. Question 4 AP CALCULUS AB 2006 SCORING GUIDELINES Question 4 t (seconds) vt () (feet per second) 0 10 20 30 40 50 60 70 80 5 14 22 29 35 40 44 47 49 Rocket A has positive velocity vt () after being launched upward

More information

How do we obtain the solution, if we are given F (t)? First we note that suppose someone did give us one solution of this equation

How do we obtain the solution, if we are given F (t)? First we note that suppose someone did give us one solution of this equation 1 Green s functions The harmonic oscillator equation is This has the solution mẍ + kx = 0 (1) x = A sin(ωt) + B cos(ωt), ω = k m where A, B are arbitrary constants reflecting the fact that we have two

More information

Mathematics of Life Contingencies MATH 3281

Mathematics of Life Contingencies MATH 3281 Mathematics of Life Contingencies MATH 3281 Life annuities contracts Edward Furman Department of Mathematics and Statistics York University February 13, 2012 Edward Furman Mathematics of Life Contingencies

More information

MAINTAINED SYSTEMS. Harry G. Kwatny. Department of Mechanical Engineering & Mechanics Drexel University ENGINEERING RELIABILITY INTRODUCTION

MAINTAINED SYSTEMS. Harry G. Kwatny. Department of Mechanical Engineering & Mechanics Drexel University ENGINEERING RELIABILITY INTRODUCTION MAINTAINED SYSTEMS Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University OUTLINE MAINTE MAINTE MAINTAINED UNITS Maintenance can be employed in two different manners: Preventive

More information

College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions

College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions College of the Holy Cross, Spring 29 Math 373, Partial Differential Equations Midterm 1 Practice Questions 1. (a) Find a solution of u x + u y + u = xy. Hint: Try a polynomial of degree 2. Solution. Use

More information

19.7. Applications of Differential Equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

19.7. Applications of Differential Equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Applications of Differential Equations 19.7 Introduction Blocks 19.2 to 19.6 have introduced several techniques for solving commonly-occurring firstorder and second-order ordinary differential equations.

More information

About the Gamma Function

About the Gamma Function About the Gamma Function Notes for Honors Calculus II, Originally Prepared in Spring 995 Basic Facts about the Gamma Function The Gamma function is defined by the improper integral Γ) = The integral is

More information

The Exponential Distribution

The Exponential Distribution 21 The Exponential Distribution From Discrete-Time to Continuous-Time: In Chapter 6 of the text we will be considering Markov processes in continuous time. In a sense, we already have a very good understanding

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science aachuett Intitute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric achinery Cla Note 10: Induction achine Control and Simulation c 2003 Jame L. Kirtley Jr. 1 Introduction

More information

B A S I C S C I E N C E S

B A S I C S C I E N C E S B A S I C S C I E N C E S 10 B A S I C S C I E N C E S F I R S T S E M E S T E R C O U R S E S : H U M A N S T R U C T U R E A N D F U N C T I O N [ H S F I ] M O L E C U L A R B A S I S O F M E D I C

More information

Trimming a Tree and the Two-Sided Skorohod Reflection

Trimming a Tree and the Two-Sided Skorohod Reflection ALEA, Lat. Am. J. Probab. Math. Stat. 12 (2), 811 834 (2015) Trimming a Tree and the Two-Sided Skorohod Reflection Emmanuel Schertzer UPMC Univ. Paris 06, Laboratoire de Probabilités et Modèles Aléatoires,

More information

2.6. Probability. In general the probability density of a random variable satisfies two conditions:

2.6. Probability. In general the probability density of a random variable satisfies two conditions: 2.6. PROBABILITY 66 2.6. Probability 2.6.. Continuous Random Variables. A random variable a real-valued function defined on some set of possible outcomes of a random experiment; e.g. the number of points

More information

v = x t = x 2 x 1 t 2 t 1 The average speed of the particle is absolute value of the average velocity and is given Distance travelled t

v = x t = x 2 x 1 t 2 t 1 The average speed of the particle is absolute value of the average velocity and is given Distance travelled t Chapter 2 Motion in One Dimenion 2.1 The Important Stuff 2.1.1 Poition, Time and Diplacement We begin our tudy of motion by conidering object which are very mall in comparion to the ize of their movement

More information

Solutions to Linear First Order ODE s

Solutions to Linear First Order ODE s First Order Linear Equations In the previous session we learned that a first order linear inhomogeneous ODE for the unknown function x = x(t), has the standard form x + p(t)x = q(t) () (To be precise we

More information

Section 4.4 Inner Product Spaces

Section 4.4 Inner Product Spaces Section 4.4 Inner Product Spaces In our discussion of vector spaces the specific nature of F as a field, other than the fact that it is a field, has played virtually no role. In this section we no longer

More information

So far, we have looked at homogeneous equations

So far, we have looked at homogeneous equations Chapter 3.6: equations Non-homogeneous So far, we have looked at homogeneous equations L[y] = y + p(t)y + q(t)y = 0. Homogeneous means that the right side is zero. Linear homogeneous equations satisfy

More information

Nonparametric adaptive age replacement with a one-cycle criterion

Nonparametric adaptive age replacement with a one-cycle criterion Nonparametric adaptive age replacement with a one-cycle criterion P. Coolen-Schrijner, F.P.A. Coolen Department of Mathematical Sciences University of Durham, Durham, DH1 3LE, UK e-mail: Pauline.Schrijner@durham.ac.uk

More information

Probability Distribution

Probability Distribution Lecture 4 Probability Distribution Continuous Case Definition: A random variable that can take on any value in an interval is called continuous. Definition: Let Y be any r.v. The distribution function

More information

Parabolic Equations. Chapter 5. Contents. 5.1.2 Well-Posed Initial-Boundary Value Problem. 5.1.3 Time Irreversibility of the Heat Equation

Parabolic Equations. Chapter 5. Contents. 5.1.2 Well-Posed Initial-Boundary Value Problem. 5.1.3 Time Irreversibility of the Heat Equation 7 5.1 Definitions Properties Chapter 5 Parabolic Equations Note that we require the solution u(, t bounded in R n for all t. In particular we assume that the boundedness of the smooth function u at infinity

More information

OPTIMAl PREMIUM CONTROl IN A NON-liFE INSURANCE BUSINESS

OPTIMAl PREMIUM CONTROl IN A NON-liFE INSURANCE BUSINESS ONDERZOEKSRAPPORT NR 8904 OPTIMAl PREMIUM CONTROl IN A NON-liFE INSURANCE BUSINESS BY M. VANDEBROEK & J. DHAENE D/1989/2376/5 1 IN A OPTIMAl PREMIUM CONTROl NON-liFE INSURANCE BUSINESS By Martina Vandebroek

More information

Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Dr Glenn Vinnicombe HANDOUT 3. Stability and pole locations.

Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Dr Glenn Vinnicombe HANDOUT 3. Stability and pole locations. Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Dr Glenn Vinnicombe HANDOUT 3 Stability and pole locations asymptotically stable marginally stable unstable Imag(s) repeated poles +

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

More information

Scheduling a sequence of tasks with general completion costs

Scheduling a sequence of tasks with general completion costs Scheduling a sequence of tasks with general completion costs Francis Sourd CNRS-LIP6 4, place Jussieu 75252 Paris Cedex 05, France Francis.Sourd@lip6.fr Abstract Scheduling a sequence of tasks in the acceptation

More information

Lecture 8. Confidence intervals and the central limit theorem

Lecture 8. Confidence intervals and the central limit theorem Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of

More information

The Convolution Operation

The Convolution Operation The Convolution Operation Convolution is a very natural mathematical operation which occurs in both discrete and continuous modes of various kinds. We often encounter it in the course of doing other operations

More information

Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X

Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X Week 6 notes : Continuous random variables and their probability densities WEEK 6 page 1 uniform, normal, gamma, exponential,chi-squared distributions, normal approx'n to the binomial Uniform [,1] random

More information

The Fourier Series of a Periodic Function

The Fourier Series of a Periodic Function 1 Chapter 1 he Fourier Series of a Periodic Function 1.1 Introduction Notation 1.1. We use the letter with a double meaning: a) [, 1) b) In the notations L p (), C(), C n () and C () we use the letter

More information

ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida

ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida ARBITRAGE-FREE OPTION PRICING MODELS Denis Bell University of North Florida Modelling Stock Prices Example American Express In mathematical finance, it is customary to model a stock price by an (Ito) stochatic

More information

x a x 2 (1 + x 2 ) n.

x a x 2 (1 + x 2 ) n. Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number

More information

Lectures 5-6: Taylor Series

Lectures 5-6: Taylor Series Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,

More information

arxiv:0706.1300v1 [q-fin.pr] 9 Jun 2007

arxiv:0706.1300v1 [q-fin.pr] 9 Jun 2007 THE QUANTUM BLACK-SCHOLES EQUATION LUIGI ACCARDI AND ANDREAS BOUKAS arxiv:0706.1300v1 [q-fin.pr] 9 Jun 2007 Abstract. Motivated by the work of Segal and Segal in [16] on the Black-Scholes pricing formula

More information

AP Calculus AB 2013 Free-Response Questions

AP Calculus AB 2013 Free-Response Questions AP Calculus AB 2013 Free-Response Questions About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded

More information

Availability of a system with gamma life and exponential repair time under a perfect repair policy

Availability of a system with gamma life and exponential repair time under a perfect repair policy Statistics & Probability Letters 43 (1999) 189 196 Availability of a system with gamma life and exponential repair time under a perfect repair policy Jyotirmoy Sarkar, Gopal Chaudhuri 1 Department of Mathematical

More information

Limits and Continuity

Limits and Continuity Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function

More information

The Goldberg Rao Algorithm for the Maximum Flow Problem

The Goldberg Rao Algorithm for the Maximum Flow Problem The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }

More information

Probability Theory. Florian Herzog. A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T..

Probability Theory. Florian Herzog. A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T.. Probability Theory A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T.. Florian Herzog 2013 Probability space Probability space A probability space W is a unique triple W = {Ω, F,

More information

HW 3 Due Sep 12, Wed

HW 3 Due Sep 12, Wed HW 3 Due Sep, Wed 1. Consider a tank used in certain hydrodynamic experiments. After one experiment the tank contains 200 L of a dye solution with a concentration of 1 g/l. To prepare for the next experiment,

More information

MATH PROBLEMS, WITH SOLUTIONS

MATH PROBLEMS, WITH SOLUTIONS MATH PROBLEMS, WITH SOLUTIONS OVIDIU MUNTEANU These are free online notes that I wrote to assist students that wish to test their math skills with some problems that go beyond the usual curriculum. These

More information

Systems with Persistent Memory: the Observation Inequality Problems and Solutions

Systems with Persistent Memory: the Observation Inequality Problems and Solutions Chapter 6 Systems with Persistent Memory: the Observation Inequality Problems and Solutions Facts that are recalled in the problems wt) = ut) + 1 c A 1 s ] R c t s)) hws) + Ks r)wr)dr ds. 6.1) w = w +

More information

Chapter 2: Binomial Methods and the Black-Scholes Formula

Chapter 2: Binomial Methods and the Black-Scholes Formula Chapter 2: Binomial Methods and the Black-Scholes Formula 2.1 Binomial Trees We consider a financial market consisting of a bond B t = B(t), a stock S t = S(t), and a call-option C t = C(t), where the

More information

IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS

IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS There are four questions, each with several parts. 1. Customers Coming to an Automatic Teller Machine (ATM) (30 points)

More information

Markov modeling of Gas Futures

Markov modeling of Gas Futures Markov modeling of Gas Futures p.1/31 Markov modeling of Gas Futures Leif Andersen Banc of America Securities February 2008 Agenda Markov modeling of Gas Futures p.2/31 This talk is based on a working

More information

Additional questions for chapter 4

Additional questions for chapter 4 Additional questions for chapter 4 1. A stock price is currently $ 1. Over the next two six-month periods it is expected to go up by 1% or go down by 1%. The risk-free interest rate is 8% per annum with

More information

Chapter 7. BANDIT PROBLEMS.

Chapter 7. BANDIT PROBLEMS. Chapter 7. BANDIT PROBLEMS. Bandit problems are problems in the area of sequential selection of experiments, and they are related to stopping rule problems through the theorem of Gittins and Jones (974).

More information

Columbia University in the City of New York New York, N.Y. 10027

Columbia University in the City of New York New York, N.Y. 10027 Columbia University in the City of New York New York, N.Y. 10027 DEPARTMENT OF MATHEMATICS 508 Mathematics Building 2990 Broadway Fall Semester 2005 Professor Ioannis Karatzas W4061: MODERN ANALYSIS Description

More information

Simulation of Power Systems Dynamics using Dynamic Phasor Models. Power Systems Laboratory. ETH Zürich Switzerland

Simulation of Power Systems Dynamics using Dynamic Phasor Models. Power Systems Laboratory. ETH Zürich Switzerland X SEPOPE 2 a 25 de maio de 26 May 2 rt to 25 th 26 FLORIANÓPOLIS (SC) BRASIL X SIMPÓSIO DE ESPECIALISTAS EM PLANEJAMENTO DA OPERAÇÃO E EXPANSÃO ELÉTRICA X SYMPOSIUM OF SPECIALISTS IN ELECTRIC OPERATIONAL

More information

AP Calculus BC 2001 Free-Response Questions

AP Calculus BC 2001 Free-Response Questions AP Calculus BC 001 Free-Response Questions The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must

More information

SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS

SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS A second-order linear differential equation has the form 1 Px d y dx dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. Equations of this type arise

More information

On the mathematical theory of splitting and Russian roulette

On the mathematical theory of splitting and Russian roulette On the mathematical theory of splitting and Russian roulette techniques St.Petersburg State University, Russia 1. Introduction Splitting is an universal and potentially very powerful technique for increasing

More information

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August

More information

Senior Thesis. Horse Play. Optimal Wagers and the Kelly Criterion. Author: Courtney Kempton. Supervisor: Professor Jim Morrow

Senior Thesis. Horse Play. Optimal Wagers and the Kelly Criterion. Author: Courtney Kempton. Supervisor: Professor Jim Morrow Senior Thei Hore Play Optimal Wager and the Kelly Criterion Author: Courtney Kempton Supervior: Profeor Jim Morrow June 7, 20 Introduction The fundamental problem in gambling i to find betting opportunitie

More information

Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.

Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0. Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients We will now turn our attention to nonhomogeneous second order linear equations, equations with the standard

More information

Digital Communication Systems

Digital Communication Systems Digital Communication Sytem The term digital communication cover a broad area of communication technique, including digital tranmiion and digital radio. Digital tranmiion, i the tranmitted of digital pule

More information

Lecture 14: Transformers. Ideal Transformers

Lecture 14: Transformers. Ideal Transformers White, EE 3 Lecture 14 Page 1 of 9 Lecture 14: Tranforer. deal Tranforer n general, a tranforer i a ultiort ac device that convert voltage, current and iedance fro one value to another. Thi device only

More information

Differentiating under an integral sign

Differentiating under an integral sign CALIFORNIA INSTITUTE OF TECHNOLOGY Ma 2b KC Border Introduction to Probability and Statistics February 213 Differentiating under an integral sign In the derivation of Maximum Likelihood Estimators, or

More information

Module 8. Three-phase Induction Motor. Version 2 EE IIT, Kharagpur

Module 8. Three-phase Induction Motor. Version 2 EE IIT, Kharagpur Module 8 Three-phae Induction Motor Verion EE IIT, Kharagpur Leon 33 Different Type of Starter for Induction Motor (IM Verion EE IIT, Kharagpur Inructional Objective Need of uing arter for Induction motor

More information

Second-Order Linear Differential Equations

Second-Order Linear Differential Equations Second-Order Linear Differential Equations A second-order linear differential equation has the form 1 Px d 2 y dx 2 dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. We saw in Section 7.1

More information

The integrating factor method (Sect. 2.1).

The integrating factor method (Sect. 2.1). The integrating factor method (Sect. 2.1). Overview of differential equations. Linear Ordinary Differential Equations. The integrating factor method. Constant coefficients. The Initial Value Problem. Variable

More information

Monte Carlo Methods in Finance

Monte Carlo Methods in Finance Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook October 2, 2012 Outline Introduction 1 Introduction

More information

A note on exact moments of order statistics from exponentiated log-logistic distribution

A note on exact moments of order statistics from exponentiated log-logistic distribution ProbStat Forum, Volume 7, July 214, Pages 39 44 ISSN 974-3235 ProbStat Forum is an e-ournal. For details please visit www.probstat.org.in A note on exact moments of order statistics from exponentiated

More information

GREATEST COMMON DIVISOR

GREATEST COMMON DIVISOR DEFINITION: GREATEST COMMON DIVISOR The greatest common divisor (gcd) of a and b, denoted by (a, b), is the largest common divisor of integers a and b. THEOREM: If a and b are nonzero integers, then their

More information