# Parametric Curves. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015

Save this PDF as:

Size: px
Start display at page:

Download "Parametric Curves. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015"

## Transcription

1 Parametric Curves (Com S 477/577 Notes) Yan-Bin Jia Oct 8, Introduction A curve in R 2 (or R 3 ) is a differentiable function α : [a,b] R 2 (or R 3 ). The initial point is α[a] and the final point is α[b]. The domain of the curve is the interval [a,b]. A portion of α defined on an interval [c,d] [a,b] is called a curve segment. Example 1. Straight Line linear. Explicitly, the curve The line is the simplest curve in the plane as its coordinate functions are α(t) = p + tv = (x 0 + tv x, y 0 + tv y ), where v 0, (1) is a straight line through the reference point p = α(0) = (x 0, y 0 ) in the direction v = (v x, v y ). Here, t is the signed distance from a point α(t) on the line to p as scaled by v. As shown on the left, the vector from p to a point (x, y) on the line must be either in the direction of (x, y) (v x, v y ) or in its opposite direction. Hence, the cross (x 0, y 0 ) product of the two vectors must be zero, that is, (v x, v y ) (x x 0, y y 0 ) (v x, v y ) = 0. Expansion of the above cross product yields an implicit equation of the line that relates the x and y coordinates of every incident point: v y x v x y v y x 0 + v x y 0 = 0. (2) Example 2. Helix 1 The curve t (a cost, a sint, 0) travels around a circle of radius a > 0 in the x-y plane. If we allow this curve to rise (or fall) at a constant rate, we obtain a helix α = (a cost, a sint, bt), where a > 0 and b 0. Example 3. The curve α : R R 3 such that 1 The figure is from [1, p. 16]. α(t) = (e t, e t, 2t) 1

2 shares with the helix in Example 2 the property of rising constantly. However, it lies over the hyperbola xy = 1 in the x-y plane instead of a circle. A curve α(t) = (x(t),y(t)) is said to be smooth at t = t 0 if its kth derivative ( ) α (k) (t) = x (k) (t),y (k) (t) exists for any integer k > 0. A piecewise smooth curve α has a domain which is the union of a finite number of subintervals over each of which α is smooth. Example 4. A line α(t) = p + tq is a smooth curve. Here α (t) = q and α (k) = 0 for k > 1. A polygon, on the other hand, is a piecewise smooth curve, where each edge determines a subdomain. y Example 5. Cuspidal cubic The curve α(t) = (t 2, t 3 ) is smooth. We have x α (t) = (2t, 3t 2 ), α (t) = (2, 6t), α (t) = (0, 6), α (k) (t) = 0, k 4. Consider a plane curve α : [a,b] R 2. It is called a closed parametric curve if α(a) = α(b). A point of self-crossing is a point α(t 1 ) for which there exist finitely many distinct values t 1,...,t n [a,b], n 2, which satisfy α(t 1 ) = α(t 2 ) = = α(t n ), and in the case n = 2, [t 1,t 2 ] [a,b]. Example 6. A circle is closed. The other three curves all have self-crossings. 2

3 2 Velocity, Speed, and Arc Length Let α(t) be a curve. The velocity vector of α at t is α (t). The speed at t is the length α (t). The meaning is clear if we see α(t) as the location of a moving point at time t. The parametrization α(t) is unit-speed if α (t) = 1 for all values of t. A point where α (t) = 0 is called a cusp on the curve. Example 7. The origin on the cuspidal cubic in Example 5 is a cusp. The curve α(t) is regular if all velocity vectors are different from zero, that is, α (t) 0 for all t. Intuitively, a point moving on the curve with velocity α (t) will never come to a stop or reverse its direction. Example 8. Consider the curve α(θ) = (aθ cos θ, aθ sin θ). It has velocity α (θ) = a(cos θ θ sin θ, sin θ + θ cosθ), and speed α (θ) = a (cosθ θ sin θ) 2 + (sin θ + θ cosθ) 2 = a 1 + θ 2 0. Therefore the parametrization is regular. The velocity and speed depend on its parametrization. Non-regularity at a point may be just a property of the parametrization, and need not correspond to any special feature of the curve geometry. For a different parametrization the curve may have a non-zero velocity at the same point. To formulate the length of α, we note that the portion over [t,t + δt] is nearly a straight line when δt is very small. So the length over [t,t + δt] can be approximated by α(t) α(t + δt) α(t), which again is approximated by α (t) δt. α(t + δt) We divide α up into segments, each of which corresponds to a small increment δt. As δt tends to zero, we will obtain the exact length. The arc length of α from t = a to t = b is thus defined as b a α (t) dt. Example 9. Logarithmic spiral The curve α(t) = (e t cost, e t sin t), has a spiral motion. We obtain that α (t) = ( e t (cost sin t), e t (sin t + cost) ), α (t) = 2e t. 3

4 y x Figure 1: Logarithmic spiral (e t/20 cost, e t/20 sin t) over [0, 50]. Hence the arc length of α starting at α(0) = (1, 0), for instance, is s = t 0 2e u du = 2(e t 1). 3 Reparametrization Let I and J be intervals. Let α : I R 3 be a curve and h a differentiable function. Then the composite function β = α h is a curve called the reparametrization of α by h. β h α β(s) = α(h(s)) J s t I Example 10. Suppose α(t) = ( t, t t, 1 t) on (0, 4). If h(s) = s 2 on (0, 2), then β(s) = α(h(s)) = α(s 2 ) = (s, s 3, 1 s 2 ). The curve α has been reparametrized by h to yield the curve β. At each time s in the interval J, the curve β is at the point β(s) = α(h(s)) reached by the curve α at time h(s) in the interval. Thus β does follow the route of α, but it reaches a given point on the route at a different time than α does. Sometimes one is interested only in the route followed by a curve and not in the particular speed at which it traverses its route. One way to ignore the speed of a curve α is to reparametrize to a curve α which has unit speed α = 1. 4

5 Theorem 1 If α is a regular curve, then there exists a reparametrization α that has unit speed. Proof Consider the arc length function s(t) = t c α (u) du, where c is a number in the domain of α. It then follows that s (t) = α (t) ; namely, the derivative of s is the speed function α (t). Since α is regular, α 0 everywhere; hence ds dt > 0 always holds. By a standard theorem of calculus, the function s has an inverse function t(s), and dt ds = 1 1 = ds α (t). dt Now we let α(s) = α(t(s)) be the reparametrization of α. Then Hence, the speed of α is α (s) = α (t(s)) dt ds. α (s) = α 1 (t(s)) α (t(s)) = 1. The unit-speed curve α is said to have arc-length parameterization, since the arc length of α from s = a to s = b, a < b, is just b a. Example 11. Let us consider the helix α = (a cost, a sin t, bt) in Example 2 again. It has velocity Hence Thus α has constant speed: The arc length from t = 0 is then α (t) = ( a sint, a cost, b). α (t) 2 = α (t) α (t) = a 2 sin 2 t + a 2 cos 2 t + b 2 = a 2 + b 2. c = α = a 2 + b 2. s(t) = t 0 c du = ct. Hence, t(s) = s c. Substituting this into the formula for α, we get the unit-speed reparametrization ( ( s α(s) = α = a cos c) s c, a sin s c, bs ). c Although every regular curve has a unit-speed reparametrization, this may be very complicated, or even impossible to write down explicitly, as the following examples show. 5

6 Example 12. The logarithmic spiral α(t) = (e t cost, e t sin t), has speed 2e t > 0. So it is regular. The arc length starting at (1, 0) was found in Example 9 to be s = 2(e t 1). Hence, t = ln( s 2 + 1), so a unit-speed reparametrization of α is given by the rather unwieldy formula α(s) = (( ) ( ( )) ( ) ( ( ))) s s s s cos ln 2 + 1, sin ln Example 13. Twisted cubic 2 This is the space curve given by α(t) = (t, t 2, t 3 ), < t <. We have α (t) = (1, 2t, 3t 2 ), α (t) = 1 + 4t 2 + 9t 4. Since the speed α (t) is not zero everywhere, α is regular. And the arc-length starting at α(0) = 0 is t s = 1 + 4u2 + 9u 4 du. The above integral has a horrendous closed form not in terms of familiar functions. 0 4 Tangent and Normal The standard method of studying the geometry normal line of a curve at a point is to attach orthonormal tangent line vectors to the point and see how the directions of t increasing these vectors change as the point moves on the α curve for an infinitesimal distance. We choose (x (t), y (t)) tangent and normal vectors at a regular point. ( y (t), x (t)) Let α(t) = (x(t),y(t)) be a curve. At a regular point α(t) there exists a (non-zero) tangent vector α (t) = (x (t),y (t)). It represents the velocity of the curve at the point. The normal vector ( y (t),x (t)) at α(t) is given by rotating the tangent vector counterclockwise through an angle π 2. Note that (x (t),y (t)) ( y (t),x (t)) = (x (t)) 2 + (y (t)) 2 > 0. If α(t) is a unit-speed curve, then both the tangent vector and the normal vector are unit vectors. By convention they are denoted as T and N, respectively, with the cross product T N = 1. 2 The figure originally appears in [3, p. 14]. 6

7 For a parametric curve we have a tangent line and a normal line at each regular point α(t). The tangent line to the curve at α(t) passes through α(t) and is parallel to α (t) 0. So it has the parametric equation ( ) x(s),y(s) = α(t) + sα (t), s (, ), or equivalently, the algebraic equation ( ) ( ) (x,y) α(t) y (t),x (t) = 0. The normal line at α(t) passes through the point and is parallel to ( y (t),x (t)). So its equations are of the form ( ) ( ) x(s),y(s) = α(t) + s y (t),x (t), s (, ), or equivalently, ( ( ) ) x(s),y(s) α(t) α (t) = 0. Example 14. Crunodal cubic is described as α(t) = ( ) t 2 1, t(t 2 1). Find its tangent and normal lines of the curve at the points t = ±1, 0. We obtain α (t) = (2t, 3t 2 1), α (1) = (2, 2), α ( 1) = ( 2, 2), α (0) = (0, 1), α(±1) = (0, 0). Here α = (0, 0) is referred to as a double point since it is attained at both t = 1 and t = 1. The tangent lines at this double point are respectively and (x, y) = s(1, 1), or equivalently, y = x, The normal lines at the double point are respectively and (x, y) = s( 1, 1), or equivalently, y = x. (x, y) = s( 1, 1), or equivalently, y = x, (x, y) = s( 1, 1), or equivalently, y = x. At t = 0, we have α (0) = (0, 1), and the tangent line at α(0) is The normal line at α(0) is (x, y) = ( 1, 0) + s(0, 1), or equivalently, x = 1. (x, y) = ( 1, 0) + s(1, 0), or equivalently, y = 0. y x 7

8 References [1] B. O Neill. Elementary Differential Geometry. Academic Press, Inc., [2] J. W. Rutter. Geometry of Curves. Chapman & Hall/CRC, [3] A. Pressley. Elementary Differential Geometry. Springer-Verlag London,

### 88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a

88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small

### Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

### Math 241, Exam 1 Information.

Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

### Section 1.1. Introduction to R n

The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

### L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

### Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example.

An Example 2 3 4 Outline Objective: Develop methods and algorithms to mathematically model shape of real world objects Categories: Wire-Frame Representation Object is represented as as a set of points

### Section 13.5 Equations of Lines and Planes

Section 13.5 Equations of Lines and Planes Generalizing Linear Equations One of the main aspects of single variable calculus was approximating graphs of functions by lines - specifically, tangent lines.

### 14.11. Geodesic Lines, Local Gauss-Bonnet Theorem

14.11. Geodesic Lines, Local Gauss-Bonnet Theorem Geodesics play a very important role in surface theory and in dynamics. One of the main reasons why geodesics are so important is that they generalize

### Math 497C Sep 9, Curves and Surfaces Fall 2004, PSU

Math 497C Sep 9, 2004 1 Curves and Surfaces Fall 2004, PSU Lecture Notes 2 15 sometries of the Euclidean Space Let M 1 and M 2 be a pair of metric space and d 1 and d 2 be their respective metrics We say

### LINE INTEGRALS OF VECTOR FUNCTIONS: GREEN S THEOREM. Contents. 2. Green s Theorem 3

LINE INTEGRALS OF VETOR FUNTIONS: GREEN S THEOREM ontents 1. A differential criterion for conservative vector fields 1 2. Green s Theorem 3 1. A differential criterion for conservative vector fields We

### Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 25 Notes

Jim Lambers MAT 169 Fall Semester 009-10 Lecture 5 Notes These notes correspond to Section 10.5 in the text. Equations of Lines A line can be viewed, conceptually, as the set of all points in space that

### Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature E. L. Lady (October 18, 2000) Finding the formula in polar coordinates for the angular momentum of a moving

### MATHEMATICS (CLASSES XI XII)

MATHEMATICS (CLASSES XI XII) General Guidelines (i) All concepts/identities must be illustrated by situational examples. (ii) The language of word problems must be clear, simple and unambiguous. (iii)

### Calculus with Parametric Curves

Calculus with Parametric Curves Suppose f and g are differentiable functions and we want to find the tangent line at a point on the parametric curve x f(t), y g(t) where y is also a differentiable function

### Surface Normals and Tangent Planes

Surface Normals and Tangent Planes Normal and Tangent Planes to Level Surfaces Because the equation of a plane requires a point and a normal vector to the plane, nding the equation of a tangent plane to

### Figure 2.1: Center of mass of four points.

Chapter 2 Bézier curves are named after their inventor, Dr. Pierre Bézier. Bézier was an engineer with the Renault car company and set out in the early 196 s to develop a curve formulation which would

### A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors

### Solutions for Review Problems

olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

### Chapter 2. Parameterized Curves in R 3

Chapter 2. Parameterized Curves in R 3 Def. A smooth curve in R 3 is a smooth map σ : (a, b) R 3. For each t (a, b), σ(t) R 3. As t increases from a to b, σ(t) traces out a curve in R 3. In terms of components,

### Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

### Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two

### Multiplicity. Chapter 6

Chapter 6 Multiplicity The fundamental theorem of algebra says that any polynomial of degree n 0 has exactly n roots in the complex numbers if we count with multiplicity. The zeros of a polynomial are

### Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

### Section 8.8. 1. The given line has equations. x = 3 + t(13 3) = 3 + 10t, y = 2 + t(3 + 2) = 2 + 5t, z = 7 + t( 8 7) = 7 15t.

. The given line has equations Section 8.8 x + t( ) + 0t, y + t( + ) + t, z 7 + t( 8 7) 7 t. The line meets the plane y 0 in the point (x, 0, z), where 0 + t, or t /. The corresponding values for x and

### We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model

CHAPTER 4 CURVES 4.1 Introduction In order to understand the significance of curves, we should look into the types of model representations that are used in geometric modeling. Curves play a very significant

### Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables

The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,

### DEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x

Chapter 5 COMPLEX NUMBERS 5.1 Constructing the complex numbers One way of introducing the field C of complex numbers is via the arithmetic of matrices. DEFINITION 5.1.1 A complex number is a matrix of

### Section 11.4: Equations of Lines and Planes

Section 11.4: Equations of Lines and Planes Definition: The line containing the point ( 0, 0, 0 ) and parallel to the vector v = A, B, C has parametric equations = 0 + At, = 0 + Bt, = 0 + Ct, where t R

### Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal

### Computer Graphics CS 543 Lecture 12 (Part 1) Curves. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

Computer Graphics CS 54 Lecture 1 (Part 1) Curves Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) So Far Dealt with straight lines and flat surfaces Real world objects include

### Exam 1 Sample Question SOLUTIONS. y = 2x

Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

### Review Sheet for Test 1

Review Sheet for Test 1 Math 261-00 2 6 2004 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And

### 12.5 Equations of Lines and Planes

Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P

### correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

### Equations Involving Lines and Planes Standard equations for lines in space

Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity

### Lecture 14: Section 3.3

Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

### South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

### PCHS ALGEBRA PLACEMENT TEST

MATHEMATICS Students must pass all math courses with a C or better to advance to the next math level. Only classes passed with a C or better will count towards meeting college entrance requirements. If

### Parametric Curves, Vectors and Calculus. Jeff Morgan Department of Mathematics University of Houston

Parametric Curves, Vectors and Calculus Jeff Morgan Department of Mathematics University of Houston jmorgan@math.uh.edu Online Masters of Arts in Mathematics at the University of Houston http://www.math.uh.edu/matweb/grad_mam.htm

### THREE DIMENSIONAL GEOMETRY

Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

### Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point.

6.1 Vectors in the Plane PreCalculus 6.1 VECTORS IN THE PLANE Learning Targets: 1. Find the component form and the magnitude of a vector.. Perform addition and scalar multiplication of two vectors. 3.

### Review of Fundamental Mathematics

Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

### Chapter 1 Vectors, lines, and planes

Simplify the following vector expressions: 1. a (a + b). (a + b) (a b) 3. (a b) (a + b) Chapter 1 Vectors, lines, planes 1. Recall that cross product distributes over addition, so a (a + b) = a a + a b.

### Section 2.4: Equations of Lines and Planes

Section.4: Equations of Lines and Planes An equation of three variable F (x, y, z) 0 is called an equation of a surface S if For instance, (x 1, y 1, z 1 ) S if and only if F (x 1, y 1, z 1 ) 0. x + y

### MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem

MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem David L. Finn November 30th, 2004 In the next few days, we will introduce some of the basic problems in geometric modelling, and

### ( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those

1.(6pts) Which of the following vectors has the same direction as v 1,, but has length 6? (a), 4, 4 (b),, (c) 4,, 4 (d), 4, 4 (e) 0, 6, 0 The length of v is given by ( 1) + + 9 3 We would like to make

### A First Course in Elementary Differential Equations. Marcel B. Finan Arkansas Tech University c All Rights Reserved

A First Course in Elementary Differential Equations Marcel B. Finan Arkansas Tech University c All Rights Reserved 1 Contents 1 Basic Terminology 4 2 Qualitative Analysis: Direction Field of y = f(t, y)

### Bicycle Math. presented to the Olivetti Club. Timothy E. Goldberg. March 30, 2010. Cornell University Ithaca, New York

Bicycle Math presented to the Olivetti Club Timothy E. Goldberg Cornell University Ithaca, New York March 30, 2010 Abstract Some pretty interesting mathematics, especially geometry, arises naturally from

### Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

### Understanding Basic Calculus

Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

### H.Calculating Normal Vectors

Appendix H H.Calculating Normal Vectors This appendix describes how to calculate normal vectors for surfaces. You need to define normals to use the OpenGL lighting facility, which is described in Chapter

### (Refer Slide Time: 1:42)

Introduction to Computer Graphics Dr. Prem Kalra Department of Computer Science and Engineering Indian Institute of Technology, Delhi Lecture - 10 Curves So today we are going to have a new topic. So far

### (a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,

Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We

### 1.5 Equations of Lines and Planes in 3-D

40 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from

### 2.2. Instantaneous Velocity

2.2. Instantaneous Velocity toc Assuming that your are not familiar with the technical aspects of this section, when you think about it, your knowledge of velocity is limited. In terms of your own mathematical

### FINAL EXAM SOLUTIONS Math 21a, Spring 03

INAL EXAM SOLUIONS Math 21a, Spring 3 Name: Start by printing your name in the above box and check your section in the box to the left. MW1 Ken Chung MW1 Weiyang Qiu MW11 Oliver Knill h1 Mark Lucianovic

### Solutions to Exercises, Section 5.1

Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle

### 4.2. LINE INTEGRALS 1. 2 2 ; z = t. ; y = sin

4.2. LINE INTEGRALS 1 4.2 Line Integrals MATH 294 FALL 1982 FINAL # 7 294FA82FQ7.tex 4.2.1 Consider the curve given parametrically by x = cos t t ; y = sin 2 2 ; z = t a) Determine the work done by the

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

### 1 TRIGONOMETRY. 1.0 Introduction. 1.1 Sum and product formulae. Objectives

TRIGONOMETRY Chapter Trigonometry Objectives After studying this chapter you should be able to handle with confidence a wide range of trigonometric identities; be able to express linear combinations of

### Estimated Pre Calculus Pacing Timeline

Estimated Pre Calculus Pacing Timeline 2010-2011 School Year The timeframes listed on this calendar are estimates based on a fifty-minute class period. You may need to adjust some of them from time to

### + 4θ 4. We want to minimize this function, and we know that local minima occur when the derivative equals zero. Then consider

Math Xb Applications of Trig Derivatives 1. A woman at point A on the shore of a circular lake with radius 2 miles wants to arrive at the point C diametrically opposite A on the other side of the lake

### FURTHER VECTORS (MEI)

Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level - MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: -9-7 Mathematics

### MATH 132: CALCULUS II SYLLABUS

MATH 32: CALCULUS II SYLLABUS Prerequisites: Successful completion of Math 3 (or its equivalent elsewhere). Math 27 is normally not a sufficient prerequisite for Math 32. Required Text: Calculus: Early

### Lecture L6 - Intrinsic Coordinates

S. Widnall, J. Peraire 16.07 Dynamics Fall 2009 Version 2.0 Lecture L6 - Intrinsic Coordinates In lecture L4, we introduced the position, velocity and acceleration vectors and referred them to a fixed

### Learning Objectives for Math 165

Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

### This makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5

1. (Line integrals Using parametrization. Two types and the flux integral) Formulas: ds = x (t) dt, d x = x (t)dt and d x = T ds since T = x (t)/ x (t). Another one is Nds = T ds ẑ = (dx, dy) ẑ = (dy,

### TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

### 4. Complex integration: Cauchy integral theorem and Cauchy integral formulas. Definite integral of a complex-valued function of a real variable

4. Complex integration: Cauchy integral theorem and Cauchy integral formulas Definite integral of a complex-valued function of a real variable Consider a complex valued function f(t) of a real variable

### Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

### Cissoid. History. From Robert C. Yates Curves and their properties (1952):

History Cissoid Diocles ( 250 100 BC) invented this curve to solve the doubling of the cube problem (also know as the the Delian problem). The name cissoid (ivy-shaped) derives from the shape of the curve.

### Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

### AP Calculus BC. All students enrolling in AP Calculus BC should have successfully completed AP Calculus AB.

AP Calculus BC Course Description: Advanced Placement Calculus BC is primarily concerned with developing the students understanding of the concepts of calculus and providing experiences with its methods

### CHAPTER 1 Splines and B-splines an Introduction

CHAPTER 1 Splines and B-splines an Introduction In this first chapter, we consider the following fundamental problem: Given a set of points in the plane, determine a smooth curve that approximates the

### 11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

### α = u v. In other words, Orthogonal Projection

Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

### 4B. Line Integrals in the Plane

4. Line Integrals in the Plane 4A. Plane Vector Fields 4A-1 Describe geometrically how the vector fields determined by each of the following vector functions looks. Tell for each what the largest region

### Equations of Lines and Planes

Calculus 3 Lia Vas Equations of Lines and Planes Planes. A plane is uniquely determined by a point in it and a vector perpendicular to it. An equation of the plane passing the point (x 0, y 0, z 0 ) perpendicular

### ME 115(b): Solution to Homework #1

ME 115(b): Solution to Homework #1 Solution to Problem #1: To construct the hybrid Jacobian for a manipulator, you could either construct the body Jacobian, JST b, and then use the body-to-hybrid velocity

### Core Maths C2. Revision Notes

Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

### SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

### Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.

Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)

### NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document

### WASSCE / WAEC ELECTIVE / FURTHER MATHEMATICS SYLLABUS

Visit this link to read the introductory text for this syllabus. 1. Circular Measure Lengths of Arcs of circles and Radians Perimeters of Sectors and Segments measure in radians 2. Trigonometry (i) Sine,

### December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

### Some Notes on Taylor Polynomials and Taylor Series

Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited

### Figure 1.1 Vector A and Vector F

CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

### DERIVATIVES AS MATRICES; CHAIN RULE

DERIVATIVES AS MATRICES; CHAIN RULE 1. Derivatives of Real-valued Functions Let s first consider functions f : R 2 R. Recall that if the partial derivatives of f exist at the point (x 0, y 0 ), then we

### Circle Name: Radius: Diameter: Chord: Secant:

12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane

### 2008 AP Calculus AB Multiple Choice Exam

008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus

### Parametric Curves. EXAMPLE: Sketch and identify the curve defined by the parametric equations

Section 9. Parametric Curves 00 Kiryl Tsishchanka Parametric Curves Suppose that x and y are both given as functions of a third variable t (called a parameter) by the equations x = f(t), y = g(t) (called

### 2. THE x-y PLANE 7 C7

2. THE x-y PLANE 2.1. The Real Line When we plot quantities on a graph we can plot not only integer values like 1, 2 and 3 but also fractions, like 3½ or 4¾. In fact we can, in principle, plot any real

### CHAPTER FIVE. 5. Equations of Lines in R 3

118 CHAPTER FIVE 5. Equations of Lines in R 3 In this chapter it is going to be very important to distinguish clearly between points and vectors. Frequently in the past the distinction has only been a

### Rolle s Theorem. q( x) = 1

Lecture 1 :The Mean Value Theorem We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero? In this section we will answer this question

### New Higher-Proposed Order-Combined Approach. Block 1. Lines 1.1 App. Vectors 1.4 EF. Quadratics 1.1 RC. Polynomials 1.1 RC

New Higher-Proposed Order-Combined Approach Block 1 Lines 1.1 App Vectors 1.4 EF Quadratics 1.1 RC Polynomials 1.1 RC Differentiation-but not optimisation 1.3 RC Block 2 Functions and graphs 1.3 EF Logs

### 3.2 Sources, Sinks, Saddles, and Spirals

3.2. Sources, Sinks, Saddles, and Spirals 6 3.2 Sources, Sinks, Saddles, and Spirals The pictures in this section show solutions to Ay 00 C By 0 C Cy D 0. These are linear equations with constant coefficients

### x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3

CORE 4 Summary Notes Rational Expressions Factorise all expressions where possible Cancel any factors common to the numerator and denominator x + 5x x(x + 5) x 5 (x + 5)(x 5) x x 5 To add or subtract -