Astronomy Excerpts from the Frameworks for Science Education - Third Grade

Size: px
Start display at page:

Download "Astronomy Excerpts from the Frameworks for Science Education - Third Grade"

Transcription

1 NOTE: Since the writing of the Frameworks, Pluto has been reclassified as a dwarf planet along with several other known small bodies of similar size. There are likely to be hundreds more discovered out beyond Pluto, and it seemed silly to keep expanding the number of planets in the solar system with every discovery of another small lump of rock. The solar system therefore has eight official planets. Astronomy Excerpts from the Frameworks for Science Education - Third Grade STANDARD SET 4. Earth Sciences Earth sciences standards in grade three center on the concept that objects in the sky move in regular and predictable patterns. It is important that students know and are familiar with the patterns and movements of the Sun, Moon, and stars, both as those bodies actually move and as they appear to move when viewed from Earth. Seasonal changes correlate with changes in both the amount of daily sunlight and the position of the Sun in the sky. Seasonal changes are caused by the tilt of Earth s axis of rotation and the position of Earth relative to the Sun. Students will also learn about the relationships between the phases of the Moon and the changes in the positions of the Sun and Moon. Using models and telescopes may help students grasp the concepts presented in the standards. 4. Objects in the sky move in regular and predictable patterns. As a basis for understanding this concept: a. Students know the patterns of stars stay the same, although they appear to move across the sky nightly, and different stars can be seen in different seasons. The relative position of stars with respect to each other in the night sky is fixed. The apparent motion of the stars through the night sky is a function of Earth turning on its own axis. Starlike objects do move across the fixed pattern of stars in the night sky, but those stars are really planets. Stars appear stationary relative to one another because they are far outside the solar system. The positions of stars appear to change each season from a particular point of view on Earth because that point will face progressively different parts of the universe at night. The stars that are visible in the summer nighttime sky would be visible in the winter daytime sky if they were bright enough to outshine the Sun. 4. b. Students know the way in which the Moon s appearance changes during the four-week lunar cycle. Students should be taught to observe the phases of the Moon; recognize the pattern of changes; and know such terms as the full, quarter, waxing, waning, and crescent Moon. The reason for this pattern of changes may then be explored. One side of the Moon is always in sunlight (except in the case of an eclipse). How much of the sunlit surface of the Moon will be visible from Earth depends on the relative positions of Earth, the Moon, and the Sun. Earth and the Moon continuously cycle through changes in their positions relative to the Sun; therefore, the Moon will go through phases from new to full depending on how much of its lighted surface is visible from Earth. Models may help in the teaching of the standard. Students may be shown the rotation of Earth on its axis; how the day and night cycle works; and why the Moon, like the Sun, appears to rise and set. Students may also be shown Earth s position relative to the Sun, the Moon s position relative to Earth, and how Earth orbits the Sun once a year. Students can observe the actual position changes in the Moon and in the background star patterns at

2 the same time each night, continuing their observations long enough to include a full lunar cycle. They can be shown how the motion of the Moon around Earth accounts for those observations. 4. c. Students know telescopes magnify the appearance of some distant objects in the sky, including the Moon and the planets. The number of stars that can be seen through telescopes is dramatically greater than the number that can be seen by the unaided eye. Students are often startled the first time they look at details of the Moon through a telescope or even through high-quality binoculars. They quickly come to appreciate how those instruments facilitate the study of very distant objects. With the help of a telescope or very high-powered binoculars, students can see the rings of Saturn and some of the details of other planets. Students must never be permitted to look directly or stare at the Sun with the naked eye through binoculars, telescopes, or any other optical instruments. There are many pictures taken by powerful telescopes of planets, stars, and galaxies that students should have the opportunity to study in books. 4. d. Students know that Earth is one of several planets that orbit the Sun and that the Moon orbits Earth. The patterns of the stars stay the same relative to one another although they appear to move because of the rotation of Earth. Several starlike objects move across the sky s star patterns. They are planets that shine by light reflected from the Sun. Five planets can be seen without the aid of a telescope: Mercury, Venus, Mars, Jupiter, and Saturn. Three can be seen only with the aid of a telescope: Uranus, Neptune, and Pluto. Earth is also a planet and moves about the Sun in a path (orbit) that is similar to that of the other planets. Nine planets are in the solar system. The Moon orbits Earth. Because Earth itself is a planet, measuring the orbits of other planets is a complex process. The process is so complex that scientists took a long time to figure out the different spatial relationships between the Moon, Earth, other planets, and the Sun. 4. e. Students know the position of the Sun in the sky changes during the course of the day and from season to season. During a single day the rotation of Earth causes the position of the Sun to change on the horizon. It may be helpful for students to keep track of the Sun s position and watch how shadows lengthen rapidly as sunset approaches. From season to season the length of day and the angle of the Sun vary. Students should know that they live in the Northern Hemisphere, where the Sun at noon is lower and to the south in the sky in the winter and more directly overhead in the summer. Shorter or longer days and more or less direct sunlight characterize the seasons. The angle of the Sun in the sky at noon and the length of the day vary throughout the year because Earth s axis is tilted in comparison to the plane of its orbit. Astronomy Excerpts from the Frameworks for Science Education - Fifth Grade STANDARD SET 5. Earth Sciences (The Solar System) Student knowledge of the solar system includes an understanding of and the ability to describe the relative motions of the planets. Students already know that Earth orbits the

3 Sun and the Moon orbits Earth. Students in grade five learn the composition of the Sun and that the solar system includes small bodies, such as asteroids and comets, as well as the Sun, nine planets, and their moons. They learn the basic relationship between gravity and the planetary orbits. 5. The solar system consists of planets and other bodies that orbit the Sun in predictable paths. As a basis for understanding this concept: a. Students know the Sun, an average star, is the central and largest body in the solar system and is composed primarily of hydrogen and helium. The Sun is about one million times the volume of Earth. Its mass can be calculated from the shapes of the planetary orbits, which result from the gravitational attraction between the Sun and its planets. The fusion of hydrogen to helium produces most of the Sun s energy. 5. b. Students know the solar system includes the planet Earth, the Moon, the Sun, eight other planets and their satellites, and smaller objects, such as asteroids and comets. The solar system comprises nine planets, in the following order from the Sun: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto. Most of the planets have moons in orbit about them, but only Earth s moon is visible to the unaided eye. Asteroids and comets are small bodies, most of which are in irregular orbits about the Sun. Many science texts and Web sites provide information and photographs of objects in the solar system that are collected from NASA s planetary, comet, and asteroid missions and from the use of Earth and space telescopes. 5. c. Students know the path of a planet around the Sun is due to the gravitational attraction between the Sun and the planet. Planets move in elliptical but nearly circular orbits around the Sun just as the Moon moves in a nearly circular orbit around Earth. Each object in the solar system would move in a straight line if it were not pulled or pushed by a force. Gravity causes a pull, or attraction, between the mass (matter) of each of the planets and the mass (matter) of the Sun. This pull is what continually deflects a planet s path toward the Sun and produces its orbit. Students may wonder why the pull of gravity does not cause the planets to fall into the Sun or the Moon into Earth. One explanation is that the planets and Moon are in fact falling, but they are also moving very fast to the side. As the Moon is pulled toward Earth, it also moves forward creating the curved path of its orbit. Thus the Moon is constantly falling, but the downward and sideways motions are exactly balanced so that the Moon never gets closer to or farther away from Earth. In the same way the planets are maintained in orbits around the Sun. Understanding that gravity exists in outer space may be made more difficult by the images of astronauts floating weightless in their capsules. When these pictures are taken, the astronauts are in orbit around Earth and are essentially free-falling (just like the Moon). Astronomy Excerpts from the Frameworks for Science Education - Eighth Grade 2. g. Students know the role of gravity in forming and maintaining the shapes of planets, stars, and the solar system.

4 Gravity, an attractive force between masses, is responsible for forming the Sun, the planets, and the moons in the solar system into their spherical shapes and for holding the system together. It is also responsible for internal pressures in the Sun, Earth and other planets, and the atmosphere. Earth) unless a force was acting on it to change its direction into a circular path. Direction of force of mutual gravitational attraction of Earth and the Moon The Moon's path with no gravitational attraction Earth Orbital path of the Moon Fig.1. Effect of Gravity on the Moon s Path Newton asked himself whether the force that causes objects to fall to Earth could extend to the Moon. Newton knew that the Moon should travel in a straight line (getting farther and farther from Earth and other planets, and the atmosphere. Newton asked himself whether the force that causes objects to fall to Earth could extend to the Moon. Newton knew that the Moon should travel in a straight line (getting farther and farther from Earth) unless a force was acting on it to change its direction into a circular path. He worked out the mathematics that convinced him that the force between all massive objects is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers. This relationship was then extended to explain the motion of Earth and other planets about the Sun. Initially, the universe consisted of light elements, such as hydrogen, helium, and lithium, distributed in space. The attraction of every particle of matter for every other particle of matter caused the stars to form, making possible the stuff of the universe. As gravity is the fundamental force responsible for the formation and motion of stars and of the clusters of stars called galaxies, it controls the size and shape of the universe. STANDARD SET 4. Earth in the Solar System (Earth Sciences) Students in grade eight are ready to tackle the larger picture of galaxies and astronomical distances. They are ready to study stars compared with and contrasted to the Sun and to learn in greater detail about the planets and other objects in the solar system. High school studies of earth sciences will include the dimension of time along with three-dimensional space in the study of astronomy. 4. The structure and composition of the universe can be learned from studying stars and galaxies and their evolution. As a basis for understanding this concept: a. Students know galaxies are clusters of billions of stars and may have different shapes. Stars are not uniformly distributed throughout the universe but are clustered by the billions in galaxies. Some of the fuzzy points of light in the sky that were originally thought to be stars are now known to be distant galaxies. Galaxies themselves appear to form clusters that are separated by vast expanses of empty space. As galaxies are discovered they are classified by their differing sizes and shapes. The most common shapes are spiral, elliptical, and irregular. Beautiful, fullcolor photographs of astronomical objects are available on the Internet, in library books, and in

5 popular and professional journals. It may also interest students to know that astronomers have inferred the existence of planets orbiting some stars. 4. b. Students know that the Sun is one of many stars in the Milky Way galaxy and that stars may differ in size, temperature, and color. The Sun is a star located on the rim of a typical spiral galaxy called the Milky Way and orbits the galactic center. In similar spiral galaxies this galactic center appears as a bulge of stars in the heart of the disk. The bright band of stars cutting across the night sky is the edge of the Milky Way as seen from the perspective of Earth, which lies within the disk of the galaxy. Stars vary greatly in size, temperature, and color. For the most part those variations are related to the stars life cycles. Light from the Sun and other stars indicates that the Sun is a fairly typical star. It has a mass of about kg and an energy output, or luminosity, of about joules/sec. The surface temperature of the Sun is approximately 5,500 degrees Celsius, and the radius of the Sun is about 700 million meters. The surface temperature determines the yellow color of the light shining from the Sun. Red stars have cooler surface temperatures, and blue stars have hotter surface temperatures. To connect the surface temperature to the color of the Sun or of other stars, teachers should obtain a black-body temperature spectrum chart, which is typically found in high school and college textbooks. 4. c. Students know how to use astronomical units and light years as measures of distance between the Sun, stars, and Earth. Distances between astronomical objects are enormous. Measurement units such as centimeters, meters, and kilometers used in the laboratory or on field trips are not useful for expressing those distances. Consequently, astronomers use other units to describe large distances. The astronomical unit (AU) is defined to be equal to the average distance from Earth to the Sun: 1 AU = meters. Distances between planets of the solar system are usually expressed in AU. For distances between stars and galaxies, even that large unit of length is not sufficient. Interstellar and intergalactic distances are expressed in terms of how far light travels in one year, the light year (ly): 1 ly = meters, or approximately 6 trillion miles. The most distant objects observed in the universe are estimated to be 10 to 15 billion light years from the solar system. Teachers need to help students become familiar with AUs by expressing the distance from the Sun to the planets in AUs instead of meters or miles. A good way to become familiar with the relative distances of the planets from the Sun is to lay out the solar system to scale on a length of cash register tape. 4. d. Students know that stars are the source of light for all bright objects in outer space and that the Moon and planets shine by reflected sunlight, not by their own light. The energy from the Sun and other stars, seen as visible light, is caused by nuclear fusion reactions that occur deep inside the stars cores. By carefully analyzing the spectrum of light from stars, scientists know that most stars are composed primarily of hydrogen, a smaller amount of helium, and much smaller amounts of all the other chemical elements. Most stars are born from the gravitational compression and heating of hydrogen gas. A fusion reaction results when hydrogen nuclei combine to form helium nuclei. This event releases energy and establishes a balance between the inward pull of gravity and the outward pressure of the fusion reaction products. Ancient peoples observed that some objects in the night sky wandered about while other objects maintained fixed positions in relation to one another (i.e., the constellations). Those wanderers

6 are the planets. Through careful observations of the planets movements, scientists found that planets travel in nearly circular (slightly elliptical) orbits about the Sun. Planets (and the Moon) do not generate the light that makes them visible, a fact that is demonstrated during eclipses of the Moon or by observation of the phases of the Moon and planets when a portion is shaded from the direct light of the Sun. Various types of exploratory missions have yielded much information about the reflectivity, structure, and composition of the Moon and the planets. Those missions have included spacecraft flying by and orbiting those bodies, the soft landing of spacecraft fitted with instruments, and, of course, the visits of astronauts to the Moon. 4. e. Students know the appearance, general composition, relative position and size, and motion of objects in the solar system, including planets, planetary satellites, comets, and asteroids. Nine planets are currently known in the solar system: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto. They vary greatly in size and appearance. For example, the mass of Earth is kg and the radius is m. Jupiter has more than 300 times the mass of Earth, and the radius is ten times larger. The planets also drastically vary in their distance from the Sun, period of revolution about the Sun, period of rotation about their own axis, tilt of their axis, composition, and appearance. The inner planets (Mercury, Venus, Earth, and Mars) tend to be relatively small and are composed primarily of rock. The outer planets (Jupiter, Saturn, Uranus, and Neptune) are generally much larger and are composed primarily of gas. Pluto is composed primarily of rock and is the smallest planet in the solar system. All the planets are much smaller than the Sun. All objects are attracted toward one another gravitationally, and the strength of the gravitational force between them depends on their masses and the distance that separates them from one another and from the Sun. Before Newton formulated his laws of motion and the law of universal gravitational attraction, German astronomer Johannes Kepler deduced from astronomical observations three laws (Kepler s laws) that describe the motions of the planets. Planets have smaller objects orbiting them called satellites or moons. Earth has one moon that completes an orbit once every 28 days (approximately). Mercury and Venus have no moons, but Jupiter and Saturn have many moons. Very small objects composed mostly of rock (asteroids) or the ice from condensed gases (comets) or both also orbit the Sun. The orbits of many asteroids are relatively circular and lie between the orbital paths of Mars and Jupiter (the asteroid belt). Some asteroids and all comets have highly elliptical orbits, causing them to range great distances from very close to the Sun to well beyond the orbit of Pluto. Teachers should look for field trip opportunities for students to observe the night sky from an astronomical observatory or with the aid of a local astronomical society. A visit to a planetarium would be another way of observing the sky. If feasible, teachers should have students observe the motion of Jupiter s inner moons as well as the phases of Venus. Using resources in the librarymedia center, students can research related topics of interest.

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were increased,

More information

UNIT V. Earth and Space. Earth and the Solar System

UNIT V. Earth and Space. Earth and the Solar System UNIT V Earth and Space Chapter 9 Earth and the Solar System EARTH AND OTHER PLANETS A solar system contains planets, moons, and other objects that orbit around a star or the star system. The solar system

More information

Science Standard 4 Earth in Space Grade Level Expectations

Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal

More information

Related Standards and Background Information

Related Standards and Background Information Related Standards and Background Information Earth Patterns, Cycles and Changes This strand focuses on student understanding of patterns in nature, natural cycles, and changes that occur both quickly and

More information

EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1

EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 Instructor: L. M. Khandro EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 1. An arc second is a measure of a. time interval between oscillations of a standard clock b. time

More information

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered

More information

Explain the Big Bang Theory and give two pieces of evidence which support it.

Explain the Big Bang Theory and give two pieces of evidence which support it. Name: Key OBJECTIVES Correctly define: asteroid, celestial object, comet, constellation, Doppler effect, eccentricity, eclipse, ellipse, focus, Foucault Pendulum, galaxy, geocentric model, heliocentric

More information

Class 2 Solar System Characteristics Formation Exosolar Planets

Class 2 Solar System Characteristics Formation Exosolar Planets Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

More information

Earth in the Solar System

Earth in the Solar System Copyright 2011 Study Island - All rights reserved. Directions: Challenge yourself! Print out the quiz or get a pen/pencil and paper and record your answers to the questions below. Check your answers with

More information

Study Guide: Solar System

Study Guide: Solar System Study Guide: Solar System 1. How many planets are there in the solar system? 2. What is the correct order of all the planets in the solar system? 3. Where can a comet be located in the solar system? 4.

More information

Study Guide due Friday, 1/29

Study Guide due Friday, 1/29 NAME: Astronomy Study Guide asteroid chromosphere comet corona ellipse Galilean moons VOCABULARY WORDS TO KNOW geocentric system meteor gravity meteorite greenhouse effect meteoroid heliocentric system

More information

Introduction to the Solar System

Introduction to the Solar System Introduction to the Solar System Lesson Objectives Describe some early ideas about our solar system. Name the planets, and describe their motion around the Sun. Explain how the solar system formed. Introduction

More information

Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti INSTRUCTIONS: Please, use the `bubble sheet and a pencil # 2 to answer the exam questions, by marking

More information

1 A Solar System Is Born

1 A Solar System Is Born CHAPTER 3 1 A Solar System Is Born SECTION Formation of the Solar System BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a nebula? How did our solar system

More information

1.1 A Modern View of the Universe" Our goals for learning: What is our place in the universe?"

1.1 A Modern View of the Universe Our goals for learning: What is our place in the universe? Chapter 1 Our Place in the Universe 1.1 A Modern View of the Universe What is our place in the universe? What is our place in the universe? How did we come to be? How can we know what the universe was

More information

Motions of Earth, Moon, and Sun

Motions of Earth, Moon, and Sun Motions of Earth, Moon, and Sun Apparent Motions of Celestial Objects An apparent motion is a motion that an object appears to make. Apparent motions can be real or illusions. When you see a person spinning

More information

Planets beyond the solar system

Planets beyond the solar system Planets beyond the solar system Review of our solar system Why search How to search Eclipses Motion of parent star Doppler Effect Extrasolar planet discoveries A star is 5 parsecs away, what is its parallax?

More information

Name Class Date. true

Name Class Date. true Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized

More information

GRAVITY CONCEPTS. Gravity is the universal force of attraction between all matter

GRAVITY CONCEPTS. Gravity is the universal force of attraction between all matter IT S UNIVERSAL GRAVITY CONCEPTS Gravity is the universal force of attraction between all matter Weight is a measure of the gravitational force pulling objects toward Earth Objects seem weightless when

More information

Asteroids. Earth. Asteroids. Earth Distance from sun: 149,600,000 kilometers (92,960,000 miles) Diameter: 12,756 kilometers (7,926 miles) dotted line

Asteroids. Earth. Asteroids. Earth Distance from sun: 149,600,000 kilometers (92,960,000 miles) Diameter: 12,756 kilometers (7,926 miles) dotted line Image taken by NASA Asteroids About 6,000 asteroids have been discovered; several hundred more are found each year. There are likely hundreds of thousands more that are too small to be seen from Earth.

More information

The Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following:

The Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following: Unit 4 The Solar System Chapter 7 ~ The History of the Solar System o Section 1 ~ The Formation of the Solar System o Section 2 ~ Observing the Solar System Chapter 8 ~ The Parts the Solar System o Section

More information

Georgia Performance Standards Framework for Science Grade 6. Unit Organizer: UNIVERSE AND SOLAR SYSTEM (Approximate Time 3 Weeks)

Georgia Performance Standards Framework for Science Grade 6. Unit Organizer: UNIVERSE AND SOLAR SYSTEM (Approximate Time 3 Weeks) The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

More information

The Solar System. Source http://starchild.gsfc.nasa.gov/docs/starchild/solar_system_level1/solar_system.html

The Solar System. Source http://starchild.gsfc.nasa.gov/docs/starchild/solar_system_level1/solar_system.html The Solar System What is the solar system? It is our Sun and everything that travels around it. Our solar system is elliptical in shape. That means it is shaped like an egg. Earth s orbit is nearly circular.

More information

Week 1-2: Overview of the Universe & the View from the Earth

Week 1-2: Overview of the Universe & the View from the Earth Week 1-2: Overview of the Universe & the View from the Earth Hassen M. Yesuf (hyesuf@ucsc.edu) September 29, 2011 1 Lecture summary Protein molecules, the building blocks of a living organism, are made

More information

Unit 8 Lesson 2 Gravity and the Solar System

Unit 8 Lesson 2 Gravity and the Solar System Unit 8 Lesson 2 Gravity and the Solar System Gravity What is gravity? Gravity is a force of attraction between objects that is due to their masses and the distances between them. Every object in the universe

More information

NOTES: GEORGIA HIGH SCHOOL SCIENCE TEST THE SOLAR SYSTEM

NOTES: GEORGIA HIGH SCHOOL SCIENCE TEST THE SOLAR SYSTEM NOTES: GEORGIA HIGH SCHOOL SCIENCE TEST THE SOLAR SYSTEM 1.What is a Solar system? A solar system consists of: * one central star, the Sun and * nine planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn,

More information

STUDY GUIDE: Earth Sun Moon

STUDY GUIDE: Earth Sun Moon The Universe is thought to consist of trillions of galaxies. Our galaxy, the Milky Way, has billions of stars. One of those stars is our Sun. Our solar system consists of the Sun at the center, and all

More information

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault CELESTIAL MOTIONS Stars appear to move counterclockwise on the surface of a huge sphere the Starry Vault, in their daily motions about Earth Polaris remains stationary. In Charlottesville we see Polaris

More information

Chapter 25.1: Models of our Solar System

Chapter 25.1: Models of our Solar System Chapter 25.1: Models of our Solar System Objectives: Compare & Contrast geocentric and heliocentric models of the solar sytem. Describe the orbits of planets explain how gravity and inertia keep the planets

More information

The Earth, Sun & Moon. The Universe. The Earth, Sun & Moon. The Universe

The Earth, Sun & Moon. The Universe. The Earth, Sun & Moon. The Universe Football Review- Earth, Moon, Sun 1. During a total solar eclipse, when almost all of the Sun's light traveling to the Earth is blocked by the Moon, what is the order of the Earth, Sun, and Moon? A. Moon,

More information

LER 2891. Ages. Grades. Solar System. A fun game of thinking & linking!

LER 2891. Ages. Grades. Solar System. A fun game of thinking & linking! Solar System Ages 7+ LER 2891 Grades 2+ Card Game A fun game of thinking & linking! Contents 45 Picture cards 45 Word cards 8 New Link cards 2 Super Link cards Setup Shuffle the two decks together to mix

More information

Page. ASTRONOMICAL OBJECTS (Page 4).

Page. ASTRONOMICAL OBJECTS (Page 4). Star: ASTRONOMICAL OBJECTS ( 4). Ball of gas that generates energy by nuclear fusion in its includes white dwarfs, protostars, neutron stars. Planet: Object (solid or gaseous) that orbits a star. Radius

More information

4 HOW OUR SOLAR SYSTEM FORMED 750L

4 HOW OUR SOLAR SYSTEM FORMED 750L 4 HOW OUR SOLAR SYSTEM FORMED 750L HOW OUR SOLAR SYSTEM FORMED A CLOSE LOOK AT THE PLANETS ORBITING OUR SUN By Cynthia Stokes Brown, adapted by Newsela Planets come from the clouds of gas and dust that

More information

Chapter 6 Formation of Planetary Systems Our Solar System and Beyond

Chapter 6 Formation of Planetary Systems Our Solar System and Beyond Chapter 6 Formation of Planetary Systems Our Solar System and Beyond The solar system exhibits clear patterns of composition and motion. Sun Over 99.9% of solar system s mass Made mostly of H/He gas (plasma)

More information

Grade 6 Standard 3 Unit Test A Astronomy. 1. The four inner planets are rocky and small. Which description best fits the next four outer planets?

Grade 6 Standard 3 Unit Test A Astronomy. 1. The four inner planets are rocky and small. Which description best fits the next four outer planets? Grade 6 Standard 3 Unit Test A Astronomy Multiple Choice 1. The four inner planets are rocky and small. Which description best fits the next four outer planets? A. They are also rocky and small. B. They

More information

THE SOLAR SYSTEM - EXERCISES 1

THE SOLAR SYSTEM - EXERCISES 1 THE SOLAR SYSTEM - EXERCISES 1 THE SUN AND THE SOLAR SYSTEM Name the planets in their order from the sun. 1 2 3 4 5 6 7 8 The asteroid belt is between and Which planet has the most moons? About how many?

More information

Lecture 13. Gravity in the Solar System

Lecture 13. Gravity in the Solar System Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

More information

Planets and Dwarf Planets by Shauna Hutton

Planets and Dwarf Planets by Shauna Hutton Name: Wow! Technology has improved so well in the last several years that we keep finding more and more objects in our solar system! Because of this, scientists have had to come up with new categories

More information

Earth Is Not the Center of the Universe

Earth Is Not the Center of the Universe Earth Is Not the Center of the Universe Source: Utah State Office of Education Introduction Have you ever looked up at the night sky and wondered about all the pinpoint lights? People through the ages

More information

Unit One Organizer: The Stars and Our Solar System (Approximate Time: 7 Weeks)

Unit One Organizer: The Stars and Our Solar System (Approximate Time: 7 Weeks) The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

More information

Appropriate space vocabulary for Primary School

Appropriate space vocabulary for Primary School Appropriate space vocabulary for Primary School Stuff Looks like Gas Dust Rock Liquid Fatter (moon) Thinner (moon) Faster Slower Hot Cold Material Shape Straight at (an object) Direct (light) Indirect

More information

Cosmic Journey: A Solar System Adventure General Information

Cosmic Journey: A Solar System Adventure General Information Cosmic Journey: A Solar System Adventure General Information Imagine it a huge spiral galaxy containing hundreds of billions of stars, spiraling out from a galactic center. Nestled deep within one of the

More information

5- Minute Refresher: Daily Observable Patterns in the Sky

5- Minute Refresher: Daily Observable Patterns in the Sky 5- Minute Refresher: Daily Observable Patterns in the Sky Key Ideas Daily Observable Patterns in the Sky include the occurrence of day and night, the appearance of the moon, the location of shadows and

More information

Astronomy 1140 Quiz 1 Review

Astronomy 1140 Quiz 1 Review Astronomy 1140 Quiz 1 Review Prof. Pradhan September 15, 2015 What is Science? 1. Explain the difference between astronomy and astrology. (a) Astrology: nonscience using zodiac sign to predict the future/personality

More information

KINDERGARTEN 1 WEEK LESSON PLANS AND ACTIVITIES

KINDERGARTEN 1 WEEK LESSON PLANS AND ACTIVITIES KINDERGARTEN 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF KINDERGARTEN UNIVERSE WEEK 1. PRE: Discovering misconceptions of the Universe. LAB: Comparing size and distances in space. POST:

More information

The University of Texas at Austin. Gravity and Orbits

The University of Texas at Austin. Gravity and Orbits UTeach Outreach The University of Texas at Austin Gravity and Orbits Time of Lesson: 60-75 minutes Content Standards Addressed in Lesson: TEKS6.11B understand that gravity is the force that governs the

More information

Motions of the Earth. Stuff everyone should know

Motions of the Earth. Stuff everyone should know Motions of the Earth Stuff everyone should know Earth Motions E W N W Noon E Why is there day and night? OR Why do the Sun and stars appear to move through the sky? Because the Earth rotates around its

More information

FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF FIRST GRADE UNIVERSE WEEK 1. PRE: Describing the Universe. LAB: Comparing and contrasting bodies that reflect light. POST: Exploring

More information

The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC

The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC The Hidden Lives of Galaxies Jim Lochner, USRA & NASA/GSFC What is a Galaxy? Solar System Distance from Earth to Sun = 93,000,000 miles = 8 light-minutes Size of Solar System = 5.5 light-hours What is

More information

Cosmic Journey: Teacher Packet

Cosmic Journey: Teacher Packet Cosmic Journey: Teacher Packet Compiled by: Morehead State University Star Theatre with help from Bethany DeMoss Table of Contents Table of Contents 1 Corresponding Standards 2 Vocabulary 4 Sizing up the

More information

Gravitation and Newton s Synthesis

Gravitation and Newton s Synthesis Gravitation and Newton s Synthesis Vocabulary law of unviversal Kepler s laws of planetary perturbations casual laws gravitation motion casuality field graviational field inertial mass gravitational mass

More information

The following questions refer to Chapter 19, (PAGES 259 278 IN YOUR MANUAL, 7 th ed.)

The following questions refer to Chapter 19, (PAGES 259 278 IN YOUR MANUAL, 7 th ed.) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Locating the Planets (Chapter 19) and the Moon and Sun (Chapter 21) For this assignment you will require: a calculator, colored pencils, a metric

More information

The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10

The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10 Lecture 3: Constellations and the Distances to the Stars Astro 2010 Prof. Tom Megeath Questions for Today How do the stars move in the sky? What causes the phases of the moon? What causes the seasons?

More information

13 Space Photos To Remind You The Universe Is Incredible

13 Space Photos To Remind You The Universe Is Incredible 13 Space Photos To Remind You The Universe Is Incredible NASA / Via photojournal.jpl.nasa.gov New ultraviolet images from NASA s Galaxy Evolution Explorer shows a speeding star that is leaving an enormous

More information

Newton s Law of Gravity

Newton s Law of Gravity Gravitational Potential Energy On Earth, depends on: object s mass (m) strength of gravity (g) distance object could potentially fall Gravitational Potential Energy In space, an object or gas cloud has

More information

Chapter 1 Our Place in the Universe

Chapter 1 Our Place in the Universe Chapter 1 Our Place in the Universe Syllabus 4 tests: June 18, June 30, July 10, July 21 Comprehensive Final - check schedule Website link on blackboard 1.1 Our Modern View of the Universe Our goals for

More information

A SOLAR SYSTEM COLORING BOOK

A SOLAR SYSTEM COLORING BOOK A SOLAR SYSTEM COLORING BOOK Brought to you by: THE SUN Size: The Sun is wider than 100 Earths. 1 Temperature: 27,000,000 F in the center, 10,000 F at the surface. So that s REALLY hot anywhere on the

More information

Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics

Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics Chapter 7 Our Planetary System Agenda Pass back & discuss Test 2 Where we are (at) Ch. 7 Our Planetary System Finish Einstein s Big Idea Earth, as viewed by the Voyager spacecraft A. General Basics Intro

More information

Beginning of the Universe Classwork 6 th Grade PSI Science

Beginning of the Universe Classwork 6 th Grade PSI Science Beginning of the Universe Classwork Name: 6 th Grade PSI Science 1 4 2 5 6 3 7 Down: 1. Edwin discovered that galaxies are spreading apart. 2. This theory explains how the Universe was flattened. 3. All

More information

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around

More information

Chapter 3 The Science of Astronomy

Chapter 3 The Science of Astronomy Chapter 3 The Science of Astronomy Days of the week were named for Sun, Moon, and visible planets. What did ancient civilizations achieve in astronomy? Daily timekeeping Tracking the seasons and calendar

More information

XXX Background information

XXX Background information XXX Background information The solar system Our solar system is made up of the Sun, the planets, the dwarf planets, moons, asteroids and comets. The Sun is the star around which everything orbits. There

More information

Origins of the Cosmos Summer 2016. Pre-course assessment

Origins of the Cosmos Summer 2016. Pre-course assessment Origins of the Cosmos Summer 2016 Pre-course assessment In order to grant two graduate credits for the workshop, we do require you to spend some hours before arriving at Penn State. We encourage all of

More information

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping California Standards Grades 912 Boardworks 2009 Science Contents Standards Mapping Earth Sciences Earth s Place in the Universe 1. Astronomy and planetary exploration reveal the solar system s structure,

More information

A Solar System Coloring Book

A Solar System Coloring Book A Solar System Coloring Book Courtesy of the Windows to the Universe Project http://www.windows2universe.org The Sun Size: The Sun is wider than 100 Earths. Temperature: ~27,000,000 F in the center, ~10,000

More information

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars Name Date Period 30 GALAXIES AND THE UNIVERSE SECTION 30.1 The Milky Way Galaxy In your textbook, read about discovering the Milky Way. (20 points) For each item in Column A, write the letter of the matching

More information

Chapter 1: Our Place in the Universe. 2005 Pearson Education Inc., publishing as Addison-Wesley

Chapter 1: Our Place in the Universe. 2005 Pearson Education Inc., publishing as Addison-Wesley Chapter 1: Our Place in the Universe Topics Our modern view of the universe The scale of the universe Cinema graphic tour of the local universe Spaceship earth 1.1 A Modern View of the Universe Our goals

More information

Earth, Moon, and Sun Study Guide. (Test Date: )

Earth, Moon, and Sun Study Guide. (Test Date: ) Earth, Moon, and Sun Study Guide Name: (Test Date: ) Essential Question #1: How are the Earth, Moon, and Sun alike and how are they different? 1. List the Earth, Moon, and Sun, in order from LARGEST to

More information

Night Sky III Planetary Motion Lunar Phases

Night Sky III Planetary Motion Lunar Phases Night Sky III Planetary Motion Lunar Phases Astronomy 1 Elementary Astronomy LA Mission College Spring F2015 Quotes & Cartoon of the Day Everything has a natural explanation. The moon is not a god, but

More information

CHARACTERISTICS OF THE SOLAR SYSTEM

CHARACTERISTICS OF THE SOLAR SYSTEM reflect Our solar system is made up of thousands of objects, at the center of which is a star, the Sun. The objects beyond the Sun include 8 planets, at least 5 dwarf planets, and more than 170 moons.

More information

What's Gravity Got To Do With It?

What's Gravity Got To Do With It? Monday, December 16 What's Gravity Got To Do With It? By Erin Horner When you woke up this morning did you fly up to the ceiling? Of course not! When you woke up this morning you put both feet on the floor

More information

Chapter 7 Our Planetary System. What does the solar system look like? Thought Question How does the Earth-Sun distance compare with the Sun s radius

Chapter 7 Our Planetary System. What does the solar system look like? Thought Question How does the Earth-Sun distance compare with the Sun s radius Chapter 7 Our Planetary System 7.1 Studying the Solar System Our goals for learning:! What does the solar system look like?! What can we learn by comparing the planets to one another?! What are the major

More information

Newton s Law of Universal Gravitation

Newton s Law of Universal Gravitation Newton s Law of Universal Gravitation The greatest moments in science are when two phenomena that were considered completely separate suddenly are seen as just two different versions of the same thing.

More information

galaxy solar system supernova (noun) (noun) (noun)

galaxy solar system supernova (noun) (noun) (noun) WORDS IN CONTEXT DAY 1 (Page 1 of 4) galaxy A galaxy is a collection of stars, gas, and dust. We live in the Milky Way galaxy. One galaxy may contain billions of stars. solar system A solar system revolves

More information

Astronomy Club of Asheville October 2015 Sky Events

Astronomy Club of Asheville October 2015 Sky Events October 2015 Sky Events The Planets this Month - page 2 Planet Highlights - page 10 Moon Phases - page 13 Orionid Meteor Shower Peaks Oct. 22 nd - page 14 Observe the Zodiacal Light - page 15 2 Bright

More information

Phases of the Moon. --demonstrate the ability to apply an in-depth understanding of moon phases to real life situations

Phases of the Moon. --demonstrate the ability to apply an in-depth understanding of moon phases to real life situations 6 th Grade Standard I Rubric Phases of the Moon --demonstrate the ability to apply an in-depth understanding of moon phases to real life situations --demonstrate an understanding of different reasons why

More information

4 HOW OUR SOLAR SYSTEM FORMED 890L

4 HOW OUR SOLAR SYSTEM FORMED 890L 4 HOW OUR SOLAR SYSTEM FORMED 890L HOW OUR SOLAR SYSTEM FORMED A CLOSE LOOK AT THE PLANETS ORBITING OUR SUN By Cynthia Stokes Brown, adapted by Newsela Planets are born from the clouds of gas and dust

More information

Look at Our Galaxy. by Eve Beck. Space and Technology. Scott Foresman Reading Street 2.1.2

Look at Our Galaxy. by Eve Beck. Space and Technology. Scott Foresman Reading Street 2.1.2 Suggested levels for Guided Reading, DRA, Lexile, and Reading Recovery are provided in the Pearson Scott Foresman Leveling Guide. Space and Technology Look at Our Galaxy Genre Expository nonfiction Comprehension

More information

Solar Matters II Teacher Page

Solar Matters II Teacher Page Solar Matters II Teacher Page Sun Misconceptions Student Objective understands why some common phrases about the Sun are incorrect can describe how the Earth s rotation affects how we perceive the Sun

More information

First Discoveries. Asteroids

First Discoveries. Asteroids First Discoveries The Sloan Digital Sky Survey began operating on June 8, 1998. Since that time, SDSS scientists have been hard at work analyzing data and drawing conclusions. This page describes seven

More information

National Aeronautics and Space Administration. Teacher s. Science Background. GalaxY Q&As

National Aeronautics and Space Administration. Teacher s. Science Background. GalaxY Q&As National Aeronautics and Space Administration Science Background Teacher s GalaxY Q&As 1. What is a galaxy? A galaxy is an enormous collection of a few million to several trillion stars, gas, and dust

More information

Probing for Information

Probing for Information Name Class Date Inquiry Lab Probing for Information Using Scientific Methods Information about planets in our solar system has been collected by observation from Earth and from probes, or scientific instruments,

More information

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name: Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures this past week. Choose

More information

Answers for the Study Guide: Sun, Earth and Moon Relationship Test

Answers for the Study Guide: Sun, Earth and Moon Relationship Test Answers for the Study Guide: Sun, Earth and Moon Relationship Test 1) It takes one day for the Earth to make one complete on its axis. a. Rotation 2) It takes one year for the Earth to make one around

More information

2- The Top and bottom of the leaf is covered by thin layer of cells called epidermis that allow sunlight to easily pass into the middle of the leaf.

2- The Top and bottom of the leaf is covered by thin layer of cells called epidermis that allow sunlight to easily pass into the middle of the leaf. Final exam summary sheet Topic 5, lesson 2 How leaf is adapted to carry on photosynthesis? 1- Waxy layer called the cuticle cover the leaf slow the water loss. 2- The Top and bottom of the leaf is covered

More information

Misconceptions in Astronomy in WA High School students (in preparation)

Misconceptions in Astronomy in WA High School students (in preparation) Misconceptions in Astronomy in WA High School students (in preparation) Michael Todd Department of Imaging and Applied Physics, Curtin University of Technology The purpose of this study was to examine

More information

Moon Phases & Eclipses Notes

Moon Phases & Eclipses Notes Moon Phases & Eclipses Notes Melka 2014-2015 The Moon The Moon is Earth s one natural satellite. Due to its smaller size and slower speed of rotation, the Moon s gravity is 1/6 of the Earth s gravitational

More information

4 HOW OUR SOLAR SYSTEM FORMED 1020L

4 HOW OUR SOLAR SYSTEM FORMED 1020L 4 HOW OUR SOLAR SYSTEM FORMED 1020L HOW OUR SOLAR SYSTEM FORMED A CLOSE LOOK AT THE PLANETS ORBITING OUR SUN By Cynthia Stokes Brown, adapted by Newsela Planets are born from the clouds of gas and dust

More information

Size and Scale of the Universe

Size and Scale of the Universe Size and Scale of the Universe (Teacher Guide) Overview: The Universe is very, very big. But just how big it is and how we fit into the grand scheme can be quite difficult for a person to grasp. The distances

More information

DESCRIPTION ACADEMIC STANDARDS INSTRUCTIONAL GOALS VOCABULARY BEFORE SHOWING. Subject Area: Science

DESCRIPTION ACADEMIC STANDARDS INSTRUCTIONAL GOALS VOCABULARY BEFORE SHOWING. Subject Area: Science DESCRIPTION Host Tom Selleck conducts a stellar tour of Jupiter, Saturn, Uranus, Neptune, and Pluto--the outer planets of Earth's solar system. Information from the Voyager space probes plus computer models

More information

Lecture 10 Formation of the Solar System January 6c, 2014

Lecture 10 Formation of the Solar System January 6c, 2014 1 Lecture 10 Formation of the Solar System January 6c, 2014 2 Orbits of the Planets 3 Clues for the Formation of the SS All planets orbit in roughly the same plane about the Sun. All planets orbit in the

More information

Science Lesson Plan: Our Solar System: I Wonder? (I 1- D- R)

Science Lesson Plan: Our Solar System: I Wonder? (I 1- D- R) 1 P age Science Lesson Plan: Our Solar System: I Wonder? (I 1- D- R) Learning Outcomes (corresponding to science standards for grades K-2) 1. Generate curiosity to study and explore our surroundings. 2.

More information

Douglas Adams The Hitchhikers Guide to the Galaxy

Douglas Adams The Hitchhikers Guide to the Galaxy There is a theory which states that if ever anybody discovers exactly what the Universe is for and why it is here, it will instantly disappear and be replaced by something even more bizarre and inexplicable.

More information

PTYS/ASTR 206 Section 2 Spring 2007 Homework #2 (Page 1/5) NAME: KEY

PTYS/ASTR 206 Section 2 Spring 2007 Homework #2 (Page 1/5) NAME: KEY PTYS/ASTR 206 Section 2 Spring 2007 Homework #2 (Page 1/5) NAME: KEY Due Date: start of class 2/6/2007 5 pts extra credit if turned in before 9:00AM (early!) (To get the extra credit, the assignment must

More information

1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram?

1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram? 1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram? 5. During how many days of a calendar year is the Sun directly overhead

More information

Third Grade, Astronomy 2004 Colorado Unit Writing Project 2

Third Grade, Astronomy 2004 Colorado Unit Writing Project 2 Astronomy Grade Level: Third Grade Written by: Kristina Villari, Belle Creek Charter School, Henderson, CO Length of Unit: Five lessons (approximately a week and a half (eight days); one day = 45 minutes)

More information

CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS

CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS INTRODUCTION CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS This is a scientific presentation to provide you with knowledge you can use to understand the sky above in relation to the earth. Before

More information

The orbit of Halley s Comet

The orbit of Halley s Comet The orbit of Halley s Comet Given this information Orbital period = 76 yrs Aphelion distance = 35.3 AU Observed comet in 1682 and predicted return 1758 Questions: How close does HC approach the Sun? What

More information

Name: Date: Goals: to discuss the composition, components, and types of comets; to build a comet and test its strength and reaction to light

Name: Date: Goals: to discuss the composition, components, and types of comets; to build a comet and test its strength and reaction to light Name: Date: 17 Building a Comet 17.1 Introduction Comets represent some of the earliest material left over from the formation of the solar system, and are therefore of great interest to planetary astronomers.

More information

A long time ago, people looked

A long time ago, people looked Supercool Space Tools! By Linda Hermans-Killam A long time ago, people looked into the dark night sky and wondered about the stars, meteors, comets and planets they saw. The only tools they had to study

More information