Pre-Lab #5: Inheritance

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Pre-Lab #5: Inheritance"

Transcription

1 Pre-Lab #5: Inheritance Name 1. Define the following terms: Monohybrid Cross (see Part I) Allele Frequency (see Part II) 2. Describe how you will mate in Part 1 of this lab. 3. What is the allele frequency of a (little a) if your population has 40 AA, 50 Aa, and 10 aa? (Show your work for full credit) 1

2 Lab #5: Inheritance This lab is demonstrates some of the principles of genetics - the study of how heritable traits are passed from generation to generation. Genes are small segments of DNA that determine physical characteristics called traits. Alleles are variations of a single gene that are present in the gene pool of a population. An individual may carry two different alleles of the same gene or identical alleles of the same gene. This exercise demonstrates how different alleles of the same gene segregate and re-assort (separate and come together) in a population. Part I: Human Genetic Traits Some human traits exhibit the simple dominant and recessive behavior of a monohybrid cross similar to Mendel's peas. However, the expression of most other human traits, including skin color and height, is much more complex and the genetics cannot be easily studied. We will look at a few easily observed human genetic traits to illustrate the simple dominant-recessive relationship between alleles in humans. Phenotype frequencies for a population will not necessarily show the same dominant/recessive ratios that you see for the offspring of a specific mating pair. When we calculate gene frequency, it is unlikely that we will have a 3:1 ratio of dominant traits to recessive traits. In our case, it is probably due more to small sample size than anything else. If you had a large immediate family to survey, these should segregate in a more classically Mendelian fashion. A. Mid-digital Hair The presence of hair on the middle joint of the finger is a dominant trait. Hair may not be present on all of your fingers, but if you have hair on even one finger, you are dominant. B. Tongue Rolling The ability to roll the tongue upward from the sides is a dominant trait. For some reason, people who exhibit this trait seem to think it is a desirable thing to do. As far as anyone knows, tongue rolling has no obvious anatomical or physiological advantage or disadvantage. C. Widow's Peak A distinctive downward point of the frontal hairline is a dominant trait known as a widow's peak. If you have a straight hairline, you are recessive for this trait. D. Free Earlobes Free earlobes are dominant over attached earlobes. Read the introduction to Chapter 9 for an explanation of how this trait is produced during fetal development. E. Facial Dimples Dimples, or indentations, at the corner of the mouth are a dominant trait. F. PTC Tasting The ability to taste the chemical phenylthiocarbamide, or PTC, is a dominant trait. Place a piece of PTC paper on the back of your tongue. If you can detect this chemical, it will have a bitter taste. If the paper does not taste nasty to you, then you are recessive for this trait. 1. Mark your appropriate phenotype for each trait in Table 1. on the data sheet at the end of this lab. 2. Record the data for the class and calculate the frequency (percentage) of each phenotype in the class population. 2

3 Part II: Monohybrid Cross A monohybrid cross is the genetic transmission of a single trait. For this exercise, each person will receive two colored beads that represent the two different alleles of a gene. Purple will represent the allele for the dominant characteristic (designated in writing as A ), while green will represent the allele for the recessive characteristic (written as a ). Since gametes contain only one copy of each gene, a single bead also represents a gamete. The genotype of an organism is the combination of specific alleles. The phenotype of an organism is the physical traits resulting from the genotype.you will mate (i.e. exchange gametes) with your lab partner and determine the genotypes and phenotypes of the offspring that result from each mating, or cross. Work in groups of two A. F1 - Homozygous Parents 1. One lab partner holds two purple beads (the homozygous dominant genotype) while the other lab partner holds two orange beads (the homozygous recessive genotype). 2. Mate with your lab partner by shaking your beads in your cupped hands and selecting one bead WITHOUT LOOKING. This ensures that one of your alleles, or gametes, is chosen randomly. Pair it with your partner's randomly chosen allele; the two beads represent the two alleles of your offspring, i.e. the offspring s genotype. Record the genotype of the offspring in Table Return to your original homozygous genotype and mate with your lab partner 9 more times (ie. repeat steps 1-3) to produce a total of 10 offspring. Record your results. 4. Report your results to the class and determine the class total for each genotype. B. F2 - Heterozygous Parents This mating involves self-fertilization of the offspring produced by the first cross. 1. Each person will start with the heterozygous genotype of the F1 offspring. 2. Mate with your lab partner ten times to produce ten offspring. Record the genotypes of your offspring in Table 2. (Remember to return to your original heterzygous genotype after each mating). 3. Report your results to the class and determine the class total for each genotype. C. Create Your Own Monohybrid Cross 1. Make up a single gene trait and assign letter symbols and bead colors to the different alleles. 2. Decide what parental genotypes you wish to have. Draw a Punnet square on your notes/observation page, and predict what the expected genotype and phenotype ratios will be in the F1 generation. 3. Mate with your lab partner ten times to produce ten offspring. Record the genotypes of your offspring in Table 3. (Remember to return to your original genotype after each mating). 3

4 D. Pedigree Analysis: After carefully studying generation after generation of cats, a monk living in a High Sierra retreat established that the trait of cuteness R is dominant while the trait for being ugly r is recessive. To demonstrate this he mated two cats. First, there was Fred a cute male cat whose father was quite handsome, but Fred s brother was really ugly. Before Fred met Susie, he had an affair that resulted in one ugly kitten. Second, there was Susie a cute female cat whose father was nice but really ugly and whose mother was purebred for cuteness. Use the following pedigree chart to help understand Fred s pedigree. If the monk is correct, what would be the answer to the following? 1. The genotype of Fred was 1. The gametes from Fred could be or. 1. The gametes from Susie could be or. 1. The chances of them having a heterozygous kitten. 1. The chances of them having a cute kitten. 1. The chances of them having a homozygous kitten. 1. The chances of the kitten being homozygous recessive. 1. The genotype of a kitten whose phenotype was ugly. 1. The phenotype of the homozygous dominant kittens is. 1. The genotype of the homozygous recessive kittens is. 1. The genotype of Fred s father is. 12. The genotype of Fred s brother is. 13. The genotype of Susie s mother is. 14. The genotype of Fred s mother. 15. The genotypes of Susie s grandparents on her father s side are. 15. The phenotypes of Susie s grandparents on her mother s side are. 15. The parent from which Susie s mother inherited cuteness is. 4

5 Part III: Allele Frequency Allele frequency is the relative amount (expressed as a percent) of a particular allele in a population. Evolution can be defined as a change in the frequency of alleles in a population over time. The allele frequency for a given trait changes over time in response to changes in the environment. This exercise illustrates how natural selection influences genotype. A. How to Calculate Allele Frequency Think of a population as a pool of genes instead of individuals, as though each of the individuals pulled out his or her alleles and threw them in a big pot. Suppose we have a population of 100 individuals, 10 of which are "AA", 50 of which are "Aa", and 40 of which are "aa". This population contains 200 total alleles, because 100 individuals x 2 alleles each = 200 alleles total. Here is how to calculate the allele frequency of the A allele first count up all the A s in the population, as follows 10 individuals are AA, they contribute 20 A alleles to the population (they have no a alleles) 50 individuals are Aa, they contribute 50 A alleles to the population (they also have 50 a alleles) 40 individuals are aa, so they contribute 0 A alleles to the population (they have 80 a alleles) The total number of A alleles is: = 70. Now divide the number of A alleles by the total number of alleles: Allele frequency of "A" = 70 A alleles = 0.35, or 35% 200 total alleles Similarly, the allele frequency for "a" in this population is 0.65, or 65%. B. What Happens with Selection Against the aa Genotype We have seen how two alleles of a gene can be passed on if both alleles have an equal chance of surviving. Now we will demonstrate what happens to allele frequency when there is a selective disadvantage to a particular genotype. In particular, genotype aa causes a fatal disease that results in death during childhood. 1. Everyone will begin with a heterozygous genotype. (Everyone is healthy, but carries a recessive gene for the disease.) Record your initial genotype on the first line of Table Instead of mating with your lab partner, find another person in the class to mate with AT RANDOM (without respect to charm, appearance, or even gender). Mate twice. The two offspring you produce will replace you and your partner in the next generation. If one offspring has the genotype "aa", it dies. This means that one of you cannot reproduce again. If both offspring are aa, then neither of you can reproduce again. Stop at this point until everyone in the class has finished mating. 3. You will now assume the identity of one of your offspring and take on its genotype. Remember, if you are aa, you cannot mate again. If you are "AA" or "Aa", replace your beads with the new alleles of the appropriate colors. Record your new genotype in the 1 st generation row of Table Find a new partner to mate with and produce two offspring. Again, if you produce an "aa" offspring, one of you cannot mate in the next generation. Record your new genotype in the 2 nd generation row of Table We will repeat the matings until a total of five generations have been completed. 6. Report your results to the class and record the class results in Table 5. Calculate the allele frequencies for each generation based on the class results. 5

6 Data Sheet Lab #5: Inheritance Name Table 1: Human Genetic Traits Trait Your Phenotype Class Data Frequency Mid-digital Hair No Mid-digital Hair Tongue Rolling No Tongue Rolling Widow's Peak Straight Hairline Free Earlobes Attached Earlobes Dimples No Dimples PTC Taster Non-Taster 6

7 Data Sheet Lab #5: Inheritance Name Table 2: F1 and F2 s Make a tally mark in the appropriate box to keep count of each genotype produced by your matings. No. of your F1 No. of your F2 Total No. of class F1 Homozygous Dominant (AA) Number of Offspring Heterozygous (Aa) Homozygous Recessive (aa) Total No. of class F2 Table 3: Your Own Monohybrid Cross Predictions Genotype Ratios Phenotype Ratios No. of your F1 Homozygous Dominant ( ) Number of Offspring Heterozygous ( ) Homozygous Recessive ( ) 7

8 Data Sheet Lab #5: Inheritance Name Table 4: Your Individual Genotypes Original 1st 2nd 3rd 4th 5th 6th Your Genotype Table 5: Class Genotypes Original Genotype Genotype of 1st Genotype of 2nd Genotype of 3rd Genotype of 4th Genotype of 5th Genotype of 6th No. of Individual Gene Frequency No. of people with genotypes: Alleles AA Aa aa A a A a 8

9 Lab Report Questions: (Type your answers on separate pages) Part II: Monohybrid Cross 1. Briefly describe all of the genotypes and phenotypes that were produced in both the F1 and F2 generations using the results from table 2 (be sure to include the allele letter combinations and the correct name for each camobination). 2. Explain why the recessive phenotype does not show up in the F1 generation, but does show up in the F2 generation. 3. Describe how your small group results for the F2 generation differed from the combined results of the class (be sure to include the quantitative data from table 2 in your answer) and explain why our results did not match the expected 1:2:1 genotype ratio. 4. Describe the genetic trait you created in Activity C of Part II (be sure to include the letter symbols for each allele and state which allele is dominant and recessive). What did this activity teach you about genetics and genetic inheritance? Part III: Allele Frequency 5. Using the data from table 5, describe how the number of individuals with each genotype changed in each successive generation. Was there a trend? What do the results tell you about natural selection in the case of our activity? 6. Looking at the pool of alleles in the population, describe how the frequency of each allele changed in each subsequent generation. Was there a trend? What do the results tell you about evolution in the case of our activity? 7. Why doesn't natural selection against aa individuals (those that die due to the disease during childhood) lead to the complete loss of the "a" allele from the population? Does keeping the recessive allele in the population have any potential benefit? 9

Mendelian and Non-Mendelian Heredity Grade Ten

Mendelian and Non-Mendelian Heredity Grade Ten Ohio Standards Connection: Life Sciences Benchmark C Explain the genetic mechanisms and molecular basis of inheritance. Indicator 6 Explain that a unit of hereditary information is called a gene, and genes

More information

GENETIC TRAITS IN HARRY POTTER DOMAIN 3-GENETICS

GENETIC TRAITS IN HARRY POTTER DOMAIN 3-GENETICS Learning Outcomes: Students will be able to: Define the basic genetic terms and concepts DNA, chromosome, gene, allele, homozygous, heterozygous, recessive and dominant genes, genotype, phenotype, and

More information

Chapter 9 Patterns of Inheritance

Chapter 9 Patterns of Inheritance Bio 100 Patterns of Inheritance 1 Chapter 9 Patterns of Inheritance Modern genetics began with Gregor Mendel s quantitative experiments with pea plants History of Heredity Blending theory of heredity -

More information

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers.

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers. Heredity 1. Sarah is doing an experiment on pea plants. She is studying the color of the pea plants. Sarah has noticed that many pea plants have purple flowers and many have white flowers. Sarah crosses

More information

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes.

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. 1 Biology Chapter 10 Study Guide Trait A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. Genes Genes are located on chromosomes

More information

Genetics Copyright, 2009, by Dr. Scott Poethig, Dr. Ingrid Waldron, and Jennifer Doherty Department of Biology, University of Pennsylvania 1

Genetics Copyright, 2009, by Dr. Scott Poethig, Dr. Ingrid Waldron, and Jennifer Doherty Department of Biology, University of Pennsylvania 1 Genetics Copyright, 2009, by Dr. Scott Poethig, Dr. Ingrid Waldron, and Jennifer Doherty Department of Biology, University of Pennsylvania 1 We all know that children tend to resemble their parents in

More information

INTRODUCTION TO GENETICS USING TOBACCO (Nicotiana tabacum) SEEDLINGS

INTRODUCTION TO GENETICS USING TOBACCO (Nicotiana tabacum) SEEDLINGS INTRODUCTION TO GENETICS USING TOBACCO (Nicotiana tabacum) SEEDLINGS By Dr. Susan Petro Based on a lab by Dr. Elaine Winshell Nicotiana tabacum Objectives To apply Mendel s Law of Segregation To use Punnett

More information

Mendelian Genetics. I. Background

Mendelian Genetics. I. Background Mendelian Genetics Objectives 1. To understand the Principles of Segregation and Independent Assortment. 2. To understand how Mendel s principles can explain transmission of characters from one generation

More information

Chapter 16 Evolution of Populations. 16.1 Genes and Variation Biology Mr. Hines

Chapter 16 Evolution of Populations. 16.1 Genes and Variation Biology Mr. Hines Chapter 16 Evolution of Populations 16.1 Genes and Variation Biology Mr. Hines Figure 1-21 Levels of Organization Section 1-3 Levels of organization Biosphere Ecosystem The part of Earth that contains

More information

LAB : PAPER PET GENETICS. male (hat) female (hair bow) Skin color green or orange Eyes round or square Nose triangle or oval Teeth pointed or square

LAB : PAPER PET GENETICS. male (hat) female (hair bow) Skin color green or orange Eyes round or square Nose triangle or oval Teeth pointed or square Period Date LAB : PAPER PET GENETICS 1. Given the list of characteristics below, you will create an imaginary pet and then breed it to review the concepts of genetics. Your pet will have the following

More information

Genetics 1. Defective enzyme that does not make melanin. Very pale skin and hair color (albino)

Genetics 1. Defective enzyme that does not make melanin. Very pale skin and hair color (albino) Genetics 1 We all know that children tend to resemble their parents. Parents and their children tend to have similar appearance because children inherit genes from their parents and these genes influence

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ Meiosis Quiz 1. (1 point) A kidney cell is an example of which type of cell? a. sex cell b. germ cell c. somatic cell d. haploid cell 2. (1 point) How many chromosomes are in a human

More information

Complex Inheritance. Mendel observed monogenic traits and no linked genes It s not usually that simple.

Complex Inheritance. Mendel observed monogenic traits and no linked genes It s not usually that simple. Complex Inheritance Mendel observed monogenic traits and no linked genes It s not usually that simple. Other Types of Inheritance Incomplete Dominance The phenotype of the heterozygote is intermediate

More information

11.1 The Work of Gregor Mendel

11.1 The Work of Gregor Mendel 11.1 The Work of Gregor Mendel Lesson Objectives Describe Mendel s studies and conclusions about inheritance. Describe what happens during segregation. Lesson Summary The Experiments of Gregor Mendel The

More information

POPULATION GENETICS BIOL 101- SPRING 2013

POPULATION GENETICS BIOL 101- SPRING 2013 POPULATION GENETICS BIOL 101- SPRING 2013 Text Reading: Chapter 11: The Forces of Evolutionary Change Pay particular attention to section 11.2, Natural Selection Molds Evolution, section 11.3, Evolution

More information

GENETIC CROSSES. Monohybrid Crosses

GENETIC CROSSES. Monohybrid Crosses GENETIC CROSSES Monohybrid Crosses Objectives Explain the difference between genotype and phenotype Explain the difference between homozygous and heterozygous Explain how probability is used to predict

More information

CCR Biology - Chapter 7 Practice Test - Summer 2012

CCR Biology - Chapter 7 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 7 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A person who has a disorder caused

More information

7A The Origin of Modern Genetics

7A The Origin of Modern Genetics Life Science Chapter 7 Genetics of Organisms 7A The Origin of Modern Genetics Genetics the study of inheritance (the study of how traits are inherited through the interactions of alleles) Heredity: the

More information

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction:

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction: Bio EOC Topics for Cell Reproduction: Asexual vs. sexual reproduction Mitosis steps, diagrams, purpose o Interphase, Prophase, Metaphase, Anaphase, Telophase, Cytokinesis Meiosis steps, diagrams, purpose

More information

Heredity - Patterns of Inheritance

Heredity - Patterns of Inheritance Heredity - Patterns of Inheritance Genes and Alleles A. Genes 1. A sequence of nucleotides that codes for a special functional product a. Transfer RNA b. Enzyme c. Structural protein d. Pigments 2. Genes

More information

Baby Lab. Class Copy. Introduction

Baby Lab. Class Copy. Introduction Class Copy Baby Lab Introduction The traits on the following pages are believed to be inherited in the explained manner. Most of the traits, however, in this activity were created to illustrate how human

More information

DNA Determines Your Appearance!

DNA Determines Your Appearance! DNA Determines Your Appearance! Summary DNA contains all the information needed to build your body. Did you know that your DNA determines things such as your eye color, hair color, height, and even the

More information

Hardy-Weinberg Equilibrium Problems

Hardy-Weinberg Equilibrium Problems Hardy-Weinberg Equilibrium Problems 1. The frequency of two alleles in a gene pool is 0.19 (A) and 0.81(a). Assume that the population is in Hardy-Weinberg equilibrium. (a) Calculate the percentage of

More information

Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele.

Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele. Genetics Problems Name ANSWER KEY Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele. 1. What would be the genotype

More information

Cell Division. Use Target Reading Skills. This section explains how cells grow and divide.

Cell Division. Use Target Reading Skills. This section explains how cells grow and divide. Cell Processes and Energy Name Date Class Cell Processes and Energy Guided Reading and Study Cell Division This section explains how cells grow and divide. Use Target Reading Skills As you read, make a

More information

Variations on a Human Face Lab

Variations on a Human Face Lab Variations on a Human Face Lab Introduction: Have you ever wondered why everybody has a different appearance even if they are closely related? It is because of the large variety or characteristics that

More information

What about two traits? Dihybrid Crosses

What about two traits? Dihybrid Crosses What about two traits? Dihybrid Crosses! Consider two traits for pea: Color: Y (yellow) and y (green) Shape: R (round) and r (wrinkled)! Each dihybrid plant produces 4 gamete types of equal frequency.

More information

HEREDITY (B) In domestic cats, the gene for Tabby stripes (T) is dominant over the gene for no stripes (t)

HEREDITY (B) In domestic cats, the gene for Tabby stripes (T) is dominant over the gene for no stripes (t) GENETIC CROSSES In minks, a single gene controls coat color. The allele for a brown (B) coat is dominant to the allele for silver-blue (b) coats. 1. A homozygous brown mink was crossed with a silverblue

More information

Chapter 21 Active Reading Guide The Evolution of Populations

Chapter 21 Active Reading Guide The Evolution of Populations Name: Roksana Korbi AP Biology Chapter 21 Active Reading Guide The Evolution of Populations This chapter begins with the idea that we focused on as we closed Chapter 19: Individuals do not evolve! Populations

More information

MANDELIAN GENETICS. Crosses that deviate from Mandelian inherintance

MANDELIAN GENETICS. Crosses that deviate from Mandelian inherintance MANDELIAN GENETICS Crosses that deviate from Mandelian inherintance Explain codominant alleles. TO THE STUDENTS Calculate the genotypic and phenotypic ratio (1:2:1). Explain incomplete dominant alleles.

More information

PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES

PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES 1. Margaret has just learned that she has adult polycystic kidney disease. Her mother also has the disease, as did her maternal grandfather and his younger

More information

C1. A gene pool is all of the genes present in a particular population. Each type of gene within a gene pool may exist in one or more alleles.

C1. A gene pool is all of the genes present in a particular population. Each type of gene within a gene pool may exist in one or more alleles. C1. A gene pool is all of the genes present in a particular population. Each type of gene within a gene pool may exist in one or more alleles. The prevalence of an allele within the gene pool is described

More information

c. Law of Independent Assortment: Alleles separate and do not have an effect on another allele.

c. Law of Independent Assortment: Alleles separate and do not have an effect on another allele. Level Genetics Review KEY Describe the 3 laws that Gregor Mendel established after working with pea plants. a. Law of Dominance: states that the effect of a recessive allele is not observed when a dominant

More information

Teacher Guide: Traits Bingo ACTIVITY OVERVIEW. http://gslc.genetics.utah.edu

Teacher Guide: Traits Bingo ACTIVITY OVERVIEW. http://gslc.genetics.utah.edu ACTIVITY OVERVIEW Abstract: In this bingo game students cross off or color bingo squares in response to questions about their traits. This activity is designed to be used as a review following An Inventory

More information

Punnett Square: Monohybird Crosses

Punnett Square: Monohybird Crosses Punnett Squares A Punnett square is a mathematical device used by geneticists to show combinations of gametes and to predict offspring ratios. There are a few fundamental concepts of Punnett squares that

More information

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics Ms. Foglia Date AP: LAB 8: THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

More information

Mendelian Inheritance & Probability

Mendelian Inheritance & Probability Mendelian Inheritance & Probability (CHAPTER 2- Brooker Text) January 31 & Feb 2, 2006 BIO 184 Dr. Tom Peavy Problem Solving TtYy x ttyy What is the expected phenotypic ratio among offspring? Tt RR x Tt

More information

2 GENETIC DATA ANALYSIS

2 GENETIC DATA ANALYSIS 2.1 Strategies for learning genetics 2 GENETIC DATA ANALYSIS We will begin this lecture by discussing some strategies for learning genetics. Genetics is different from most other biology courses you have

More information

Genetics for the Novice

Genetics for the Novice Genetics for the Novice by Carol Barbee Wait! Don't leave yet. I know that for many breeders any article with the word genetics in the title causes an immediate negative reaction. Either they quickly turn

More information

Summary. 16 1 Genes and Variation. 16 2 Evolution as Genetic Change. Name Class Date

Summary. 16 1 Genes and Variation. 16 2 Evolution as Genetic Change. Name Class Date Chapter 16 Summary Evolution of Populations 16 1 Genes and Variation Darwin s original ideas can now be understood in genetic terms. Beginning with variation, we now know that traits are controlled by

More information

LAB 11 Natural Selection (version 2)

LAB 11 Natural Selection (version 2) LAB 11 Natural Selection (version 2) Overview In this laboratory you will demonstrate the process of evolution by natural selection by carrying out a predator/prey simulation. Through this exercise you

More information

edtpa: Task 1 Secondary Science

edtpa: Task 1 Secondary Science PART A - About the School Where You Are Teaching a. In what type of school do you teach? Middle School: High School: High School 9-12 Other (please describe): Urban: Suburban: Suburban school setting Rural:

More information

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6 Name: Multiple-choice section Choose the answer which best completes each of the following statements or answers the following questions and so make your tutor happy! 1. Which of the following conclusions

More information

Allele Frequencies: Changing. Chapter 15

Allele Frequencies: Changing. Chapter 15 Allele Frequencies: Changing Chapter 15 Changing Allele Frequencies 1. Mutation introduces new alleles into population 2. Natural Selection specific alleles are more likely to be passed down because they

More information

Incomplete Dominance and Codominance

Incomplete Dominance and Codominance Name: Date: Period: Incomplete Dominance and Codominance 1. In Japanese four o'clock plants red (R) color is incompletely dominant over white (r) flowers, and the heterozygous condition (Rr) results in

More information

Biology 160 Lab Module 10 Meiosis Activity & Mendelian Genetics

Biology 160 Lab Module 10 Meiosis Activity & Mendelian Genetics Name Biology 160 Lab Module 10 Meiosis Activity & Mendelian Genetics Introduction During your lifetime you have grown from a single celled zygote into an organism made up of trillions of cells. The vast

More information

Chapter 23. (Mendelian) Population. Gene Pool. Genetic Variation. Population Genetics

Chapter 23. (Mendelian) Population. Gene Pool. Genetic Variation. Population Genetics 30 25 Chapter 23 Population Genetics Frequency 20 15 10 5 0 A B C D F Grade = 57 Avg = 79.5 % (Mendelian) Population A group of interbreeding, sexually reproducing organisms that share a common set of

More information

Genetics with a Smile

Genetics with a Smile Teacher Notes Materials Needed: Two coins (penny, poker chip, etc.) per student - One marked F for female and one marked M for male Copies of student worksheets - Genetics with a Smile, Smiley Face Traits,

More information

Building a Pedigree. Observe the symbols and the example of the pedigree below: Identical twins. Male, Died in infancy. Female, Died in infancy

Building a Pedigree. Observe the symbols and the example of the pedigree below: Identical twins. Male, Died in infancy. Female, Died in infancy Building a Pedigree A pedigree is a diagram that shows how organisms are related and also traces the occurrence of a particular trait or characteristic for several generations. The genetic makeup of individuals

More information

How do populations evolve?... Are there any trends?...

How do populations evolve?... Are there any trends?... How do populations evolve?... Are there any trends?... Gene pool: all of the genes of a population Allele frequency: the percentage of any particular allele in a gene pool A population in which an allele

More information

Fancy Fish: Gene Frequency Grade Ten

Fancy Fish: Gene Frequency Grade Ten Ohio Standards Connection: Life Sciences Benchmark H Describe a foundation of biological evolution as the change in gene frequency of a population over time. Explain the historical and current scientific

More information

Ex) A tall green pea plant (TTGG) is crossed with a short white pea plant (ttgg). TT or Tt = tall tt = short GG or Gg = green gg = white

Ex) A tall green pea plant (TTGG) is crossed with a short white pea plant (ttgg). TT or Tt = tall tt = short GG or Gg = green gg = white Worksheet: Dihybrid Crosses U N I T 3 : G E N E T I C S STEP 1: Determine what kind of problem you are trying to solve. STEP 2: Determine letters you will use to specify traits. STEP 3: Determine parent

More information

Chapter 14: Mendel and the Gene Idea

Chapter 14: Mendel and the Gene Idea Name Period Chapter 14: Mendel and the Gene Idea If you have completed a first-year high school biology course, some of this chapter will serve as a review for the basic concepts of Mendelian genetics.

More information

Mendel s work. Biology CLIL lesson. Istituto tecnico industriale A. MALIGNANI Udine. Docente:Prof. Annamaria Boasso

Mendel s work. Biology CLIL lesson. Istituto tecnico industriale A. MALIGNANI Udine. Docente:Prof. Annamaria Boasso Istituto tecnico industriale A. MALIGNANI Udine Docente:Prof. Annamaria Boasso Modulo di genetica realizzato per l applicazione in classi seconde. Durata: 4 ore Biology CLIL lesson Mendel s work Objectives

More information

NATURAL SELECTION AND GENE FREQUENCY

NATURAL SELECTION AND GENE FREQUENCY NATURAL SELECTION AND GENE FREQUENCY BY WOLFGANG RUBI CATALAN, MARNELLE MAC DULA, LIANNE UMALI, ERICA WILEY, & CHRIS YOUNG Student ID # s: WHAT IS THAT? Natural selection is a key mechanism of evolution.

More information

CHROMOSOMES AND INHERITANCE

CHROMOSOMES AND INHERITANCE SECTION 12-1 REVIEW CHROMOSOMES AND INHERITANCE VOCABULARY REVIEW Distinguish between the terms in each of the following pairs of terms. 1. sex chromosome, autosome 2. germ-cell mutation, somatic-cell

More information

The Developing Person Through the Life Span 8e by Kathleen Stassen Berger

The Developing Person Through the Life Span 8e by Kathleen Stassen Berger The Developing Person Through the Life Span 8e by Kathleen Stassen Berger Chapter 3 Heredity and Environment PowerPoint Slides developed by Martin Wolfger and Michael James Ivy Tech Community College-Bloomington

More information

LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics Period Date LAB : THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

More information

The Making of the Fittest: Natural Selection in Humans

The Making of the Fittest: Natural Selection in Humans OVERVIEW MENDELIN GENETIC, PROBBILITY, PEDIGREE, ND CHI-QURE TTITIC This classroom lesson uses the information presented in the short film The Making of the Fittest: Natural election in Humans (http://www.hhmi.org/biointeractive/making-fittest-natural-selection-humans)

More information

Lesson Plan: GENOTYPE AND PHENOTYPE

Lesson Plan: GENOTYPE AND PHENOTYPE Lesson Plan: GENOTYPE AND PHENOTYPE Pacing Two 45- minute class periods RATIONALE: According to the National Science Education Standards, (NSES, pg. 155-156), In the middle-school years, students should

More information

Mendelian Genetics in Drosophila

Mendelian Genetics in Drosophila Mendelian Genetics in Drosophila Lab objectives: 1) To familiarize you with an important research model organism,! Drosophila melanogaster. 2) Introduce you to normal "wild type" and various mutant phenotypes.

More information

Human Blood Types: Codominance and Multiple Alleles. Codominance: both alleles in the heterozygous genotype express themselves fully

Human Blood Types: Codominance and Multiple Alleles. Codominance: both alleles in the heterozygous genotype express themselves fully Human Blood Types: Codominance and Multiple Alleles Codominance: both alleles in the heterozygous genotype express themselves fully Multiple alleles: three or more alleles for a trait are found in the

More information

Genetic Drift Simulation. Experimental Question: How do random events cause evolution (a change in the gene pool)?

Genetic Drift Simulation. Experimental Question: How do random events cause evolution (a change in the gene pool)? Genetic Drift Simulation Experimental Question: How do random events cause evolution (a change in the gene pool)? Hypothesis: Introduction: What is Genetic Drift? Let's examine a simple model of a population

More information

Modules 5: Behavior Genetics and Evolutionary Psychology

Modules 5: Behavior Genetics and Evolutionary Psychology Modules 5: Behavior Genetics and Evolutionary Psychology Source of similarities and differences Similarities with other people such as developing a languag, showing similar emotions, following similar

More information

Determining Acceptance of the 9:3:3:1 Ratio in Fruit Fly Crosses Using the Chi Squared Test

Determining Acceptance of the 9:3:3:1 Ratio in Fruit Fly Crosses Using the Chi Squared Test Determining Acceptance of the 9:3:3:1 Ratio in Fruit Fly Crosses Using the Chi Squared Test Abstract In this experiment we set out to determine whether or not two different fruit fly crosses fit the 9:3:3:1

More information

Phenotypes and Genotypes of Single Crosses

Phenotypes and Genotypes of Single Crosses GENETICS PROBLEM PACKET- Gifted NAME PER Phenotypes and Genotypes of Single Crosses Use these characteristics about plants to answer the following questions. Round seed is dominant over wrinkled seed Yellow

More information

The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes.

The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes. 1. Why is the white-eye phenotype always observed in males carrying the white-eye allele? a. Because the trait is dominant b. Because the trait is recessive c. Because the allele is located on the X chromosome

More information

Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15

Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15 Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15 Species - group of individuals that are capable of interbreeding and producing fertile offspring; genetically similar 13.7, 14.2 Population

More information

Evolution (18%) 11 Items Sample Test Prep Questions

Evolution (18%) 11 Items Sample Test Prep Questions Evolution (18%) 11 Items Sample Test Prep Questions Grade 7 (Evolution) 3.a Students know both genetic variation and environmental factors are causes of evolution and diversity of organisms. (pg. 109 Science

More information

Basics of Marker Assisted Selection

Basics of Marker Assisted Selection asics of Marker ssisted Selection Chapter 15 asics of Marker ssisted Selection Julius van der Werf, Department of nimal Science rian Kinghorn, Twynam Chair of nimal reeding Technologies University of New

More information

Heredity and Prenatal Development: Chapter 3

Heredity and Prenatal Development: Chapter 3 Genetics 1 DEP 4053 Christine L. Ruva, Ph.D. Heredity and Prenatal Development: Chapter 3 PRINCIPLES OF HEREDITARY TRANSMISSION Genotype Phenotype Chromosomes: in the nucleus of the cell store and transmit

More information

Microevolution: The mechanism of evolution

Microevolution: The mechanism of evolution Microevolution: The mechanism of evolution What is it that evolves? Not individual organisms Populations are the smallest units that evolve Population: members of a species (interbreeding individuals and

More information

CAMPBELL BIOLOGY. Chapter 13

CAMPBELL BIOLOGY. Chapter 13 Lecture 10 Population Genetics CAMPBELL BIOLOGY Chapter 13 Hox Genes Control development Hox genes need to be highly regulated to get expressed at the right time and correct level to orchestrate mammalian

More information

Genetic and Evolutionary Foundations of Behavior. Quick Question. Darwin s Theory 2/10/2012. Chapter 3

Genetic and Evolutionary Foundations of Behavior. Quick Question. Darwin s Theory 2/10/2012. Chapter 3 Genetic and Evolutionary Foundations of Behavior Chapter 3 Gray, Psychology, 6e Worth Publishers 2010 Quick Question What do you know about Darwin? Come up with as many things as possible. Darwin s Theory

More information

11.1. A population shares a common gene pool. The Evolution of Populations CHAPTER 11. Fill in the concept map below.

11.1. A population shares a common gene pool. The Evolution of Populations CHAPTER 11. Fill in the concept map below. 11.1 GENETIC VARIATION WITHIN POPULATIONS Study Guide KEY CONCEPT A population shares a common gene pool. VOCABULARY gene pool allele frequency MAIN IDEA: Genetic variation in a population increases the

More information

11.4 Meiosis. Lesson Objectives. Lesson Summary

11.4 Meiosis. Lesson Objectives. Lesson Summary 11.4 Meiosis Lesson Objectives Contrast the number of chromosomes in body cells and in gametes. Summarize the events of meiosis. Contrast meiosis and mitosis. Describe how alleles from different genes

More information

9.1: Mechanisms of Evolution and Their Effect on Populations pg. 350-359

9.1: Mechanisms of Evolution and Their Effect on Populations pg. 350-359 9.1: Mechanisms of Evolution and Their Effect on Populations pg. 350-359 Key Terms: gene flow, non-random mating, genetic drift, founder effect, bottleneck effect, stabilizing selection, directional selection

More information

Biological Sciences Initiative

Biological Sciences Initiative Biological Sciences Initiative HHMI This activity is an adaptation of an exercise originally published by L. A. Welch. 1993. A model of microevolution in action. The American Biology Teacher. 55(6), 362-365.

More information

Chapter 16 How Populations Evolve

Chapter 16 How Populations Evolve Title Chapter 16 How Populations Evolve Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Population Genetics A population is all of the members of a single species

More information

EXERCISE 11 MENDELIAN GENETICS PROBLEMS

EXERCISE 11 MENDELIAN GENETICS PROBLEMS EXERCISE 11 MENDELIAN GENETICS PROBLEMS These problems are divided into subdivisions composed of problems that require application of a specific genetic principle. These problems are intended to complement

More information

BioBoot Camp Genetics

BioBoot Camp Genetics BioBoot Camp Genetics BIO.B.1.2.1 Describe how the process of DNA replication results in the transmission and/or conservation of genetic information DNA Replication is the process of DNA being copied before

More information

Basic Principles of Forensic Molecular Biology and Genetics. Population Genetics

Basic Principles of Forensic Molecular Biology and Genetics. Population Genetics Basic Principles of Forensic Molecular Biology and Genetics Population Genetics Significance of a Match What is the significance of: a fiber match? a hair match? a glass match? a DNA match? Meaning of

More information

CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE. Section B: Sex Chromosomes

CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE. Section B: Sex Chromosomes CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE Section B: Sex Chromosomes 1. The chromosomal basis of sex varies with the organism 2. Sex-linked genes have unique patterns of inheritance 1. The chromosomal

More information

Population Genetics -- Evolutionary Stasis and the Hardy-Weinberg Principles 1

Population Genetics -- Evolutionary Stasis and the Hardy-Weinberg Principles 1 Population Genetics -- Evolutionary Stasis and the Hardy-Weinberg Principles 1 Review and Introduction Mendel presented the first successful theory of the inheritance of biological variation. He viewed

More information

Plastic Egg Genetics. Introduction. Learning Objectives. Materials. Instructional Process. Next Generation Science Standards (NGSS)

Plastic Egg Genetics. Introduction. Learning Objectives. Materials. Instructional Process. Next Generation Science Standards (NGSS) Plastic Egg Genetics Introduction In this lesson, students will determine the phenotype and genotype of imaginary parent organisms and predict their offspring using s Grade Level: 6-8 Time Needed: 30 to

More information

If you crossed a homozygous, black guinea pig with a white guinea pig, what would be the phenotype(s)

If you crossed a homozygous, black guinea pig with a white guinea pig, what would be the phenotype(s) Biological Principles Name: In guinea pigs, black hair (B) is dominant to white hair (b). Homozygous black guinea pig White guinea pig Heterozygous black guinea pig Genotype Phenotype Why is there no heterozygous

More information

Beaming in your answers

Beaming in your answers Bio 112 Handout for Evolution 4 This handout contains: Today s iclicker Question Figures for today s lecture iclicker Question #1 - after lecture Which of the following statements are false: A. If the

More information

Paternity Testing. Chapter 23

Paternity Testing. Chapter 23 Paternity Testing Chapter 23 Kinship and Paternity DNA analysis can also be used for: Kinship testing determining whether individuals are related Paternity testing determining the father of a child Missing

More information

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Ch. 8 Cell Division Cells divide to produce new cells must pass genetic information to new cells - What process of DNA allows this? Two types

More information

Two copies of each autosomal gene affect phenotype.

Two copies of each autosomal gene affect phenotype. SECTION 7.1 CHROMOSOMES AND PHENOTYPE Study Guide KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. VOCABULARY carrier sex-linked gene X chromosome inactivation

More information

Key Questions. How is evolution defined in genetic terms?

Key Questions. How is evolution defined in genetic terms? Getting Started Objectives 17.1.1 Define evolution in genetic terms. 17.1.2 Identify the main sources of genetic variation in a population. 17.1.3 State what determines the number of phenotypes for a trait.

More information

HOW TO SOLVE GENETICS PROBLEMS

HOW TO SOLVE GENETICS PROBLEMS HOW TO SOLVE GENETICS PROBLEMS 1. Read the problem. 2. Determine what traits are dominant and which are recessive. Often you must marshal background knowledge to do this which may not be explicitly mentioned

More information

The more varied population is older because the mtdna has had more time to accumulate mutations.

The more varied population is older because the mtdna has had more time to accumulate mutations. Practice problems (with answers) This is the degree of difficulty of the questions that will be on the test. This is not a practice test because I did not consider how long it would take to finish these

More information

A and B are not absolutely linked. They could be far enough apart on the chromosome that they assort independently.

A and B are not absolutely linked. They could be far enough apart on the chromosome that they assort independently. Name Section 7.014 Problem Set 5 Please print out this problem set and record your answers on the printed copy. Answers to this problem set are to be turned in to the box outside 68-120 by 5:00pm on Friday

More information

Mendelian inheritance and the

Mendelian inheritance and the Mendelian inheritance and the most common genetic diseases Cornelia Schubert, MD, University of Goettingen, Dept. Human Genetics EUPRIM-Net course Genetics, Immunology and Breeding Mangement German Primate

More information

Figure S1 Clicker questions and their associated learning objectives and Bloom s level

Figure S1 Clicker questions and their associated learning objectives and Bloom s level Figure S1 Clicker questions and their associated learning objectives and Bloom s level Mitosis and Meiosis questions Q1: Which of the following events does not occur during mitosis? A.Breakdown of the

More information

Coats and Genes Genetic Traits in Cattle

Coats and Genes Genetic Traits in Cattle Coats and Genes Genetic Traits in Cattle Objective The student will read about heredity and explore genetic traits in cattle. Background Agriculturists are pioneers in the study of genetics and heredity.

More information

Chromosomes, Mapping, and the Meiosis Inheritance Connection

Chromosomes, Mapping, and the Meiosis Inheritance Connection Chromosomes, Mapping, and the Meiosis Inheritance Connection Carl Correns 1900 Chapter 13 First suggests central role for chromosomes Rediscovery of Mendel s work Walter Sutton 1902 Chromosomal theory

More information

Genetics Table Simplified

Genetics Table Simplified Genetics Table Simplified Parent s Names: and Kid s Name: Sex: Chr. # Gender Male Female Chr. # Trait Homozy. D. Heterozy. Homozy. R. X, Y XY XX 21 Freckles on Cheeks Present Present Absent Trait Homozy.

More information

Saffiyah Y. Manboard Biology Instructor Seagull Alternative High School Saffiyah.manboard@browardschools.com

Saffiyah Y. Manboard Biology Instructor Seagull Alternative High School Saffiyah.manboard@browardschools.com The Effect of Discovery Learning through Biotechnology on the Knowledge and Perception of Sickle Cell Anemia and It s Genetics on Lower Income Students Saffiyah Y. Manboard Biology Instructor Seagull Alternative

More information