1. Relevant standard graph theory

Save this PDF as:

Size: px
Start display at page:

Transcription

1 Color identical pairs in 4-chromatic graphs Asbjørn Brændeland I argue that, given a 4-chromatic graph G and a pair of vertices {u, v} in G, if the color of u equals the color of v in every 4-coloring of G then there is no planar supergraph of G where u and v are adjacent. This is equivalent to the graph theoretical version of the Four Color Theorem, which says that every planar graph is 4-colorable. My argument focuses on the coloring constraint mechanisms that produce color identical pairs (e.g., {u, v}), and how these mechanisms affect the adjaceability of such pairs. Section 1 gives the relevant graph theoretical definitions, section 2 addresses adjaceability of vertices in planar graphs, section 3 explains color identical pairs, section 4 addresses coloring constraints, and section 5 gives the conclusive argument. 1. Relevant standard graph theory A graph G is an ordered pair (V(G), E(G)) where V(G) is a set of vertices and E(G) is a set of edges. If u and v are vertices in V(G) and uv is and edge in E(G), we say that u and v are adjacent, and that u and v are the end vertices of uv. Given two graphs G and H, if V(H) V(G) and E(H) E(G) then H is a subgraph of G and G is a supergraph of H. A path is a graph with an ordered set of vertices (v 1,, v n ) where for k < n, v k and v k+1 are adjacent. A cycle is a path where the last vertex is adjacent to the first. A face in a graph is a region without edges, bounded by a cycle. A planar graph is a graph that can be embedded in the plane by points and curves being associated with vertices and edges in such a way that the endpoints of a curve associated with an edge are associated with the end vertices of the edge, only the end points on a curve is associated with vertices, and curves only intersect at their end points. A coloring of a graph G is the partitioning of V(G) into classes such that for every edge xy in E(G), x and y are not in the same class. The color set C = {1,, k} distinguishes the classes in a k-coloring. I let red, green, blue and yellow denote 1, 2, 3 and 4, respectively. A k-chromatic graph is a k-color requiring, k-colorable graph. A k-critical graph is a k-chromatic graph where every edge contributes to the graph's color demand. The 1-, 2- and 3-critical graphs are exactly the vertices, the edges and the odd cycles. There is no known characterization of the 4-critical graphs. Figure 1. Four 4 critical graphs. 1

3 3. Color identical pairs Definition 2. Let u and v be vertices in a k-chromatic graph G. Then {u, v} is a color identical k pair, or a CI k pair, if and only if the color of u equals the color of v in every k-coloring of G. Theorem 3. Every k-chromatic graph has a (k 1)-chromatic subgraph with an adjaceable CI k 1 pair. Proof: Let G be a k-chromatic graph. Then there must be a subgraph X of G and an edge xy in X and a graph Y = X xy such that X is k-chromatic and Y is (k 1)-chromatic. Every k-critical subgraph of G satisfies the condition of X, and if there were a (k 1)-coloring of Y in which x and y had different colors, that would also have been a coloring of X, and X would not have been k-chromatic. Since x and y are adjacent in X but not in Y they are adjaceable in Y. Figure 4. For every edge xy in the 4 critical graph G, (V(G), E(G) \ {xy}) is a 3 chromatic graph where {x, y} is a CI 3 pair. The condition of color identity in a k-chromatic graph G must be that a pair of vertices are consistently constrained to the same color by their respective neighbors in accordance with the coloring definition. I.e. for every CI k pair {x, y} in V(G) there must be a pair {X, Y} of subsets of V(G), each with at least k 1 vertices, such that x is adjacent to every vertex in X and y is adjacent to every vertex in Y, and for every coloring of G there is a set Z of k 1 colors such that both X and Y have exactly the colors in Z. Figure 5. Four realizations of the CI 4 pair condition with {u, v} as the CI 4 pair. In A, {X, Y} = {{a, b, c}, {d, e, f}}, in B, {X, Y} = {{a, b, c}, {c, e, f}}, in C, {X, Y} = {{a, b, c}, {b, c, f}}, and in D, X = Y = {a, b, c}. Figure 5 shows four realizations of the CI 4 condition with {u, v} as the CI 4 pair. The top row shows only the minimum of required edges, whereas the two rows below show examples of how the cases may be established. None of the established cases contain an adjaceable CI 4 pair. To determine if this lack of adjaceability is inherent to the CI 4 condition, we must look at the mechanisms of coloring constraints. 3

4 4. Coloring constraints and color fixation 4.1. Coloring constraint rules Let G be a k-chromatic graph and let R and S be subgraphs of G such that every vertex in S is adjacent to every vertex in R. Then, in a k-coloring of G, R constrains S to the colors R does not have, and vice versa, and if the sum of the chromatic numbers of R and S equals k, R fixes S to the colors R does not have and vice versa. Definition 3. Let C be the color set {1,, k}, let G be a k-chromatic graph, and let R be a j-chromatic and S be a (k j)-chromatic subgraph of G. Then S is color fixed by R if and only if for every set of j colors X C, if R has exactly the colors in X then S has exactly the colors in C \ X. A color fixed graph is fixed to a set of colors, but for singletons I use 'v is fixed to c' as short hand notation for 'v is fixed to {c}'. Figure 6. Two colorings of the same graph, starting with a, b and c (in fact the only two colorings the graph has). Here are some of the coloring constraint relations in the graph in Figure 6: The red vertex a constrains each of its neighbors b, c and d to {green, blue, yellow}, constrains each edge bc, bd and cd to the same colors, and fixes the triangle bcd to the same three colors, the red and green edge ab constrains each of c and d to {blue, yellow} and fixes the edge dc to the same colors, the blue and yellow edge dc constrains each of e and f to {red, green} and fixes the edge ef to the same colors, the red, green and blue triangle abc fixes the vertex d to yellow and the yellow vertex d fixes the triangle cef to {red, green, blue}. Constraint relations may be indirect. E.g., the edge ab fixes the edge ef to its own colors indirectly, via the edge de, and the triangle abc fixes the triangle cef to its own colors indirectly, via the vertex d Coloring reference A coloring constraint relation is mutual but in a description of the coloring of a graph it can be useful to choose a primary constrainer and thus, implicitly, its constrainees. 4

5 Definition 4. Given a k-chromatic graph G we can select a (k 1)-critical subgraph R, as coloring reference graph, or CR-graph, by giving R the first k 1 colors in every k-coloring of G. R is then the immediate coloring constrainer of all its neighbors, the indirect coloring constrainer of every neighbor's neighbor that is not in R or a neighbor of R, and so on and so forth. Definition 5. Let G be a graph, let R be a CR-graph in G and let S be a subgraph of G and a supergraph of R. Then S is the coloring constraint scope, or CC-scope, of R if an only if every vertex in G that is coloring constrained directly or indirectly by R, and every edge that contributes to the coloring constraint, is in S, and every vertex in V(S) \ V(R) is such constrained and every edge in S contributes to the coloring constraint. A graph may be indirectly color fixed as a whole by a CR-graph R, without its vertices being individually color fixed by R, and a graph thus color fixed may color fix a vertex, as shown in Figure 7 where R is the triangle abc, the triangle efh is color fixed as a whole by R via d, and h is color fixed by efg. Figure Only an edge can color fix an edge, only an odd cycle can color fix a vertex, and only a vertex can color fix an odd cycle Lemma 1. Given a 4-chromatic graph G, for every edge xy in G, xy is color fixed if and only if there is a color fixed edge zw in G such that both x and y are adjacent to both z and w. Proof: Let uv be the color fixee, let q, r, s and t be vertices such that u is adjacent to q and r, and v is adjacent to s and t, and assume that q and s are fixed to red, and r and t are fixed to yellow, as shown in Figure 8 on the top. Then each of u and v are constrained, and uv is fixed to {blue, yellow}. Figure 8. However, when the triangle abc is introduced as CR-graph we see that it is not possible to color fix the four vertices this way. What is possible, is to fix one of the four vertices to yellow and use this and the blue and green vertices in abc to fix another of the four vertices to red, as shown in graph C in Figure 8, or add an edge between two of the four vertices and use the blue and green edge in abc to fix the added edge to {red, yellow}, as shown in graph D in Figure 8. In both cases we get an edge that is fixed to {red, yellow}, and this edge can in turn color fix uv to {green, blue}. 5

6 Lemma 2. Given a 4-chromatic graph G, for every vertex x in G, x is color fixed if and only if there is a color fixed odd cycle X in G such that x is adjacent to every vertex in X. Proof: Let v be the color fixee. The immediate color fixator v must be either (i) an odd cycle, or (ii) a set of vertices, or (iii) a set of at least one vertex and one edge. (i) If v is adjacent to every vertex in a color fixed odd cycle, the cycle color fixes v. (ii) If the neighbors of v are color fixed individually to altogether three colors, v is fixed to the fourth color, thus v and its neighbors all belong to the same uniquely 4-colorable graph. By Fowler [1998] a uniquely 4-colorable graph must be an Apollonian network, i.e., a graph that is formed by recursively subdividing a triangular face into three triangular faces, thus three of the neighbors of v must be the vertices of the same triangle. (iii) Let st be a color fixed edge. By lemma 1 the color fixator of st must be another edge. Let that be qr. If v is adjacent to s and t, it must be inside one of the triangles qst and rst, and if v is adjacent to one of q and r, it is color fixed if qr is color fixed vertex by vertex, and not just as a whole. Inside the triangle there is not room for other edges or vertices that can contribute to the immediate color fixation of v. Figure 9. Lemma 3. Given a 4-chromatic graph G, for every odd cycle X in G, X is color fixed if an only if G contains a color fixed vertex that is adjacent to every vertex in X. Proof: In Figure 10, each of A, B and C is a subgraph of some CC-scope, and the question is how the odd cycle S = abc in each graph may be color fixed in the respective scopes. Assuming that the neighbors of S are already color fixed, it would seem that the three graphs cover all possible ways that S could have been color fixed: as a whole, by a single vertex, as in A; by one edge being fixed by an edge and one vertex being fixed by an odd cycle, as in B; or by each vertex being fixed by an odd cycle, as in C. Figure 10. In A, d may be color fixed directly or indirectly by the CR-graph that defines the CC-scope. However, in B, the vertices e and h are enclosed by the triangles bdf and acg, and in C, the vertices e, h and k are enclosed by the triangles bdf, agi and cjl, respectively, and since all the enclosing triangles intersect S, none of the enclosed vertices could have been color fixed without S already having been color fixed. The argument applies regardless of the length of S: A single vertex such as d in A, can be color fixed independently, and then d can color fix S as a whole, but no edge or odd cycle neighboring on S, such as in B and C, can be color fixed unless S is already color fixed. 6

7 4.4. Color fixation chains Color fixations propagate along chains of alternating j-critical and (k j)-critical color fixed graphs. We are only interested in chains where j = 1. In a 4-chromatic graph such a chain may start with an odd cycle or a vertex and end with an odd cycle or a vertex, but with regard to color identical pairs, terminal odd cycles do not make any difference, so we will assume that the color fixation chain at hand always starts and ends with a color fixed vertex, as in Figure 11. Figure 11. A 4 chromatic color fixation chain of vertices, here colored yellow, and odd cycles, here colored red, green and blue. Notice that the coloring of each of the odd cycles is arbitrary, within the given constraints. Definition 6. Let (v 1,, v n ) be a set of vertices and let (C 1,, C n 1 ) be a set of (k 1)-critical graphs. Then (v 1, C 1,, v i, C i, v i+1, C i+1,, C n 1, v n ) is a color fixation k chain, or a CF k -chain if and only if for every i < n, v i and v i+1 are directly color fixed by C i, and C i and C i+1 are directly color fixed by v i+1. For k = 4, I refer to (v 1,, v n ) as the vertex nodes and to (C 1,, C n 1 ) as the cycle nodes of the CF k chain. Lemma 4. Two vertices in a 4-chromatic graph are color identical if and only if they belong to the same color fixation chain. Proof: Since every pair of successive vertex nodes share an odd cycle as color fixator, and vice versa, the color fixation is repeated throughout the chain, and, since, by lemmas 2 and 3, only a vertex can color fix an odd cycle, and vice versa, color fixations cannot be transmitted between disjoint color fixation chains. 5. The non-adjaceability of CI 4 pairs on the plane 5.1. The non-adjaceability of the vertex node pairs in a CF 4 chain Lemma 5. There is no pair of adjaceable vertex nodes in a 4-chromatic color fixation chain. Proof: Let (v 1, C 1,, C n 1, v n ) be a CF 4 chain. We prove the lemma by induction on v k, with regard to the separation of v k from all of (v 1,, v k-1 ). Assume that every vertex in (v 1,, v k-2 ) are on one side, the inside, say, of C k 2. Then, by theorem 1, v k 1 is on the outside of C k 2, opposite v k-2. By theorem 2, every neighbor of v k 1, including every vertex on C k 1, is either on C k 2, if C k 2 and C k 1 intersect, or outside C k 2, thus everything that is inside C k 2 is also inside C k 1. Since v k 1 is adjacent to both C k 2 and C k 1, v k 1 lies between the two, inside C k 1, and since v k 1 and v k both are adjacent to all of C k 1, again by theorem 1, v k is outside C k 1, opposite all of (v 1,, v k-1 ). We know, by theorem 1, that, since v 1 and v 2 are on opposite sides of C 1 they are not adjaceable, and it then follows that for every x > 2, v x is not adjaceable to any vertex in (v 1,, v x 1 ). 7

8 Figure 12. Theorem 4. There is no adjaceable CI 4 pair on the plane. Proof: By lemma 4 the members of a CI 4 pair must be in the same CF 4 chain and by lemma 5 there is no pair of adjaceable vertex nodes in a 4-chromatic color fixation chain Theorem 4 is equivalent to the Four Color Theorem Suppose G is a planar graph with chromatic number at least 5. Without loss of generality, G is 5-critical. Choose an edge uv of G and consider H = G uv. By theorem 3 H is 4-chromatic and {u, v} is a CI 4 pair in H, but by theorem 4, u and v are not adjaceable on the plane, contradicting the planarity of G. In the other direction, suppose there is a 4-chromatic planar graph G with and adjaceable CI 4 pair {u, v}. Then G + uv is a 5-chromatic planar graph. Notes Color fixation chains occur wherever two or more vertices are fixed to the same color Figure 13. The top left graph contains the 4 CF 4 chains shown in the subsequent graphs in the top row. The middle graph is a CF 4 chain of its own. The bottom left graph contains 4 CF 4 chains. The bottom middle graph has 2 CF 4 chains, one with blue and one with yellow vertex nodes. The bottom right graph has 4 CF 4 chains, of which the one with the blue vertex nodes contains branches. 8

9 Branching CF chains A vertex node in a CF 4 chain may color fix more than two cycle nodes, creating branches, but, since, by corollary 1, not more than two vertices can be adjacent to every vertex in the same cycle, CF 4 chain branching cannot occur at cycle nodes, thus the adjaceability of the vertex pairs in the chain is not affected by branching, and since, by lemma 4, every cycle node in a CF 4 chain separates its predecessors from its successors, a CF 4 chain cannot loop, so, all and all, CF 4 branching is harmless. Figure 14. A CF 4 chain with branches. Inside / Outside The terms 'inside' and 'outside' used in the proof of lemma 4 should not be taken literally considering the fact that the different drawings in Figure 12 and 15 all depict the same graph. Figure 15. References [1992] Thomassen, Carsten. "The Jordan Schönflies theorem and the classification of surfaces", American Mathematical Monthly 99 (2): [1998] Fowler, Thomas (1998), Unique Coloring of Planar Graphs, Ph.D. thesis, Georgia Institute of Technology Mathematics Department. List of changes from version 2 (not including cosmetic changes) The concept of separation of vertices has been replaced by the concept of adjaceability of vertices, or rather, by its negation. A new lemma 1 has been introduced and is used to correct an error in the proof of the previous lemma 1 (now 2). The previous introduction to theorem 4, explaining the equivalence of this theorem and the Four Color Theorem, has been placed in a subsection of its own, after the proof of theorem 4. 9

INCIDENCE-BETWEENNESS GEOMETRY

INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full

Class One: Degree Sequences

Class One: Degree Sequences For our purposes a graph is a just a bunch of points, called vertices, together with lines or curves, called edges, joining certain pairs of vertices. Three small examples of

Introduction to Graph Theory

Introduction to Graph Theory Allen Dickson October 2006 1 The Königsberg Bridge Problem The city of Königsberg was located on the Pregel river in Prussia. The river divided the city into four separate

Labeling outerplanar graphs with maximum degree three

Labeling outerplanar graphs with maximum degree three Xiangwen Li 1 and Sanming Zhou 2 1 Department of Mathematics Huazhong Normal University, Wuhan 430079, China 2 Department of Mathematics and Statistics

Graph Theory Problems and Solutions

raph Theory Problems and Solutions Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is

Zachary Monaco Georgia College Olympic Coloring: Go For The Gold

Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Coloring the vertices or edges of a graph leads to a variety of interesting applications in graph theory These applications include various

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the Higman-Sims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact

Connectivity and cuts

Math 104, Graph Theory February 19, 2013 Measure of connectivity How connected are each of these graphs? > increasing connectivity > I G 1 is a tree, so it is a connected graph w/minimum # of edges. Every

4. Prove the above theorem. 5. Prove the above theorem. 9. Prove the above corollary. 10. Prove the above theorem.

14 Perpendicularity and Angle Congruence Definition (acute angle, right angle, obtuse angle, supplementary angles, complementary angles) An acute angle is an angle whose measure is less than 90. A right

Foundations of Geometry 1: Points, Lines, Segments, Angles

Chapter 3 Foundations of Geometry 1: Points, Lines, Segments, Angles 3.1 An Introduction to Proof Syllogism: The abstract form is: 1. All A is B. 2. X is A 3. X is B Example: Let s think about an example.

Small Maximal Independent Sets and Faster Exact Graph Coloring

Small Maximal Independent Sets and Faster Exact Graph Coloring David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science The Exact Graph Coloring Problem: Given an undirected

On the crossing number of K m,n

On the crossing number of K m,n Nagi H. Nahas nnahas@acm.org Submitted: Mar 15, 001; Accepted: Aug 10, 00; Published: Aug 1, 00 MR Subject Classifications: 05C10, 05C5 Abstract The best lower bound known

2.3 Scheduling jobs on identical parallel machines

2.3 Scheduling jobs on identical parallel machines There are jobs to be processed, and there are identical machines (running in parallel) to which each job may be assigned Each job = 1,,, must be processed

1. Determine all real numbers a, b, c, d that satisfy the following system of equations.

altic Way 1999 Reykjavík, November 6, 1999 Problems 1. etermine all real numbers a, b, c, d that satisfy the following system of equations. abc + ab + bc + ca + a + b + c = 1 bcd + bc + cd + db + b + c

Removing Even Crossings

EuroComb 2005 DMTCS proc. AE, 2005, 105 110 Removing Even Crossings Michael J. Pelsmajer 1, Marcus Schaefer 2 and Daniel Štefankovič 2 1 Department of Applied Mathematics, Illinois Institute of Technology,

Midterm Practice Problems

6.042/8.062J Mathematics for Computer Science October 2, 200 Tom Leighton, Marten van Dijk, and Brooke Cowan Midterm Practice Problems Problem. [0 points] In problem set you showed that the nand operator

On the independence number of graphs with maximum degree 3

On the independence number of graphs with maximum degree 3 Iyad A. Kanj Fenghui Zhang Abstract Let G be an undirected graph with maximum degree at most 3 such that G does not contain any of the three graphs

When is a graph planar?

When is a graph planar? Theorem(Euler, 1758) If a plane multigraph G with k components has n vertices, e edges, and f faces, then n e + f = 1 + k. Corollary If G is a simple, planar graph with n(g) 3,

The chromatic spectrum of mixed hypergraphs

The chromatic spectrum of mixed hypergraphs Tao Jiang, Dhruv Mubayi, Zsolt Tuza, Vitaly Voloshin, Douglas B. West March 30, 2003 Abstract A mixed hypergraph is a triple H = (X, C, D), where X is the vertex

Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.

Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.

Homework Exam 1, Geometric Algorithms, 2016

Homework Exam 1, Geometric Algorithms, 2016 1. (3 points) Let P be a convex polyhedron in 3-dimensional space. The boundary of P is represented as a DCEL, storing the incidence relationships between the

A 2-factor in which each cycle has long length in claw-free graphs

A -factor in which each cycle has long length in claw-free graphs Roman Čada Shuya Chiba Kiyoshi Yoshimoto 3 Department of Mathematics University of West Bohemia and Institute of Theoretical Computer Science

Odd induced subgraphs in graphs of maximum degree three

Odd induced subgraphs in graphs of maximum degree three David M. Berman, Hong Wang, and Larry Wargo Department of Mathematics University of New Orleans New Orleans, Louisiana, USA 70148 Abstract A long-standing

136 CHAPTER 4. INDUCTION, GRAPHS AND TREES

136 TER 4. INDUCTION, GRHS ND TREES 4.3 Graphs In this chapter we introduce a fundamental structural idea of discrete mathematics, that of a graph. Many situations in the applications of discrete mathematics

UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE

UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE ANDREW LUM ADVISOR: DAVID GUICHARD ABSTRACT. L(2,1)-labeling was first defined by Jerrold Griggs [Gr, 1992] as a way to use graphs

3. Equivalence Relations. Discussion

3. EQUIVALENCE RELATIONS 33 3. Equivalence Relations 3.1. Definition of an Equivalence Relations. Definition 3.1.1. A relation R on a set A is an equivalence relation if and only if R is reflexive, symmetric,

5.1 Midsegment Theorem and Coordinate Proof

5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle - A midsegment of a triangle is a segment that connects

Generalized Induced Factor Problems

Egerváry Research Group on Combinatorial Optimization Technical reports TR-2002-07. Published by the Egrerváry Research Group, Pázmány P. sétány 1/C, H 1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres.

Shortcut sets for plane Euclidean networks (Extended abstract) 1

Shortcut sets for plane Euclidean networks (Extended abstract) 1 J. Cáceres a D. Garijo b A. González b A. Márquez b M. L. Puertas a P. Ribeiro c a Departamento de Matemáticas, Universidad de Almería,

Triangle deletion. Ernie Croot. February 3, 2010

Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,

3. Eulerian and Hamiltonian Graphs

3. Eulerian and Hamiltonian Graphs There are many games and puzzles which can be analysed by graph theoretic concepts. In fact, the two early discoveries which led to the existence of graphs arose from

Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs

MCS-236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set

8. Matchings and Factors

8. Matchings and Factors Consider the formation of an executive council by the parliament committee. Each committee needs to designate one of its members as an official representative to sit on the council,

CS 598CSC: Combinatorial Optimization Lecture date: 2/4/2010

CS 598CSC: Combinatorial Optimization Lecture date: /4/010 Instructor: Chandra Chekuri Scribe: David Morrison Gomory-Hu Trees (The work in this section closely follows [3]) Let G = (V, E) be an undirected

MODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.

MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on

Outline 2.1 Graph Isomorphism 2.2 Automorphisms and Symmetry 2.3 Subgraphs, part 1

GRAPH THEORY LECTURE STRUCTURE AND REPRESENTATION PART A Abstract. Chapter focuses on the question of when two graphs are to be regarded as the same, on symmetries, and on subgraphs.. discusses the concept

Geometry 1. Unit 3: Perpendicular and Parallel Lines

Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples

A Lower Bound for Area{Universal Graphs. K. Mehlhorn { Abstract. We establish a lower bound on the eciency of area{universal circuits.

A Lower Bound for Area{Universal Graphs Gianfranco Bilardi y Shiva Chaudhuri z Devdatt Dubhashi x K. Mehlhorn { Abstract We establish a lower bound on the eciency of area{universal circuits. The area A

Mathematical Induction. Mary Barnes Sue Gordon

Mathematics Learning Centre Mathematical Induction Mary Barnes Sue Gordon c 1987 University of Sydney Contents 1 Mathematical Induction 1 1.1 Why do we need proof by induction?.... 1 1. What is proof by

Lesson 18: Looking More Carefully at Parallel Lines

Student Outcomes Students learn to construct a line parallel to a given line through a point not on that line using a rotation by 180. They learn how to prove the alternate interior angles theorem using

M-Degrees of Quadrangle-Free Planar Graphs Oleg V. Borodin, 1 Alexandr V. Kostochka, 1,2 Naeem N. Sheikh, 2 and Gexin Yu 3 1 SOBOLEV INSTITUTE OF MATHEMATICS NOVOSIBIRSK 630090, RUSSIA E-mail: brdnoleg@math.nsc.ru

Divisor graphs have arbitrary order and size

Divisor graphs have arbitrary order and size arxiv:math/0606483v1 [math.co] 20 Jun 2006 Le Anh Vinh School of Mathematics University of New South Wales Sydney 2052 Australia Abstract A divisor graph G

Tools for parsimonious edge-colouring of graphs with maximum degree three. J.L. Fouquet and J.M. Vanherpe. Rapport n o RR-2010-10

Tools for parsimonious edge-colouring of graphs with maximum degree three J.L. Fouquet and J.M. Vanherpe LIFO, Université d Orléans Rapport n o RR-2010-10 Tools for parsimonious edge-colouring of graphs

61. Pascal s Hexagon Theorem.

. Pascal s Hexagon Theorem. Prove that the three points of intersection of the opposite sides of a hexagon inscribed in a conic section lie on a straight line. Hexagon has opposite sides,;, and,. Pascal

An inequality for the group chromatic number of a graph

An inequality for the group chromatic number of a graph Hong-Jian Lai 1, Xiangwen Li 2 and Gexin Yu 3 1 Department of Mathematics, West Virginia University Morgantown, WV 26505 USA 2 Department of Mathematics

Graphs without proper subgraphs of minimum degree 3 and short cycles

Graphs without proper subgraphs of minimum degree 3 and short cycles Lothar Narins, Alexey Pokrovskiy, Tibor Szabó Department of Mathematics, Freie Universität, Berlin, Germany. August 22, 2014 Abstract

Definition 11.1. Given a graph G on n vertices, we define the following quantities:

Lecture 11 The Lovász ϑ Function 11.1 Perfect graphs We begin with some background on perfect graphs. graphs. First, we define some quantities on Definition 11.1. Given a graph G on n vertices, we define

On the k-path cover problem for cacti

On the k-path cover problem for cacti Zemin Jin and Xueliang Li Center for Combinatorics and LPMC Nankai University Tianjin 300071, P.R. China zeminjin@eyou.com, x.li@eyou.com Abstract In this paper we

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

Discrete Mathematics Problems

Discrete Mathematics Problems William F. Klostermeyer School of Computing University of North Florida Jacksonville, FL 32224 E-mail: wkloster@unf.edu Contents 0 Preface 3 1 Logic 5 1.1 Basics...............................

Mathematics Geometry Unit 1 (SAMPLE)

Review the Geometry sample year-long scope and sequence associated with this unit plan. Mathematics Possible time frame: Unit 1: Introduction to Geometric Concepts, Construction, and Proof 14 days This

Chapter 6: Graph Theory

Chapter 6: Graph Theory Graph theory deals with routing and network problems and if it is possible to find a best route, whether that means the least expensive, least amount of time or the least distance.

Clique coloring B 1 -EPG graphs

Clique coloring B 1 -EPG graphs Flavia Bonomo a,c, María Pía Mazzoleni b,c, and Maya Stein d a Departamento de Computación, FCEN-UBA, Buenos Aires, Argentina. b Departamento de Matemática, FCE-UNLP, La

Scheduling Shop Scheduling. Tim Nieberg

Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations

1 if 1 x 0 1 if 0 x 1

Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

The Clar Structure of Fullerenes

The Clar Structure of Fullerenes Liz Hartung Massachusetts College of Liberal Arts June 12, 2013 Liz Hartung (Massachusetts College of Liberal Arts) The Clar Structure of Fullerenes June 12, 2013 1 / 25

Computer Science Department. Technion - IIT, Haifa, Israel. Itai and Rodeh [IR] have proved that for any 2-connected graph G and any vertex s G there

- 1 - THREE TREE-PATHS Avram Zehavi Alon Itai Computer Science Department Technion - IIT, Haifa, Israel Abstract Itai and Rodeh [IR] have proved that for any 2-connected graph G and any vertex s G there

5.3 The Cross Product in R 3

53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

SHORT CYCLE COVERS OF GRAPHS WITH MINIMUM DEGREE THREE

SHOT YLE OVES OF PHS WITH MINIMUM DEEE THEE TOMÁŠ KISE, DNIEL KÁL, END LIDIKÝ, PVEL NEJEDLÝ OET ŠÁML, ND bstract. The Shortest ycle over onjecture of lon and Tarsi asserts that the edges of every bridgeless

4. How many integers between 2004 and 4002 are perfect squares?

5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started

POWER SETS AND RELATIONS

POWER SETS AND RELATIONS L. MARIZZA A. BAILEY 1. The Power Set Now that we have defined sets as best we can, we can consider a sets of sets. If we were to assume nothing, except the existence of the empty

Arrangements And Duality

Arrangements And Duality 3.1 Introduction 3 Point configurations are tbe most basic structure we study in computational geometry. But what about configurations of more complicated shapes? For example,

Euclidean Geometry. We start with the idea of an axiomatic system. An axiomatic system has four parts:

Euclidean Geometry Students are often so challenged by the details of Euclidean geometry that they miss the rich structure of the subject. We give an overview of a piece of this structure below. We start

Crossing the Bridge at Night

A1:01 Crossing the Bridge at Night Günter Rote Freie Universität Berlin, Institut für Informatik Takustraße 9, D-14195 Berlin, Germany rote@inf.fu-berlin.de A1:02 August 21, 2002 A1:03 A1:04 Abstract We

6.3 Conditional Probability and Independence

222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

Topological Treatment of Platonic, Archimedean, and Related Polyhedra

Forum Geometricorum Volume 15 (015) 43 51. FORUM GEOM ISSN 1534-1178 Topological Treatment of Platonic, Archimedean, and Related Polyhedra Tom M. Apostol and Mamikon A. Mnatsakanian Abstract. Platonic

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH

31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,

Markov random fields and Gibbs measures

Chapter Markov random fields and Gibbs measures 1. Conditional independence Suppose X i is a random element of (X i, B i ), for i = 1, 2, 3, with all X i defined on the same probability space (.F, P).

Removing even crossings

Removing even crossings Michael J. Pelsmajer a, Marcus Schaefer b, Daniel Štefankovič c a Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA b Department of Computer

1 Introduction to Counting

1 Introduction to Counting 1.1 Introduction In this chapter you will learn the fundamentals of enumerative combinatorics, the branch of mathematics concerned with counting. While enumeration problems can

IMO Training 2010 Russian-style Problems Alexander Remorov

Solutions: Combinatorial Geometry 1. No. Call a lattice point even if the sum of its coordinates is even, and call it odd otherwise. Call one of the legs first, and other one second. Then every time a

Sum of Degrees of Vertices Theorem

Sum of Degrees of Vertices Theorem Theorem (Sum of Degrees of Vertices Theorem) Suppose a graph has n vertices with degrees d 1, d 2, d 3,...,d n. Add together all degrees to get a new number d 1 + d 2

Synthetic Projective Treatment of Cevian Nests and Graves Triangles

Synthetic Projective Treatment of Cevian Nests and Graves Triangles Igor Minevich 1 Introduction Several proofs of the cevian nest theorem (given below) are known, including one using ratios along sides

arxiv:1203.1525v1 [math.co] 7 Mar 2012

Constructing subset partition graphs with strong adjacency and end-point count properties Nicolai Hähnle haehnle@math.tu-berlin.de arxiv:1203.1525v1 [math.co] 7 Mar 2012 March 8, 2012 Abstract Kim defined

Pick s Theorem. Tom Davis Oct 27, 2003

Part I Examples Pick s Theorem Tom Davis tomrdavis@earthlink.net Oct 27, 2003 Pick s Theorem provides a method to calculate the area of simple polygons whose vertices lie on lattice points points with

Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs

Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Yong Zhang 1.2, Francis Y.L. Chin 2, and Hing-Fung Ting 2 1 College of Mathematics and Computer Science, Hebei University,

Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902

Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902 http://www.ms.uky.edu/~mschreffler Different Graphs, Similar Properties

An inequality for the group chromatic number of a graph

Discrete Mathematics 307 (2007) 3076 3080 www.elsevier.com/locate/disc Note An inequality for the group chromatic number of a graph Hong-Jian Lai a, Xiangwen Li b,,1, Gexin Yu c a Department of Mathematics,

Graphical degree sequences and realizations

swap Graphical and realizations Péter L. Erdös Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences MAPCON 12 MPIPKS - Dresden, May 15, 2012 swap Graphical and realizations Péter L. Erdös

2. THE x-y PLANE 7 C7

2. THE x-y PLANE 2.1. The Real Line When we plot quantities on a graph we can plot not only integer values like 1, 2 and 3 but also fractions, like 3½ or 4¾. In fact we can, in principle, plot any real

Spring 2007 Math 510 Hints for practice problems

Spring 2007 Math 510 Hints for practice problems Section 1 Imagine a prison consisting of 4 cells arranged like the squares of an -chessboard There are doors between all adjacent cells A prisoner in one

Cycle transversals in bounded degree graphs

Electronic Notes in Discrete Mathematics 35 (2009) 189 195 www.elsevier.com/locate/endm Cycle transversals in bounded degree graphs M. Groshaus a,2,3 P. Hell b,3 S. Klein c,1,3 L. T. Nogueira d,1,3 F.

Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs

Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph

Survey of Terrain Guarding and Art Gallery Problems

Survey of Terrain Guarding and Art Gallery Problems Erik Krohn Abstract The terrain guarding problem and art gallery problem are two areas in computational geometry. Different versions of terrain guarding

Pigeonhole Principle Solutions

Pigeonhole Principle Solutions 1. Show that if we take n + 1 numbers from the set {1, 2,..., 2n}, then some pair of numbers will have no factors in common. Solution: Note that consecutive numbers (such

Mean Ramsey-Turán numbers

Mean Ramsey-Turán numbers Raphael Yuster Department of Mathematics University of Haifa at Oranim Tivon 36006, Israel Abstract A ρ-mean coloring of a graph is a coloring of the edges such that the average

TIgeometry.com. Geometry. Angle Bisectors in a Triangle

Angle Bisectors in a Triangle ID: 8892 Time required 40 minutes Topic: Triangles and Their Centers Use inductive reasoning to postulate a relationship between an angle bisector and the arms of the angle.

All trees contain a large induced subgraph having all degrees 1 (mod k)

All trees contain a large induced subgraph having all degrees 1 (mod k) David M. Berman, A.J. Radcliffe, A.D. Scott, Hong Wang, and Larry Wargo *Department of Mathematics University of New Orleans New

Analysis of Algorithms, I

Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadth-first search (BFS) 4 Applications

Automata and Formal Languages

Automata and Formal Languages Winter 2009-2010 Yacov Hel-Or 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,

Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs

CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like

Part 2: Community Detection

Chapter 8: Graph Data Part 2: Community Detection Based on Leskovec, Rajaraman, Ullman 2014: Mining of Massive Datasets Big Data Management and Analytics Outline Community Detection - Social networks -

Disjoint Compatible Geometric Matchings

Disjoint Compatible Geometric Matchings Mashhood Ishaque Diane L. Souvaine Csaba D. Tóth Abstract We prove that for every even set of n pairwise disjoint line segments in the plane in general position,

A Turán Type Problem Concerning the Powers of the Degrees of a Graph

A Turán Type Problem Concerning the Powers of the Degrees of a Graph Yair Caro and Raphael Yuster Department of Mathematics University of Haifa-ORANIM, Tivon 36006, Israel. AMS Subject Classification:

A threshold for the Maker-Breaker clique game

A threshold for the Maker-Breaker clique game Tobias Müller Miloš Stojaković October 7, 01 Abstract We study the Maker-Breaker k-clique game played on the edge set of the random graph G(n, p. In this game,

The Geometer s Sketchpad: Non-Euclidean Geometry & The Poincaré Disk

The Geometer s Sketchpad: Non-Euclidean Geometry & The Poincaré Disk Nicholas Jackiw njackiw@kcptech.com KCP Technologies, Inc. ICTMT11 2013 Bari Overview. The study of hyperbolic geometry and non-euclidean

Geometry CP Lesson 5-1: Bisectors, Medians and Altitudes Page 1 of 3

Geometry CP Lesson 5-1: Bisectors, Medians and Altitudes Page 1 of 3 Main ideas: Identify and use perpendicular bisectors and angle bisectors in triangles. Standard: 12.0 A perpendicular bisector of a

Ph.D. Thesis. Judit Nagy-György. Supervisor: Péter Hajnal Associate Professor

Online algorithms for combinatorial problems Ph.D. Thesis by Judit Nagy-György Supervisor: Péter Hajnal Associate Professor Doctoral School in Mathematics and Computer Science University of Szeged Bolyai