On the crossing number of K m,n


 Randolf Rich
 1 years ago
 Views:
Transcription
1 On the crossing number of K m,n Nagi H. Nahas Submitted: Mar 15, 001; Accepted: Aug 10, 00; Published: Aug 1, 00 MR Subject Classifications: 05C10, 05C5 Abstract The best lower bound known on the crossing number of the complete bipartite graph is : cr(k m,n ) (1/5)(m)(m 1) n/ (n 1)/ In this paper we prove that: cr(k m,n ) (1/5)m(m 1) n/ (n 1)/ m n for sufficiently large m and n. 1 Introduction Determining the crossing number of the complete bipartite graph is one of the oldest crossing number open problems. It was first posed by Turan and known as Turan s brick factory problem. In 1954, Zarankiewicz conjectured that it is equal to Z(m, n) = n/ (n 1)/ m/ (m 1)/ He even gave a proof and a drawing that matches the lower bound, but the proof was shown to be flawed by Richard Guy [1]. Then in 1970 Kleitman proved that Zarankiewicz conjecture holds for Min(m, n) 6 []. In 199 Woodall proved it for m 8,n 10 []. Previously the best known lower bound in the general case was the one proved by Kleitman [] : cr(k m,n ) (1/5)(m)(m 1) n/ (n 1)/. Richter and Thomassen discussed the relation between the crossing numbers of the complete and the complete bipartite graphs [4]. the electronic journal of combinatorics 10 (00), #N8 1
2 A new bound We will start by giving definitions that will be used throughout the paper. They are taken from Woodall[] and Kleitman []. Definition 1 Two edges e 1 and e are said to have a crossing in a drawing D of K m,n if e 1 can be closed by a curve disjoint from e connecting the two endpoints of e 1 and such that there are points of e both inside and outside the closed curve. Definition The crossing number cr G of a graph G is the smallest crossing number of any drawing of G in the plane, where the crossing number cr D of a drawing D is the number of nonadjacent edges that have a crossing in the drawing. Definition A good drawing a graph G is a drawing where the edges are nonselfintersecting where each two edges have at most one point in common, which is either a common end vertex or a crossing. Clearly a drawing with minimum crossing number must be a good drawing. Let A be one partite and B the other partite. The elements of A are a 1,a,a,...,a m, and the elements of B are b 1,b,...,b n. In a drawing D, wedenotebycr D (a i,a k )the number of crossings of arcs, one terminating at a i, the other at a k and by cr D (a i )the number of crossings on arcs which terminate at a i : n cr D (a i )= cr D (a i,a k ) k=1 The crossing number of the drawing D is therefore: n n cr D = cr D (a i,a k ) i=1 k=i+1 Let us define : Z(m) = m/ (m 1)/. Let Sn be the set of the (n 1)! different cyclic orderings of a set V n of n elements. (The significance of cyclic ordering is that 014 is considered as being the same as 401 or 140). If z 1 and z belong to Sn then the distance d(z 1,z ) is the minimum number of transpositions between adjacent elements in the cyclic ordering necessary to turn z 1 into z. If a belongs to Sn then ā denotes the reverse ordering of a. For example, in S 7,if a = 05416, then ā = The antidistance d(a, b) between two elements a and b is the distance between ā and b (or between b and a). Woodall [] gave a detailed proof of the two following propositions: Theorem 1 If a S n, then d(a, a) =Z(n). Theorem In a drawing D of K,n on two sets {x, x } and V n, let the clockwise orders in which the edges leave x and x to go to V n be the elements a and b of S n. Then cr D d(a, b), and if n is odd then cr D is of the same parity than d(a, b). the electronic journal of combinatorics 10 (00), #N8
3 Kleitman proved the following equalities: Theorem cr(k 5,n )=4 n/ (n 1)/ (1) cr(k 6,n )=6 n/ (n 1)/. () From this he deduced that cr(k m,n ) (1/5)(m)(m 1) n/ (n 1)/ () in the following way: There are ( ) m K5,n which are subgraphs of K 5 m,n, with the partite with n vertices in the K 5,n being B. Let σ be the sum over all such K 5,n of the number of crossings that each of these K 5,n containinadrawingd. Obviously σ ( ) m 5 Z(5,n). Each crossing appears in exactly ( ) m K5,n. Therefore cr(k m,n ) ( m 5 ) Z(5,n) ( ) m cr(k m,n ) (1/5)(m)(m 1) n/ (n 1)/ We will obtain a small improvement on this lower bound for large values of n, withm 7, by proving that there is a number of K 5,n subgraphs of K m,n which must have more than Z(5,n) crossings in any drawing of K m,n The cyclic ordering of the edges around each b j B can be considered as a cyclic ordering of the elements of A, and therefore as an element of Sm. Suppose we have a K,m which first partite is {u 1,u } and second partite is {u 1,...,u m }. And let c(u 1 ) denote the cyclic ordering of the edges around u 1,andc(u ) denote the cyclic ordering of the edges around u. Woodall [] proved the following theorem: Theorem 4 If a good drawing of K,m has r crossings, there is a sequence Seq(u 1,u ) of r transpositions between adjacent elements in c(u 1 ), such that if we apply this sequence to c(u 1 ) we obtain c(u ), and there is a crossing in the K, subgraph of K,m on vertices u 1,u,u i,u i if and only if exactly one of the transpositions takes place between elements u i and u i in Seq(u 1,u ). (In a good drawing a K, can have one crossing at most.) We can now prove our first lemma: Lemma 1 In any K,7 subgraph of K(m, n) where the two vertices with 7 edges have the same cyclic ordering of edges, there is a K,4 subgraph which has 6 crossings. Proof :Let A beasubsetof7elementsofa, sayw 1,w,...,w 7 (for every l, w l = a k for some k). Let {b k,b l } be one partite of a K,7 subgraph G of K m,n and let A be the second partite. Now suppose c(b k )=c(b l )ing. Let W (b k,b l )bethesetofpairs{w i,w i } of elements of A such that there is a transposition exchanging w i and w i in Seq(b k,b l )inthe drawing of G. Letw y be one element of A,andletA = A \{w y }.LetA 1 be the set of the electronic journal of combinatorics 10 (00), #N8
4 elements a x of A such that {a x,w y } W (b k,b l )anda = A \ A 1. It is clear that every triple {w y,w z,w z } reverses its ordering between c(b k )and c(b l )= c(b k ), which implies that either all three pairs {w z,w z }, {w y,w z }, {w y,w z } belong to W (b k,b l )orexactlyone of these pairs belong to W (b k,b l ). Therefore, if a pair of elements {w z,w z } A either has both of its elements in A 1 or has both of its elements in A,then{w z,w z } W (b k,b l ). Either Card(A ) 4ornot. IfCard(A ) 4, every 4subset of A has 6 subsets that belong W (b k,b l ). If Card(A ) < 4, Card(A 1 ), and every subset of A 1 has  subset belong W (b k,b l ). Let A 1 be such a subset. Then A 1 U{w y} is a 4subset that has 6 subsets in W (b k,b l ). Therefore there exists a subgraph χ of G, having 6 crossings, where one partite is {b k,b l } and the other partite is a 4subset. There are distinct K,5 in G that have χ as a subgraph so each of them must have at least 6 crossings. We will also need the following lemma : Lemma Let D 5,z be an arbitrary drawing of some K 5,z and let t 0 be an element of the partite F with z elements and let T be the set of all elements of F having the same cyclic ordering of edges incident on them as t 0. The elements of T are t 0,t 1,... Let η be the number of pairs {t k T,t k T } such that cr D5,z (t k,t k ) 6 Z(, 5) +. Then Z(5,z)+η cr D5,z. Proof:Let h(t k ) be the sum of the number of crossings of the edges of t k with edges not incident on any vertex of T.Lett min be the element of T such that h(t min ) h(t k ) for all t k T. Using a construction used by Kleitman,[] ( Constructive Argument p19), we can obtain from D 5,z another drawing D 5,z where the position of the edges not incident on a vertex of T remains unchanged, and h(t k )=h(t min ) for all k, and cr D 5,z (t k,t k )=Z(, 5). (The construction mainly consists at placing t k close to t min and letting the edges incident on t k follow the path of the corresponding edges of t min.) Therefore Z(5,z)+η cr D 5,z +η cr D5,z Let θ be the number of distinct K,5 subgraphs of K m,n having at least 6 crossings in D and such that the partite with elements is a subset of B, and the partite with 5 elements is a subset of A, andletσ have the same definition as it had in the proof of (). Then σ ( ) m 5 Z(5,n)+θ. In the following lemma, A is defined in the same way as in the proof of Lemma 1. Lemma Let λ be the number of distinct pairs of elements of B having the same cyclic ordering of edges incident on an element of A. Then, if n 6!, we have ( ) n/6! λ (6!) the electronic journal of combinatorics 10 (00), #N8 4
5 Proof : Let α 1 and α be two distinct elements of (S7)andletn α1 be the number of vertices of B having the cyclic ordering of their edges equal to α 1 and let n α be the number of vertices of B having the cyclic ordering of their edges equal to α.ifn α1 n α, it is always possible to reduce the number of pairs of vertices having the same cyclic ordering of edges by assigning α to one of the vertices which cyclic ordering of edges was α 1.So the minimum possible number of pairs of vertices having the same cyclic ordering of edges can only occur if n α1 n α =1or n α1 n α = 0 for all {α 1,α } S7. Therefore ( ) n/6! λ (6!) Let ν be the minimum number of K,5 subgraphs of a K,7 whose number of crossings must be at least 6 when cyclic ordering of the 7 edges around the vertices of the partite with ) elements are identical. As noted previously ν =. is the number of K,7 subgraphs of K n,m in which a given K,5 appears. ( m 5 θ ( ) m 7 λν ( ) m 5 From the above we can deduce a new lower bound on the crossing number of K m,n. We have: cr(k m,n ) σ ) ( m ( ) m σ Z(5,n)+θ 5 ( ) ( ) ( ) m 5 Z(5,n)+λν m 7 / m 5 cr(k m,n ) ) (4) For sufficiently large m and n, we therefore have : ( m cr(k m,n ) (1/5)m(m 1) n/ (n 1)/ m n Conclusion In this paper, we have proved a new lower bound on the crossing number of K m,n by proving the existence of certain non optimal drawings of K 5,n subgraphs in any drawing of K m,n. By proving the existence of other non optimal drawings, we might perhaps get improvements on the current lower bound. So this method could be one possible way to progress on Zarankiewicz conjecture. the electronic journal of combinatorics 10 (00), #N8 5
6 References [1] R. K. Guy, The decline and fall of Zarankiewicz s theorem, Proof techniques in Graph Theory, F. Harary, ed. Academic Press, New York (1969), [] Daniel J. Kleitman, The crossing number of K 5,n, J. Combinatorial Theory 9 (1970), 15. [] D. R. Woodall, CyclicOrder Graphs and Zarankiewicz s crossing number conjecture, J. Graph Theory 17 (199), [4] R. Bruce Richter, Carsten Thomassen, Relations between crossing numbers of complete and complete bipartite graphs, The American Mathematical Monthly 104 (1997), the electronic journal of combinatorics 10 (00), #N8 6
Removing Even Crossings
EuroComb 2005 DMTCS proc. AE, 2005, 105 110 Removing Even Crossings Michael J. Pelsmajer 1, Marcus Schaefer 2 and Daniel Štefankovič 2 1 Department of Applied Mathematics, Illinois Institute of Technology,
More informationEvery tree contains a large induced subgraph with all degrees odd
Every tree contains a large induced subgraph with all degrees odd A.J. Radcliffe Carnegie Mellon University, Pittsburgh, PA A.D. Scott Department of Pure Mathematics and Mathematical Statistics University
More informationOn Integer Additive SetIndexers of Graphs
On Integer Additive SetIndexers of Graphs arxiv:1312.7672v4 [math.co] 2 Mar 2014 N K Sudev and K A Germina Abstract A setindexer of a graph G is an injective setvalued function f : V (G) 2 X such that
More information136 CHAPTER 4. INDUCTION, GRAPHS AND TREES
136 TER 4. INDUCTION, GRHS ND TREES 4.3 Graphs In this chapter we introduce a fundamental structural idea of discrete mathematics, that of a graph. Many situations in the applications of discrete mathematics
More informationCycles in a Graph Whose Lengths Differ by One or Two
Cycles in a Graph Whose Lengths Differ by One or Two J. A. Bondy 1 and A. Vince 2 1 LABORATOIRE DE MATHÉMATIQUES DISCRÉTES UNIVERSITÉ CLAUDEBERNARD LYON 1 69622 VILLEURBANNE, FRANCE 2 DEPARTMENT OF MATHEMATICS
More informationSHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH
31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,
More informationClass One: Degree Sequences
Class One: Degree Sequences For our purposes a graph is a just a bunch of points, called vertices, together with lines or curves, called edges, joining certain pairs of vertices. Three small examples of
More informationZachary Monaco Georgia College Olympic Coloring: Go For The Gold
Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Coloring the vertices or edges of a graph leads to a variety of interesting applications in graph theory These applications include various
More informationCOMBINATORIAL PROPERTIES OF THE HIGMANSIMS GRAPH. 1. Introduction
COMBINATORIAL PROPERTIES OF THE HIGMANSIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the HigmanSims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact
More informationOdd induced subgraphs in graphs of maximum degree three
Odd induced subgraphs in graphs of maximum degree three David M. Berman, Hong Wang, and Larry Wargo Department of Mathematics University of New Orleans New Orleans, Louisiana, USA 70148 Abstract A longstanding
More informationThe positive minimum degree game on sparse graphs
The positive minimum degree game on sparse graphs József Balogh Department of Mathematical Sciences University of Illinois, USA jobal@math.uiuc.edu András Pluhár Department of Computer Science University
More informationRemoving even crossings
Removing even crossings Michael J. Pelsmajer a, Marcus Schaefer b, Daniel Štefankovič c a Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA b Department of Computer
More informationMean RamseyTurán numbers
Mean RamseyTurán numbers Raphael Yuster Department of Mathematics University of Haifa at Oranim Tivon 36006, Israel Abstract A ρmean coloring of a graph is a coloring of the edges such that the average
More informationMidterm Practice Problems
6.042/8.062J Mathematics for Computer Science October 2, 200 Tom Leighton, Marten van Dijk, and Brooke Cowan Midterm Practice Problems Problem. [0 points] In problem set you showed that the nand operator
More informationGraphs without proper subgraphs of minimum degree 3 and short cycles
Graphs without proper subgraphs of minimum degree 3 and short cycles Lothar Narins, Alexey Pokrovskiy, Tibor Szabó Department of Mathematics, Freie Universität, Berlin, Germany. August 22, 2014 Abstract
More informationA 2factor in which each cycle has long length in clawfree graphs
A factor in which each cycle has long length in clawfree graphs Roman Čada Shuya Chiba Kiyoshi Yoshimoto 3 Department of Mathematics University of West Bohemia and Institute of Theoretical Computer Science
More informationOn three zerosum Ramseytype problems
On three zerosum Ramseytype problems Noga Alon Department of Mathematics Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv, Israel and Yair Caro Department of Mathematics
More informationHandout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs
MCS236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set
More informationA Sublinear Bipartiteness Tester for Bounded Degree Graphs
A Sublinear Bipartiteness Tester for Bounded Degree Graphs Oded Goldreich Dana Ron February 5, 1998 Abstract We present a sublineartime algorithm for testing whether a bounded degree graph is bipartite
More informationOn an antiramsey type result
On an antiramsey type result Noga Alon, Hanno Lefmann and Vojtĕch Rödl Abstract We consider antiramsey type results. For a given coloring of the kelement subsets of an nelement set X, where two kelement
More informationCycles and cliqueminors in expanders
Cycles and cliqueminors in expanders Benny Sudakov UCLA and Princeton University Expanders Definition: The vertex boundary of a subset X of a graph G: X = { all vertices in G\X with at least one neighbor
More informationOn the kpath cover problem for cacti
On the kpath cover problem for cacti Zemin Jin and Xueliang Li Center for Combinatorics and LPMC Nankai University Tianjin 300071, P.R. China zeminjin@eyou.com, x.li@eyou.com Abstract In this paper we
More informationON INDUCED SUBGRAPHS WITH ALL DEGREES ODD. 1. Introduction
ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD A.D. SCOTT Abstract. Gallai proved that the vertex set of any graph can be partitioned into two sets, each inducing a subgraph with all degrees even. We prove
More information8. Matchings and Factors
8. Matchings and Factors Consider the formation of an executive council by the parliament committee. Each committee needs to designate one of its members as an official representative to sit on the council,
More informationLabeling outerplanar graphs with maximum degree three
Labeling outerplanar graphs with maximum degree three Xiangwen Li 1 and Sanming Zhou 2 1 Department of Mathematics Huazhong Normal University, Wuhan 430079, China 2 Department of Mathematics and Statistics
More informationOn end degrees and infinite cycles in locally finite graphs
On end degrees and infinite cycles in locally finite graphs Henning Bruhn Maya Stein Abstract We introduce a natural extension of the vertex degree to ends. For the cycle space C(G) as proposed by Diestel
More informationSocial Media Mining. Graph Essentials
Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures
More informationRamsey numbers for bipartite graphs with small bandwidth
Ramsey numbers for bipartite graphs with small bandwidth Guilherme O. Mota 1,, Gábor N. Sárközy 2,, Mathias Schacht 3,, and Anusch Taraz 4, 1 Instituto de Matemática e Estatística, Universidade de São
More informationSingle machine parallel batch scheduling with unbounded capacity
Workshop on Combinatorics and Graph Theory 21th, April, 2006 Nankai University Single machine parallel batch scheduling with unbounded capacity Yuan Jinjiang Department of mathematics, Zhengzhou University
More informationExtremal Wiener Index of Trees with All Degrees Odd
MATCH Communications in Mathematical and in Computer Chemistry MATCH Commun. Math. Comput. Chem. 70 (2013) 287292 ISSN 03406253 Extremal Wiener Index of Trees with All Degrees Odd Hong Lin School of
More informationBOUNDARY EDGE DOMINATION IN GRAPHS
BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 04874, ISSN (o) 04955 www.imvibl.org /JOURNALS / BULLETIN Vol. 5(015), 19704 Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA
More informationLecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs
CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like
More informationA Turán Type Problem Concerning the Powers of the Degrees of a Graph
A Turán Type Problem Concerning the Powers of the Degrees of a Graph Yair Caro and Raphael Yuster Department of Mathematics University of HaifaORANIM, Tivon 36006, Israel. AMS Subject Classification:
More informationHigh degree graphs contain largestar factors
High degree graphs contain largestar factors Dedicated to László Lovász, for his 60th birthday Noga Alon Nicholas Wormald Abstract We show that any finite simple graph with minimum degree d contains a
More informationThe chromatic spectrum of mixed hypergraphs
The chromatic spectrum of mixed hypergraphs Tao Jiang, Dhruv Mubayi, Zsolt Tuza, Vitaly Voloshin, Douglas B. West March 30, 2003 Abstract A mixed hypergraph is a triple H = (X, C, D), where X is the vertex
More informationAll trees contain a large induced subgraph having all degrees 1 (mod k)
All trees contain a large induced subgraph having all degrees 1 (mod k) David M. Berman, A.J. Radcliffe, A.D. Scott, Hong Wang, and Larry Wargo *Department of Mathematics University of New Orleans New
More informationConnectivity and cuts
Math 104, Graph Theory February 19, 2013 Measure of connectivity How connected are each of these graphs? > increasing connectivity > I G 1 is a tree, so it is a connected graph w/minimum # of edges. Every
More informationIE 680 Special Topics in Production Systems: Networks, Routing and Logistics*
IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY) *Lecture notes from Network Flows by Ahuja, Magnanti
More informationDiscrete Mathematics & Mathematical Reasoning Chapter 10: Graphs
Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph
More informationDegreeassociated reconstruction parameters of complete multipartite graphs and their complements
Degreeassociated reconstruction parameters of complete multipartite graphs and their complements Meijie Ma, Huangping Shi, Hannah Spinoza, Douglas B. West January 23, 2014 Abstract Avertexdeleted subgraphofagraphgisacard.
More informationAnalysis of Algorithms, I
Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadthfirst search (BFS) 4 Applications
More informationTriangle deletion. Ernie Croot. February 3, 2010
Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,
More informationarxiv: v2 [math.co] 30 Nov 2015
PLANAR GRAPH IS ON FIRE PRZEMYSŁAW GORDINOWICZ arxiv:1311.1158v [math.co] 30 Nov 015 Abstract. Let G be any connected graph on n vertices, n. Let k be any positive integer. Suppose that a fire breaks out
More informationIntroduction to Graph Theory
Introduction to Graph Theory Allen Dickson October 2006 1 The Königsberg Bridge Problem The city of Königsberg was located on the Pregel river in Prussia. The river divided the city into four separate
More informationSEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS. Nickolay Khadzhiivanov, Nedyalko Nenov
Serdica Math. J. 30 (2004), 95 102 SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS Nickolay Khadzhiivanov, Nedyalko Nenov Communicated by V. Drensky Abstract. Let Γ(M) where M V (G) be the set of all vertices
More informationmost 4 Mirka Miller 1,2, Guillermo PinedaVillavicencio 3, The University of Newcastle Callaghan, NSW 2308, Australia University of West Bohemia
Complete catalogue of graphs of maimum degree 3 and defect at most 4 Mirka Miller 1,2, Guillermo PinedaVillavicencio 3, 1 School of Electrical Engineering and Computer Science The University of Newcastle
More informationPROBLEM SET 7: PIGEON HOLE PRINCIPLE
PROBLEM SET 7: PIGEON HOLE PRINCIPLE The pigeonhole principle is the following observation: Theorem. Suppose that > kn marbles are distributed over n jars, then one jar will contain at least k + marbles.
More informationComputer Science Department. Technion  IIT, Haifa, Israel. Itai and Rodeh [IR] have proved that for any 2connected graph G and any vertex s G there
 1  THREE TREEPATHS Avram Zehavi Alon Itai Computer Science Department Technion  IIT, Haifa, Israel Abstract Itai and Rodeh [IR] have proved that for any 2connected graph G and any vertex s G there
More informationA REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE. 1. Introduction and Preliminaries
Acta Math. Univ. Comenianae Vol. LXVI, 2(1997), pp. 285 291 285 A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE E. T. BASKORO, M. MILLER and J. ŠIRÁŇ Abstract. It is well known that Moore digraphs do
More informationOptimal Index Codes for a Class of Multicast Networks with Receiver Side Information
Optimal Index Codes for a Class of Multicast Networks with Receiver Side Information Lawrence Ong School of Electrical Engineering and Computer Science, The University of Newcastle, Australia Email: lawrence.ong@cantab.net
More informationExponential time algorithms for graph coloring
Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A klabeling of vertices of a graph G(V, E) is a function V [k].
More informationCS311H. Prof: Peter Stone. Department of Computer Science The University of Texas at Austin
CS311H Prof: Department of Computer Science The University of Texas at Austin Good Morning, Colleagues Good Morning, Colleagues Are there any questions? Logistics Class survey Logistics Class survey Homework
More informationTotal colorings of planar graphs with small maximum degree
Total colorings of planar graphs with small maximum degree Bing Wang 1,, JianLiang Wu, SiFeng Tian 1 Department of Mathematics, Zaozhuang University, Shandong, 77160, China School of Mathematics, Shandong
More informationUPPER BOUNDS ON THE L(2, 1)LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE
UPPER BOUNDS ON THE L(2, 1)LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE ANDREW LUM ADVISOR: DAVID GUICHARD ABSTRACT. L(2,1)labeling was first defined by Jerrold Griggs [Gr, 1992] as a way to use graphs
More informationPh.D. Thesis. Judit NagyGyörgy. Supervisor: Péter Hajnal Associate Professor
Online algorithms for combinatorial problems Ph.D. Thesis by Judit NagyGyörgy Supervisor: Péter Hajnal Associate Professor Doctoral School in Mathematics and Computer Science University of Szeged Bolyai
More informationBrendan D. McKay Computer Science Dept., Vanderbilt University, Nashville, Tennessee 37235
139. Proc. 3rd Car. Conf. Comb. & Comp. pp. 139143 SPANNING TREES IN RANDOM REGULAR GRAPHS Brendan D. McKay Computer Science Dept., Vanderbilt University, Nashville, Tennessee 37235 Let n~ < n2
More informationSPERNER S LEMMA AND BROUWER S FIXED POINT THEOREM
SPERNER S LEMMA AND BROUWER S FIXED POINT THEOREM ALEX WRIGHT 1. Intoduction A fixed point of a function f from a set X into itself is a point x 0 satisfying f(x 0 ) = x 0. Theorems which establish the
More informationLecture 17 : Equivalence and Order Relations DRAFT
CS/Math 240: Introduction to Discrete Mathematics 3/31/2011 Lecture 17 : Equivalence and Order Relations Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last lecture we introduced the notion
More informationLarge induced subgraphs with all degrees odd
Large induced subgraphs with all degrees odd A.D. Scott Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, England Abstract: We prove that every connected graph of order
More informationGraph theoretic techniques in the analysis of uniquely localizable sensor networks
Graph theoretic techniques in the analysis of uniquely localizable sensor networks Bill Jackson 1 and Tibor Jordán 2 ABSTRACT In the network localization problem the goal is to determine the location of
More informationProduct irregularity strength of certain graphs
Also available at http://amc.imfm.si ISSN 18553966 (printed edn.), ISSN 18553974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 7 (014) 3 9 Product irregularity strength of certain graphs Marcin Anholcer
More informationMinimum degree condition forcing complete graph immersion
Minimum degree condition forcing complete graph immersion Matt DeVos Department of Mathematics Simon Fraser University Burnaby, B.C. V5A 1S6 Jacob Fox Department of Mathematics MIT Cambridge, MA 02139
More informationOn Some Vertex Degree Based Graph Invariants
MATCH Communications in Mathematical and in Computer Chemistry MATCH Commun. Math. Comput. Chem. 65 (20) 723730 ISSN 03406253 On Some Vertex Degree Based Graph Invariants Batmend Horoldagva a and Ivan
More informationGraphical degree sequences and realizations
swap Graphical and realizations Péter L. Erdös Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences MAPCON 12 MPIPKS  Dresden, May 15, 2012 swap Graphical and realizations Péter L. Erdös
More informationTools for parsimonious edgecolouring of graphs with maximum degree three. J.L. Fouquet and J.M. Vanherpe. Rapport n o RR201010
Tools for parsimonious edgecolouring of graphs with maximum degree three J.L. Fouquet and J.M. Vanherpe LIFO, Université d Orléans Rapport n o RR201010 Tools for parsimonious edgecolouring of graphs
More informationSEMITOTAL AND TOTAL BLOCKCUTVERTEX GRAPH
CHAPTER 3 SEMITOTAL AND TOTAL BLOCKCUTVERTEX GRAPH ABSTRACT This chapter begins with the notion of block distances in graphs. Using block distance we defined the central tendencies of a block, like Bradius
More informationGraph Theory Problems and Solutions
raph Theory Problems and Solutions Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is
More informationON THE COMPLEXITY OF THE GAME OF SET. {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu
ON THE COMPLEXITY OF THE GAME OF SET KAMALIKA CHAUDHURI, BRIGHTEN GODFREY, DAVID RATAJCZAK, AND HOETECK WEE {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu ABSTRACT. Set R is a card game played with a
More informationSCORE SETS IN ORIENTED GRAPHS
Applicable Analysis and Discrete Mathematics, 2 (2008), 107 113. Available electronically at http://pefmath.etf.bg.ac.yu SCORE SETS IN ORIENTED GRAPHS S. Pirzada, T. A. Naikoo The score of a vertex v in
More informationDefinition 11.1. Given a graph G on n vertices, we define the following quantities:
Lecture 11 The Lovász ϑ Function 11.1 Perfect graphs We begin with some background on perfect graphs. graphs. First, we define some quantities on Definition 11.1. Given a graph G on n vertices, we define
More informationApproximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs
Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Yong Zhang 1.2, Francis Y.L. Chin 2, and HingFung Ting 2 1 College of Mathematics and Computer Science, Hebei University,
More informationTreerepresentation of set families and applications to combinatorial decompositions
Treerepresentation of set families and applications to combinatorial decompositions BinhMinh BuiXuan a, Michel Habib b Michaël Rao c a Department of Informatics, University of Bergen, Norway. buixuan@ii.uib.no
More informationTenacity and rupture degree of permutation graphs of complete bipartite graphs
Tenacity and rupture degree of permutation graphs of complete bipartite graphs Fengwei Li, Qingfang Ye and Xueliang Li Department of mathematics, Shaoxing University, Shaoxing Zhejiang 312000, P.R. China
More informationCycle transversals in bounded degree graphs
Electronic Notes in Discrete Mathematics 35 (2009) 189 195 www.elsevier.com/locate/endm Cycle transversals in bounded degree graphs M. Groshaus a,2,3 P. Hell b,3 S. Klein c,1,3 L. T. Nogueira d,1,3 F.
More information3. Eulerian and Hamiltonian Graphs
3. Eulerian and Hamiltonian Graphs There are many games and puzzles which can be analysed by graph theoretic concepts. In fact, the two early discoveries which led to the existence of graphs arose from
More informationBest Monotone Degree Bounds for Various Graph Parameters
Best Monotone Degree Bounds for Various Graph Parameters D. Bauer Department of Mathematical Sciences Stevens Institute of Technology Hoboken, NJ 07030 S. L. Hakimi Department of Electrical and Computer
More informationSpecial Classes of Divisor Cordial Graphs
International Mathematical Forum, Vol. 7,, no. 35, 737749 Special Classes of Divisor Cordial Graphs R. Varatharajan Department of Mathematics, Sri S.R.N.M. College Sattur  66 3, Tamil Nadu, India varatharajansrnm@gmail.com
More information(Refer Slide Time: 01.26)
Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture # 27 Pigeonhole Principle In the next few lectures
More informationMax Flow, Min Cut, and Matchings (Solution)
Max Flow, Min Cut, and Matchings (Solution) 1. The figure below shows a flow network on which an st flow is shown. The capacity of each edge appears as a label next to the edge, and the numbers in boxes
More informationV. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005
V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer
More informationThe Clar Structure of Fullerenes
The Clar Structure of Fullerenes Liz Hartung Massachusetts College of Liberal Arts June 12, 2013 Liz Hartung (Massachusetts College of Liberal Arts) The Clar Structure of Fullerenes June 12, 2013 1 / 25
More informationThe Open University s repository of research publications and other research outputs
Open Research Online The Open University s repository of research publications and other research outputs The degreediameter problem for circulant graphs of degree 8 and 9 Journal Article How to cite:
More informationDegree Hypergroupoids Associated with Hypergraphs
Filomat 8:1 (014), 119 19 DOI 10.98/FIL1401119F Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Degree Hypergroupoids Associated
More informationSUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by
SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples
More informationA simple criterion on degree sequences of graphs
Discrete Applied Mathematics 156 (2008) 3513 3517 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Note A simple criterion on degree
More informationCOUNTING INDEPENDENT SETS IN SOME CLASSES OF (ALMOST) REGULAR GRAPHS
COUNTING INDEPENDENT SETS IN SOME CLASSES OF (ALMOST) REGULAR GRAPHS Alexander Burstein Department of Mathematics Howard University Washington, DC 259, USA aburstein@howard.edu Sergey Kitaev Mathematics
More informationTransportation Polytopes: a Twenty year Update
Transportation Polytopes: a Twenty year Update Jesús Antonio De Loera University of California, Davis Based on various papers joint with R. Hemmecke, E.Kim, F. Liu, U. Rothblum, F. Santos, S. Onn, R. Yoshida,
More informationA Study of Sufficient Conditions for Hamiltonian Cycles
DeLeon 1 A Study of Sufficient Conditions for Hamiltonian Cycles Melissa DeLeon Department of Mathematics and Computer Science Seton Hall University South Orange, New Jersey 07079, U.S.A. ABSTRACT A graph
More informationFinding and counting given length cycles
Finding and counting given length cycles Noga Alon Raphael Yuster Uri Zwick Abstract We present an assortment of methods for finding and counting simple cycles of a given length in directed and undirected
More informationEuler Paths and Euler Circuits
Euler Paths and Euler Circuits An Euler path is a path that uses every edge of a graph exactly once. An Euler circuit is a circuit that uses every edge of a graph exactly once. An Euler path starts and
More informationCacti with minimum, secondminimum, and thirdminimum Kirchhoff indices
MATHEMATICAL COMMUNICATIONS 47 Math. Commun., Vol. 15, No. 2, pp. 4758 (2010) Cacti with minimum, secondminimum, and thirdminimum Kirchhoff indices Hongzhuan Wang 1, Hongbo Hua 1, and Dongdong Wang
More informationResource Allocation with Time Intervals
Resource Allocation with Time Intervals Andreas Darmann Ulrich Pferschy Joachim Schauer Abstract We study a resource allocation problem where jobs have the following characteristics: Each job consumes
More informationMaking life easier for firefighters
Making life easier for firefighters Fedor V. Fomin, Pinar Heggernes, and Erik Jan van Leeuwen Department of Informatics, University of Bergen, Norway {fedor.fomin, pinar.heggernes, e.j.van.leeuwen}@ii.uib.no
More informationOn the independence number of graphs with maximum degree 3
On the independence number of graphs with maximum degree 3 Iyad A. Kanj Fenghui Zhang Abstract Let G be an undirected graph with maximum degree at most 3 such that G does not contain any of the three graphs
More informationMDegrees of QuadrangleFree Planar Graphs
MDegrees of QuadrangleFree Planar Graphs Oleg V. Borodin, 1 Alexandr V. Kostochka, 1,2 Naeem N. Sheikh, 2 and Gexin Yu 3 1 SOBOLEV INSTITUTE OF MATHEMATICS NOVOSIBIRSK 630090, RUSSIA Email: brdnoleg@math.nsc.ru
More informationThe Goldberg Rao Algorithm for the Maximum Flow Problem
The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }
More informationPermutation Betting Markets: Singleton Betting with Extra Information
Permutation Betting Markets: Singleton Betting with Extra Information Mohammad Ghodsi Sharif University of Technology ghodsi@sharif.edu Hamid Mahini Sharif University of Technology mahini@ce.sharif.edu
More informationShortcut sets for plane Euclidean networks (Extended abstract) 1
Shortcut sets for plane Euclidean networks (Extended abstract) 1 J. Cáceres a D. Garijo b A. González b A. Márquez b M. L. Puertas a P. Ribeiro c a Departamento de Matemáticas, Universidad de Almería,
More informationOnline Ramsey numbers
Online Ramsey numbers David Conlon Abstract Consider the following game between two players, Builder and Painter Builder draws edges one at a time and Painter colours them, in either red or blue, as each
More information