P. Jeyanthi and N. Angel Benseera

Size: px
Start display at page:

Download "P. Jeyanthi and N. Angel Benseera"

Transcription

1 Opuscula Math. 34, no. 1 (014), Opuscula Mathematica A TOTALLY MAGIC CORDIAL LABELING OF ONE-POINT UNION OF n COPIES OF A GRAPH P. Jeyanthi and N. Angel Benseera Communicated by Dalibor Fronček Abstract. A graph G is said to have a totally magic cordial (TMC) labeling with constant C if there exists a mapping f : V (G) E(G) 0, 1} such that f(a)+f(b)+f(ab) C(mod ) for all ab E(G) and n f (0) n f (1) 1, where n f (i) (i = 0, 1) is the sum of the number of vertices and edges with label i. In this paper, we establish the totally magic cordial labeling of one-point union of n-copies of cycles, complete graphs and wheels. Keywords: totally magic cordial labeling, one-point union of graphs. Mathematics Subject Classification: 05C INTRODUCTION All graphs considered here are finite, simple and undirected. The set of vertices and edges of a graph G is denoted by V (G) and E(G) respectively. Let p = V (G) and q = E(G). A general reference for graph theoretic ideas can be seen in [3]. The concept of cordial labeling was introduced by Cahit [1]. A binary vertex labeling f : V (G) 0, 1} induces an edge labeling f : E(G) 0, 1} defined by f (uv) = f(u) f(v). Such labeling is called cordial if the conditions v f (0) v f (1) 1 and e f (0) e f (1) 1 are satisfied, where v f (i) and e f (i) (i = 0, 1) are the number of vertices and edges with label i respectively. A graph is called cordial if it admits a cordial labeling. The cordiality of a one-point union of n copies of graphs is given in [6]. Kotzig and Rosa introduced the concept of edge-magic total labeling in [5]. A bijection f : V (G) E(G) 1,, 3,..., p + q} is called an edge-magic total labeling of G if f(x) + f(xy) + f(y) is constant (called the magic constant of f) for every edge xy of G. The graph that admits this labeling is called an edge-magic total graph. The notion of totally magic cordial (TMC) labeling was due to Cahit [] as a modification of edge magic total labeling and cordial labeling. A graph G is said to have TMC labeling with constant C if there exists a mapping f : V (G) E(G) 0, 1} c AGH University of Science and Technology Press, Krakow

2 116 P. Jeyanthi and N. Angel Benseera such that f(a) + f(b) + f(ab) C(mod ) for all ab E(G) and n f (0) n f (1) 1, where n f (i) (i = 0, 1) is the sum of the number of vertices and edges with label i. A rooted graph is a graph in which one vertex is named in a special way so as to distinguish it from other nodes. The special node is called the root of the graph. Let G be a rooted graph. The graph obtained by identifying the roots of n copies of G is called the one-point union of n copies of G and is denoted by G (n). In this paper, we establish the TMC labeling of a one-point union of n-copies of cycles, complete graphs and wheels.. MAIN RESULTS In this section, we present sufficient conditions for a one-point union of n copies of a rooted graph to be TMC and also obtain conditions under which a one-point union of n copies of graphs such as a cycle, complete graph and wheel are TMC graphs. We relate the TMC labeling of a one-point union of n copies of a rooted graph to the solution of a system which involves an equation and an inequality. Theorem.1. Let G be a graph rooted at a vertex u and for i = 1,,..., k, f i : V (G) E(G) 0, 1} be such that f i (a) + f i (b) + f i (ab) C(mod ) for all ab E(G) and f i (u) = 0. Let n fi (0) = α i, n fi (1) = β i for i = 1,,..., k. Then the one-point union G (n) of n copies of G is TMC if the system (.1) has a nonnegative integral solution for the x i s: k k k (α i 1)x i β i x i and x i = n. (.1) i=1 i=1 Proof. Suppose x i = δ i, i = 1,,..., k, is a nonnegative integral solution of system (.1). Then we label the δ i copies of G in G (n) with f i (i = 1,,..., k). As each of these copies has the property f i (a) + f i (b) + f i (ab) C(mod ) and f i (u) = 0 for all i = 1,,..., k, G (n) is TMC. Corollary.. Let G be a graph rooted at a vertex u and f be a labeling such that f(a)+f(b)+f(ab) C(mod ) for all ab E(G) and f(u) = 0. If n f (0) = n f (1)+1, then G (n) is TMC for all n 1. Example.3. One point union of a path is TMC. Corollary.4. Let G be a graph rooted at u. Let f i, i = 1,, 3 be labelings of G such that f i (a) + f i (b) + f i (ab) C(mod ) for all ab E(G), f i (u) = 0 and γ i = α i β i. 1. If γ 1 = and γ =, then G (n) is TMC for all n 1(mod 4).. If either a) γ 1 = 1 and γ = 3, or b) γ 1 = 4, γ = and γ 3 = 4, or c) γ 1 = 3, γ = 3 and γ 3 = 5, then G (n) is TMC for all n If γ 1 = 0 and γ = 4, then G (n) is TMC for all n 3(mod 4). i=1

3 A totally magic cordial labeling of one-point union of n copies of a graph 117 Proof. (1) The system (.1) in Theorem.1 becomes 3x 1 + x + 1 1, x 1 +x = n. When n = 4t, x 1 = t and x = 3t is the solution. When n = 4t + 1, the system has no solution. When n = 4t +, x 1 = t + 1 and x = 3t + 1 is the solution. When n = 4t + 3, x 1 = t + 1 and x = 3t + is the solution. Hence, by Theorem.1, G (n) is TMC for all n 1(mod 4). (a). The system (.1) in Theorem.1 becomes x 1 + x + 1 1, x 1 +x = n. When n = t, x 1 = t and x = t is the solution. When n = t + 1, x 1 = t + 1 and x = t is the solution. Hence, by Theorem.1, G (n) is TMC for all n 1. The other parts can similarly be proved. 3. ONE-POINT UNION OF CYCLES Let C m be a cycle of order m. Let and V (C m ) = v i 1 i m} E(C m ) = v i v i+1 1 i < m} v m v 1 }. We consider C m as a rooted graph with the vertex v 1 as its root. Theorem 3.1. Let C m (n) be the one-point union of n copies of a cycle C m. Then C m (n) is TMC for all m 3 and n 1. Proof. Define the labelings f 1 and f from V (C m ) E(C m ) into 0, 1} as follows: f 1 (v i ) = 0 for 1 i m, f 1 (v i v i+1 ) = 1 for 1 i < m, f 1 (v m v 1 ) = 1, 1 i m and 1 if i = m, 1 if 1 i < m 1, f (v i ) = f (v i v i+1 ) = 0 if i m, 0 if i = m 1, and f (v m v 1 ) = 0. Then α 1 = m, β 1 = m, α = m + 1 and β = m 1. Thus system (.1) in Theorem.1 becomes x 1 + x + 1 1, x 1 + x = n. When n = t, x 1 = t and x = t is the solution. When n = t + 1, x 1 = t + 1 and x = t is the solution. Hence, by Theorem.1, C m (n) is TMC for all m 3 and n ONE-POINT UNION OF COMPLETE GRAPHS Let K m be a complete graph of order m. Let and V (K m ) = v i 1 i m} E(K m ) = v i v j i j, 1 i m, 1 j m}. We consider K m as a rooted graph with the vertex v 1 as its root. Let f : V (K m ) E(K m ) 0, 1} be a TMC labeling of K m. Without loss of generality, assume C = 1.

4 118 P. Jeyanthi and N. Angel Benseera Then for any edge e = uv E(K m ), we have either f(e) = f(u) = f(v) = 1 or f(e) = f(u) = 0 and f(v) = 1 or f(e) = f(v) = 0 and f(u) = 1 or f(u) = f(v) = 0 and f(e) = 1. Thus, under the labeling f, the graph K m can be decomposed as K m = K p K r K p,r where K p is the sub-complete graph in which all the vertices and edges are labeled with 1, K r is the sub-complete graph in which all the vertices are labeled with 0 and edges are labeled with 1 and K p,r is the complete bipartite subgraph of K m with the bipartition V (K p ) V (K r ) and its edges are labeled with 0. Then we find n f (0) = r + pr and n f (1) = p +r +p r. Table 1. Possible values of α i and β i for distinct labelings of K m i p r α i β i 1 0 m m 1 m-1 (m 1) 3 m- 3 (m ) 4 3 m-3 4 (m 3) m+1 m 1 m+1 m 1 m+1 m m m 3m+4 m 5m+1 m 7m+4 [ ( m 1 ) +( m+1 ) + m 1 + m+1 ] Table 1 gives the possible values of α i and β i for distinct labelings f i of K m such that f i (a) + f i (b) + f i (ab) 1(mod ) for all ab E(K m ). Theorem 4.1. Let K m (n) be the one-point union of n copies of a complete graph K m. If m 1 has an integer value, then K m (n) is TMC for m 1, (mod 4). Proof. Let f : V (K m ) E(K m ) 0, 1} be a TMC labeling of K m. Under the labeling f, the graph K m can be decomposed as K m = K p K r K p,r. Then we have, n f (0) = r + pr and n f (1) = p +r +p r. By Corollary., K m (n) is TMC if n f (0) = n f (1) + 1. Whenever, [ n f (0) = n f (1) + 1, p + p(1 r) + r 3r + = 0. This implies that r = 1 ] (m + 1) ± m 1 as p = m r. Also, nf (0) = n f (1) + 1 is possible only when m 1, (mod 4). Therefore, K m (n) is TMC for m 1, (mod 4), if m 1 has an integer value Theorem 4. ([4]). Let G be an odd graph with p + q (mod 4). Then G is not TMC. Theorem 4.3. Let K (n) m be the one-point union of n copies of a complete graph K m. (i) If m 0(mod 8), then K m (n) is not TMC for n 3(mod 4). (ii) If m 4(mod 8), then K m (n) is not TMC for n 1(mod 4). Proof. Clearly, p = V (Km) n = n(m 1) + 1 and q = E(Km) n = nm(m 1) so that p + q = n(m 1)(m+) + 1. Part (i) Assume m = 8k and n = 4l + 3. Since the degree of every vertex is odd and

5 A totally magic cordial labeling of one-point union of n copies of a graph 119 p + q (mod 4), it follows from Theorem 4. that K m (n) Part (ii) can similarly be proved. Theorem 4.4. K (n) 4 is TMC if and only if n 1(mod 4). is not TMC. Proof. Necessity follows from Theorem 4.3 and for sufficiency we define the labelings f 1 and f as follows: f 1 (v i ) = 0 for 1 i 4, f 1 (v i v j ) = 1 for 1 i, j 4 and under the labeling f decompose K 4 as K 1 K 3 K 1,3. From Table 1, we observe that α 1 = 4, β 1 = 6, α = 6 and β = 4. Therefore, by Corollary.4 (1), K (n) 4 is TMC if n 1(mod 4). Theorem 4.5. K (n) 5 is TMC for all n 1. Proof. Define f : V (K (n) 5 ) E(K (n) 5 ) 0, 1} as follows: 0 if i 5, f(v i ) = 1 if i = 5 and f(v i v j ) = 1 if 1 i, j 4, 0 if i = 5 or j = 5. Clearly, α = β + 1 = 8. Therefore, by Corollary., K (n) 5 is TMC for all n 1. Theorem 4.6. K (n) 6 is TMC for all n 1. Proof. Let f 1 and f be the labelings from V (K (n) 6 ) E(K (n) 6 ) into 0, 1}. Then, under the labelings f 1 and f the graph K 6 can be decomposed as K 1 K 5 K 1,5 and K K 4 K,4 respectively. Clearly, α 1 = 10, β 1 = 11, α = 1 and β = 9. Hence, by Corollary.4 (a), K (n) 6 is TMC for all n 1. Theorem 4.7. K (n) 7 is TMC for all n 1. Proof. Let f 1, f and f 3 be the labelings from V (K (n) 7 ) E(K (n) 7 ) into 0, 1}. Then under the labelings f 1, f and f 3 the graph K 7 can be decomposed as K 3 K 4 K 3,4, K 4 K 3 K 4,3 and K 5 K K 5, respectively. We observe that α 1 = 16, β 1 = 1, α = 15, β = 13, α 3 = 1 and β 3 = 16. Hence, by Corollary.4 (b), K (n) 7 is TMC for all n 1. Theorem 4.8. K (n) 8 is TMC if and only if n 3(mod 4). Proof. Necessity follows from Theorem 4.3 and for sufficiency we define the labelings f 1 and f as follows: under the labelings f 1 and f the graph K 8 can be decomposed as K K 6 K,6 and K 3 K 5 K 3,5 respectively. Clearly, α 1 = 18, β 1 = 18, α = 0 and β = 16. Hence, by Corollary.4 (3), K (n) 8 is TMC if n 3(mod 4). Theorem 4.9. K (n) 9 is TMC for all n 1.

6 10 P. Jeyanthi and N. Angel Benseera Proof. Under the labelings f 1, f and f 3 the graph K 9 can be decomposed as K K 7 K,7, K 3 K 6 K 3,6 and K 4 K 5 K 4,5 respectively. We observe that α 1 = 1, β 1 = 4, α = 4, β = 1, α 3 = 5 and β 3 = 0. Therefore, by Corollary.4 (c), the graph K (n) 9 is TMC for all n ONE-POINT UNION OF WHEELS A wheel W m is obtained by joining the vertices v 1, v,..., v m of a cycle C m to an extra vertex v called the centre. We consider W m as a rooted graph with v as its root. Theorem 5.1. Let W (n) m be the one-point union of n copies of a wheel W m. (i) If m 0(mod 4), then W m (n) is TMC for all n 1. (ii) If m 1(mod 4), then W m (n) is TMC for n 3(mod 4). (iii) If m (mod 4), then W m (n) is TMC for all n 1. (iv) If m 3(mod 4), then W m (n) is TMC for n 1(mod 4). Proof. Define the labelings f 1,f,f 3,f 4 and f 5 as follows: f j (v) = 0 for j = 1,, 3, 4, 5. f 1 (v m v 1 ) = 0, f 1 (v i ) = 1 if i 0(mod 4), 0 if i 0(mod 4), f 1 (v i v i+1 ) = 1 if i 1, (mod 4), 0 if i 0, 3(mod 4) and f 1 (vv i ) = 1 if i 0(mod 4), 0 if i 0(mod 4). f (v i ) = f (v i v i+1 ) = 1, f (vv i ) = 0 for i = 1,,..., m and f (v m v 1 ) = 1. f 3 (v i ) = f 1 (v i ), f 3 (v i v i+1 ) = f 1 (v i v i+1 ), f 3 (vv i ) = f 1 (vv i ) for i = 1,,..., m and f 3 (v m v 1 ) = 1. f 4 (v 1 ) = 1, f 4 (v 1 v ) = f 4 (v m v 1 ) = 0, f 4 (v i ) = f 3 (v i ), f 4 (v i v i+1 ) = f 3 (v i v i+1 ), f 4 (vv i ) = f 3 (vv i ) for i =, 3,..., m and f 4 (vv 1 ) = 0. f 5 (v i ) = 1 if i 1(mod ), 0 if i 0(mod ), f 5 (vv i ) = 0 if i 1(mod ), 1 if i 0(mod ), f 5 (v i v i+1 ) = f 5 (v m v 1 ) = 0. Case 1. m 0 (mod 4). If we consider the labeling f 1 we have, n f1 (0) = n f1 (1) + 1. Then, by Corollary., W m (n) is TMC for all n 1. Case. m 1 (mod 4). If we consider the labelings f, f 3 and f 4. We have α = 3m+1, β = 3m+1, α 3 = 3m+5, β 3, α 4 = m + 1, β 4 = m. Then, system (.1) in Theorem.1 becomes x + 3x 3 (m + 1)x , x + x 3 + x 4 = n. When n = 4t, x = 3t, x 3 = t, x 4 = 0 is a solution. When n = 4t + 1, x = 3t + 1, x 3 = t, x 4 = 0 is a solution. When = 3m 3 n = 4t +, x = 3t +, x 3 = t, x 4 = 0 is a solution. When n = 4t + 3, the system has no solution. Hence, by Theorem.1, W (n) m is TMC if n 3(mod 4).

7 A totally magic cordial labeling of one-point union of n copies of a graph 11 Case 3. m (mod 4). If we consider the labelings f, f 3, f 4 and f 5, we have α = m+1, β = m, α 3 = 3m, β 3 = 3m+, α 4 = 3m+4, β 4 = 3m, α 5 = m + 1, β 5 = m. Thus, system (.1) in Theorem.1 becomes mx x 3 + x 4 + mx , x + x 3 + x 4 + x 5 = n. When n = 4t, x = x 3 = x 4 = x 5 = t is a solution. When n = 4t + 1, x = t, x 3 = t + 1, x 4 = t, x 5 = t is a solution. When n = 4t +, x = t + 1, x = t, x 4 = t, x 5 = t + 1 is a solution. When n = 4t + 3, x = t + 1, x 3 = t + 1, x 4 = t, x 5 = t + 1 is a solution. Hence, by Theorem.1, W (n) m is TMC for all n 1. Case 4. m 3 (mod 4). If we consider the labelings f 3 and f 4. We have α 3 = 3m 1, β 3 = 3m+3, α 4 = 3m+3 and β 4 = 3m 1. Therefore, system (.1) in Theorem.1 becomes, 3x 3 + x , x 3 + x 4 = n. When n = 4t, x 3 = t, x 4 = 3t is a solution. When n = 4t + 1,the system has no solution. When n = 4t +, x 3 = t + 1, x 4 = 3t + 1 is a solution. When n = 4t + 3, x 3 = t + 1, x 4 = 3t + is a solution. Hence, by Theorem.1, W m (n) is TMC if n 1(mod 4). Acknowledgments The authors sincerely thank the referee for the valuable suggestions which were used in this paper. REFERENCES [1] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combin. 3 (1987), [] I. Cahit, Some totally modular cordial graphs, Discuss. Math. Graph Theory (00), [3] F. Harary, Graph Theory, Addison-Wesley Publishing Co., [4] P. Jeyanthi, N. Angel Benseera, Totally magic cordial labeling for some graphs (preprint). [5] A. Kotzig, A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970) 4, [6] Sze-Chin Shee, Yong-Song Ho, The cordiality of one-point union of n copies of a graph, Discrete Math. 117 (1993), P. Jeyanthi jeyajeyanthi@rediffmail.com Research Center Department of Mathematics Govindammal Aditanar College for Women Tiruchendur 68 15, India

8 1 P. Jeyanthi and N. Angel Benseera N. Angel Benseera Department of Mathematics Sri Meenakshi Government Arts College for Women (Autonomous) Madurai 65 00, India Received: June 10, 013. Revised: September 14, 013. Accepted: September 1, 013.

On Integer Additive Set-Indexers of Graphs

On Integer Additive Set-Indexers of Graphs On Integer Additive Set-Indexers of Graphs arxiv:1312.7672v4 [math.co] 2 Mar 2014 N K Sudev and K A Germina Abstract A set-indexer of a graph G is an injective set-valued function f : V (G) 2 X such that

More information

Tools for parsimonious edge-colouring of graphs with maximum degree three. J.L. Fouquet and J.M. Vanherpe. Rapport n o RR-2010-10

Tools for parsimonious edge-colouring of graphs with maximum degree three. J.L. Fouquet and J.M. Vanherpe. Rapport n o RR-2010-10 Tools for parsimonious edge-colouring of graphs with maximum degree three J.L. Fouquet and J.M. Vanherpe LIFO, Université d Orléans Rapport n o RR-2010-10 Tools for parsimonious edge-colouring of graphs

More information

6.2 Permutations continued

6.2 Permutations continued 6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of

More information

SCORE SETS IN ORIENTED GRAPHS

SCORE SETS IN ORIENTED GRAPHS Applicable Analysis and Discrete Mathematics, 2 (2008), 107 113. Available electronically at http://pefmath.etf.bg.ac.yu SCORE SETS IN ORIENTED GRAPHS S. Pirzada, T. A. Naikoo The score of a vertex v in

More information

Lecture 16 : Relations and Functions DRAFT

Lecture 16 : Relations and Functions DRAFT CS/Math 240: Introduction to Discrete Mathematics 3/29/2011 Lecture 16 : Relations and Functions Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT In Lecture 3, we described a correspondence

More information

SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS. Nickolay Khadzhiivanov, Nedyalko Nenov

SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS. Nickolay Khadzhiivanov, Nedyalko Nenov Serdica Math. J. 30 (2004), 95 102 SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS Nickolay Khadzhiivanov, Nedyalko Nenov Communicated by V. Drensky Abstract. Let Γ(M) where M V (G) be the set of all vertices

More information

FALSE ALARMS IN FAULT-TOLERANT DOMINATING SETS IN GRAPHS. Mateusz Nikodem

FALSE ALARMS IN FAULT-TOLERANT DOMINATING SETS IN GRAPHS. Mateusz Nikodem Opuscula Mathematica Vol. 32 No. 4 2012 http://dx.doi.org/10.7494/opmath.2012.32.4.751 FALSE ALARMS IN FAULT-TOLERANT DOMINATING SETS IN GRAPHS Mateusz Nikodem Abstract. We develop the problem of fault-tolerant

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

CS 598CSC: Combinatorial Optimization Lecture date: 2/4/2010

CS 598CSC: Combinatorial Optimization Lecture date: 2/4/2010 CS 598CSC: Combinatorial Optimization Lecture date: /4/010 Instructor: Chandra Chekuri Scribe: David Morrison Gomory-Hu Trees (The work in this section closely follows [3]) Let G = (V, E) be an undirected

More information

BOUNDARY EDGE DOMINATION IN GRAPHS

BOUNDARY EDGE DOMINATION IN GRAPHS BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 0-4874, ISSN (o) 0-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 5(015), 197-04 Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA

More information

Labeling outerplanar graphs with maximum degree three

Labeling outerplanar graphs with maximum degree three Labeling outerplanar graphs with maximum degree three Xiangwen Li 1 and Sanming Zhou 2 1 Department of Mathematics Huazhong Normal University, Wuhan 430079, China 2 Department of Mathematics and Statistics

More information

8. Matchings and Factors

8. Matchings and Factors 8. Matchings and Factors Consider the formation of an executive council by the parliament committee. Each committee needs to designate one of its members as an official representative to sit on the council,

More information

The Mean Value Theorem

The Mean Value Theorem The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers

More information

An inequality for the group chromatic number of a graph

An inequality for the group chromatic number of a graph An inequality for the group chromatic number of a graph Hong-Jian Lai 1, Xiangwen Li 2 and Gexin Yu 3 1 Department of Mathematics, West Virginia University Morgantown, WV 26505 USA 2 Department of Mathematics

More information

Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

More information

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +... 6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence

More information

Degree Hypergroupoids Associated with Hypergraphs

Degree Hypergroupoids Associated with Hypergraphs Filomat 8:1 (014), 119 19 DOI 10.98/FIL1401119F Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Degree Hypergroupoids Associated

More information

An inequality for the group chromatic number of a graph

An inequality for the group chromatic number of a graph Discrete Mathematics 307 (2007) 3076 3080 www.elsevier.com/locate/disc Note An inequality for the group chromatic number of a graph Hong-Jian Lai a, Xiangwen Li b,,1, Gexin Yu c a Department of Mathematics,

More information

A 2-factor in which each cycle has long length in claw-free graphs

A 2-factor in which each cycle has long length in claw-free graphs A -factor in which each cycle has long length in claw-free graphs Roman Čada Shuya Chiba Kiyoshi Yoshimoto 3 Department of Mathematics University of West Bohemia and Institute of Theoretical Computer Science

More information

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH 31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,

More information

Class One: Degree Sequences

Class One: Degree Sequences Class One: Degree Sequences For our purposes a graph is a just a bunch of points, called vertices, together with lines or curves, called edges, joining certain pairs of vertices. Three small examples of

More information

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)! Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

More information

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

More information

Math 55: Discrete Mathematics

Math 55: Discrete Mathematics Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What

More information

On three zero-sum Ramsey-type problems

On three zero-sum Ramsey-type problems On three zero-sum Ramsey-type problems Noga Alon Department of Mathematics Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv, Israel and Yair Caro Department of Mathematics

More information

Total colorings of planar graphs with small maximum degree

Total colorings of planar graphs with small maximum degree Total colorings of planar graphs with small maximum degree Bing Wang 1,, Jian-Liang Wu, Si-Feng Tian 1 Department of Mathematics, Zaozhuang University, Shandong, 77160, China School of Mathematics, Shandong

More information

On the k-path cover problem for cacti

On the k-path cover problem for cacti On the k-path cover problem for cacti Zemin Jin and Xueliang Li Center for Combinatorics and LPMC Nankai University Tianjin 300071, P.R. China zeminjin@eyou.com, x.li@eyou.com Abstract In this paper we

More information

On one-factorizations of replacement products

On one-factorizations of replacement products Filomat 27:1 (2013), 57 63 DOI 10.2298/FIL1301057A Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat On one-factorizations of replacement

More information

Lecture 13 - Basic Number Theory.

Lecture 13 - Basic Number Theory. Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted

More information

3. Eulerian and Hamiltonian Graphs

3. Eulerian and Hamiltonian Graphs 3. Eulerian and Hamiltonian Graphs There are many games and puzzles which can be analysed by graph theoretic concepts. In fact, the two early discoveries which led to the existence of graphs arose from

More information

Outline 2.1 Graph Isomorphism 2.2 Automorphisms and Symmetry 2.3 Subgraphs, part 1

Outline 2.1 Graph Isomorphism 2.2 Automorphisms and Symmetry 2.3 Subgraphs, part 1 GRAPH THEORY LECTURE STRUCTURE AND REPRESENTATION PART A Abstract. Chapter focuses on the question of when two graphs are to be regarded as the same, on symmetries, and on subgraphs.. discusses the concept

More information

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem

More information

Triangle deletion. Ernie Croot. February 3, 2010

Triangle deletion. Ernie Croot. February 3, 2010 Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,

More information

Product irregularity strength of certain graphs

Product irregularity strength of certain graphs Also available at http://amc.imfm.si ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 7 (014) 3 9 Product irregularity strength of certain graphs Marcin Anholcer

More information

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the Higman-Sims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact

More information

A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE. 1. Introduction and Preliminaries

A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE. 1. Introduction and Preliminaries Acta Math. Univ. Comenianae Vol. LXVI, 2(1997), pp. 285 291 285 A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE E. T. BASKORO, M. MILLER and J. ŠIRÁŇ Abstract. It is well known that Moore digraphs do

More information

Every tree contains a large induced subgraph with all degrees odd

Every tree contains a large induced subgraph with all degrees odd Every tree contains a large induced subgraph with all degrees odd A.J. Radcliffe Carnegie Mellon University, Pittsburgh, PA A.D. Scott Department of Pure Mathematics and Mathematical Statistics University

More information

Discrete Mathematics Problems

Discrete Mathematics Problems Discrete Mathematics Problems William F. Klostermeyer School of Computing University of North Florida Jacksonville, FL 32224 E-mail: wkloster@unf.edu Contents 0 Preface 3 1 Logic 5 1.1 Basics...............................

More information

LIMITS AND CONTINUITY

LIMITS AND CONTINUITY LIMITS AND CONTINUITY 1 The concept of it Eample 11 Let f() = 2 4 Eamine the behavior of f() as approaches 2 2 Solution Let us compute some values of f() for close to 2, as in the tables below We see from

More information

Every Positive Integer is the Sum of Four Squares! (and other exciting problems)

Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Sophex University of Texas at Austin October 18th, 00 Matilde N. Lalín 1. Lagrange s Theorem Theorem 1 Every positive integer

More information

THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE. Alexander Barvinok

THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE. Alexander Barvinok THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE Alexer Barvinok Papers are available at http://www.math.lsa.umich.edu/ barvinok/papers.html This is a joint work with J.A. Hartigan

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

Reading 13 : Finite State Automata and Regular Expressions

Reading 13 : Finite State Automata and Regular Expressions CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model

More information

All trees contain a large induced subgraph having all degrees 1 (mod k)

All trees contain a large induced subgraph having all degrees 1 (mod k) All trees contain a large induced subgraph having all degrees 1 (mod k) David M. Berman, A.J. Radcliffe, A.D. Scott, Hong Wang, and Larry Wargo *Department of Mathematics University of New Orleans New

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

More information

On Some Vertex Degree Based Graph Invariants

On Some Vertex Degree Based Graph Invariants MATCH Communications in Mathematical and in Computer Chemistry MATCH Commun. Math. Comput. Chem. 65 (20) 723-730 ISSN 0340-6253 On Some Vertex Degree Based Graph Invariants Batmend Horoldagva a and Ivan

More information

Lecture 17 : Equivalence and Order Relations DRAFT

Lecture 17 : Equivalence and Order Relations DRAFT CS/Math 240: Introduction to Discrete Mathematics 3/31/2011 Lecture 17 : Equivalence and Order Relations Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last lecture we introduced the notion

More information

Mean Ramsey-Turán numbers

Mean Ramsey-Turán numbers Mean Ramsey-Turán numbers Raphael Yuster Department of Mathematics University of Haifa at Oranim Tivon 36006, Israel Abstract A ρ-mean coloring of a graph is a coloring of the edges such that the average

More information

Collinear Points in Permutations

Collinear Points in Permutations Collinear Points in Permutations Joshua N. Cooper Courant Institute of Mathematics New York University, New York, NY József Solymosi Department of Mathematics University of British Columbia, Vancouver,

More information

Math 55: Discrete Mathematics

Math 55: Discrete Mathematics Math 55: Discrete Mathematics UC Berkeley, Spring 2012 Homework # 9, due Wednesday, April 11 8.1.5 How many ways are there to pay a bill of 17 pesos using a currency with coins of values of 1 peso, 2 pesos,

More information

Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

More information

Cartesian Products and Relations

Cartesian Products and Relations Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special

More information

x a x 2 (1 + x 2 ) n.

x a x 2 (1 + x 2 ) n. Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number

More information

The Australian Journal of Mathematical Analysis and Applications

The Australian Journal of Mathematical Analysis and Applications The Australian Journal of Mathematical Analysis and Applications Volume 7, Issue, Article 11, pp. 1-14, 011 SOME HOMOGENEOUS CYCLIC INEQUALITIES OF THREE VARIABLES OF DEGREE THREE AND FOUR TETSUYA ANDO

More information

Metric Spaces. Chapter 1

Metric Spaces. Chapter 1 Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence

More information

Graphs without proper subgraphs of minimum degree 3 and short cycles

Graphs without proper subgraphs of minimum degree 3 and short cycles Graphs without proper subgraphs of minimum degree 3 and short cycles Lothar Narins, Alexey Pokrovskiy, Tibor Szabó Department of Mathematics, Freie Universität, Berlin, Germany. August 22, 2014 Abstract

More information

SPERNER S LEMMA AND BROUWER S FIXED POINT THEOREM

SPERNER S LEMMA AND BROUWER S FIXED POINT THEOREM SPERNER S LEMMA AND BROUWER S FIXED POINT THEOREM ALEX WRIGHT 1. Intoduction A fixed point of a function f from a set X into itself is a point x 0 satisfying f(x 0 ) = x 0. Theorems which establish the

More information

Connectivity and cuts

Connectivity and cuts Math 104, Graph Theory February 19, 2013 Measure of connectivity How connected are each of these graphs? > increasing connectivity > I G 1 is a tree, so it is a connected graph w/minimum # of edges. Every

More information

MA651 Topology. Lecture 6. Separation Axioms.

MA651 Topology. Lecture 6. Separation Axioms. MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples

More information

. 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9

. 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9 Introduction The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive integer We say d is a

More information

Tenacity and rupture degree of permutation graphs of complete bipartite graphs

Tenacity and rupture degree of permutation graphs of complete bipartite graphs Tenacity and rupture degree of permutation graphs of complete bipartite graphs Fengwei Li, Qingfang Ye and Xueliang Li Department of mathematics, Shaoxing University, Shaoxing Zhejiang 312000, P.R. China

More information

Full and Complete Binary Trees

Full and Complete Binary Trees Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full

More information

Practice with Proofs

Practice with Proofs Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using

More information

5 Directed acyclic graphs

5 Directed acyclic graphs 5 Directed acyclic graphs (5.1) Introduction In many statistical studies we have prior knowledge about a temporal or causal ordering of the variables. In this chapter we will use directed graphs to incorporate

More information

FACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS

FACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS International Electronic Journal of Algebra Volume 6 (2009) 95-106 FACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS Sándor Szabó Received: 11 November 2008; Revised: 13 March 2009

More information

Zachary Monaco Georgia College Olympic Coloring: Go For The Gold

Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Coloring the vertices or edges of a graph leads to a variety of interesting applications in graph theory These applications include various

More information

MATH PROBLEMS, WITH SOLUTIONS

MATH PROBLEMS, WITH SOLUTIONS MATH PROBLEMS, WITH SOLUTIONS OVIDIU MUNTEANU These are free online notes that I wrote to assist students that wish to test their math skills with some problems that go beyond the usual curriculum. These

More information

Midterm Practice Problems

Midterm Practice Problems 6.042/8.062J Mathematics for Computer Science October 2, 200 Tom Leighton, Marten van Dijk, and Brooke Cowan Midterm Practice Problems Problem. [0 points] In problem set you showed that the nand operator

More information

Simple Graphs Degrees, Isomorphism, Paths

Simple Graphs Degrees, Isomorphism, Paths Mathematics for Computer Science MIT 6.042J/18.062J Simple Graphs Degrees, Isomorphism, Types of Graphs Simple Graph this week Multi-Graph Directed Graph next week Albert R Meyer, March 10, 2010 lec 6W.1

More information

The positive minimum degree game on sparse graphs

The positive minimum degree game on sparse graphs The positive minimum degree game on sparse graphs József Balogh Department of Mathematical Sciences University of Illinois, USA jobal@math.uiuc.edu András Pluhár Department of Computer Science University

More information

Network Flow I. Lecture 16. 16.1 Overview. 16.2 The Network Flow Problem

Network Flow I. Lecture 16. 16.1 Overview. 16.2 The Network Flow Problem Lecture 6 Network Flow I 6. Overview In these next two lectures we are going to talk about an important algorithmic problem called the Network Flow Problem. Network flow is important because it can be

More information

Cycles in a Graph Whose Lengths Differ by One or Two

Cycles in a Graph Whose Lengths Differ by One or Two Cycles in a Graph Whose Lengths Differ by One or Two J. A. Bondy 1 and A. Vince 2 1 LABORATOIRE DE MATHÉMATIQUES DISCRÉTES UNIVERSITÉ CLAUDE-BERNARD LYON 1 69622 VILLEURBANNE, FRANCE 2 DEPARTMENT OF MATHEMATICS

More information

Non-Separable Detachments of Graphs

Non-Separable Detachments of Graphs Egerváry Research Group on Combinatorial Optimization Technical reports TR-2001-12. Published by the Egrerváry Research Group, Pázmány P. sétány 1/C, H 1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres.

More information

Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs

Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs MCS-236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set

More information

Section 4.4 Inner Product Spaces

Section 4.4 Inner Product Spaces Section 4.4 Inner Product Spaces In our discussion of vector spaces the specific nature of F as a field, other than the fact that it is a field, has played virtually no role. In this section we no longer

More information

Lecture 1: Course overview, circuits, and formulas

Lecture 1: Course overview, circuits, and formulas Lecture 1: Course overview, circuits, and formulas Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: John Kim, Ben Lund 1 Course Information Swastik

More information

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 3 Binary Operations We are used to addition and multiplication of real numbers. These operations combine two real numbers

More information

Tree sums and maximal connected I-spaces

Tree sums and maximal connected I-spaces Tree sums and maximal connected I-spaces Adam Bartoš drekin@gmail.com Faculty of Mathematics and Physics Charles University in Prague Twelfth Symposium on General Topology Prague, July 2016 Maximal and

More information

Types of Degrees in Bipolar Fuzzy Graphs

Types of Degrees in Bipolar Fuzzy Graphs pplied Mathematical Sciences, Vol. 7, 2013, no. 98, 4857-4866 HIKRI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2013.37389 Types of Degrees in Bipolar Fuzzy Graphs Basheer hamed Mohideen Department

More information

Introduction to Finite Fields (cont.)

Introduction to Finite Fields (cont.) Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number

More information

Max-Min Representation of Piecewise Linear Functions

Max-Min Representation of Piecewise Linear Functions Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry Volume 43 (2002), No. 1, 297-302. Max-Min Representation of Piecewise Linear Functions Sergei Ovchinnikov Mathematics Department,

More information

4. How many integers between 2004 and 4002 are perfect squares?

4. How many integers between 2004 and 4002 are perfect squares? 5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started

More information

Note on some explicit formulae for twin prime counting function

Note on some explicit formulae for twin prime counting function Notes on Number Theory and Discrete Mathematics Vol. 9, 03, No., 43 48 Note on some explicit formulae for twin prime counting function Mladen Vassilev-Missana 5 V. Hugo Str., 4 Sofia, Bulgaria e-mail:

More information

Homework # 3 Solutions

Homework # 3 Solutions Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8

More information

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces

More information

Shortcut sets for plane Euclidean networks (Extended abstract) 1

Shortcut sets for plane Euclidean networks (Extended abstract) 1 Shortcut sets for plane Euclidean networks (Extended abstract) 1 J. Cáceres a D. Garijo b A. González b A. Márquez b M. L. Puertas a P. Ribeiro c a Departamento de Matemáticas, Universidad de Almería,

More information

A characterization of trace zero symmetric nonnegative 5x5 matrices

A characterization of trace zero symmetric nonnegative 5x5 matrices A characterization of trace zero symmetric nonnegative 5x5 matrices Oren Spector June 1, 009 Abstract The problem of determining necessary and sufficient conditions for a set of real numbers to be the

More information

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is

More information

M-Degrees of Quadrangle-Free Planar Graphs

M-Degrees of Quadrangle-Free Planar Graphs M-Degrees of Quadrangle-Free Planar Graphs Oleg V. Borodin, 1 Alexandr V. Kostochka, 1,2 Naeem N. Sheikh, 2 and Gexin Yu 3 1 SOBOLEV INSTITUTE OF MATHEMATICS NOVOSIBIRSK 630090, RUSSIA E-mail: brdnoleg@math.nsc.ru

More information

k, then n = p2α 1 1 pα k

k, then n = p2α 1 1 pα k Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

More information

A MEASURE OF GLOBAL EFFICIENCY IN NETWORKS. Aysun Aytac 1, Betul Atay 2. Faculty of Science Ege University 35100, Bornova, Izmir, TURKEY

A MEASURE OF GLOBAL EFFICIENCY IN NETWORKS. Aysun Aytac 1, Betul Atay 2. Faculty of Science Ege University 35100, Bornova, Izmir, TURKEY International Journal of Pure and Applied Mathematics Volume 03 No. 05, 6-70 ISSN: 3-8080 (printed version); ISSN: 34-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/0.73/ijpam.v03i.5

More information

A simple criterion on degree sequences of graphs

A simple criterion on degree sequences of graphs Discrete Applied Mathematics 156 (2008) 3513 3517 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Note A simple criterion on degree

More information

Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs

Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

Sign changes of Hecke eigenvalues of Siegel cusp forms of degree 2

Sign changes of Hecke eigenvalues of Siegel cusp forms of degree 2 Sign changes of Hecke eigenvalues of Siegel cusp forms of degree 2 Ameya Pitale, Ralf Schmidt 2 Abstract Let µ(n), n > 0, be the sequence of Hecke eigenvalues of a cuspidal Siegel eigenform F of degree

More information

Tilings of the sphere with right triangles III: the asymptotically obtuse families

Tilings of the sphere with right triangles III: the asymptotically obtuse families Tilings of the sphere with right triangles III: the asymptotically obtuse families Robert J. MacG. Dawson Department of Mathematics and Computing Science Saint Mary s University Halifax, Nova Scotia, Canada

More information

Quotient Rings and Field Extensions

Quotient Rings and Field Extensions Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

More information

MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform

MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform MATH 433/533, Fourier Analysis Section 11, The Discrete Fourier Transform Now, instead of considering functions defined on a continuous domain, like the interval [, 1) or the whole real line R, we wish

More information