Encoding Systems: Combining Bits to form Bytes


 Jocelyn Anderson
 2 years ago
 Views:
Transcription
1 Encoding Systems: Combining Bits to form Bytes Alphanumeric characters are represented in computer storage by combining strings of bits to form unique bit configuration for each character, also called byte Characters are translated into bytes according to an encoding system (EBCDIC, ASCII) Parity checking ensures that data transmission is complete and accurate Numbering System
2 Numbering Systems and Computers The two primary numbering systems used in conjunction with computer are binary and decimal Decimal is translated into binary on input and binary is translated into decimal on output The hexadecimal numbering system is used in reading and reviewing binary output in the form of a memory dump Numbering System 2
3 Numbering Systems (cont.) Name Base Digits Hexadecimal >.. 9 and A.. F Decimal.. 9 Octal Binary 2, Numbering System 3
4 Numbering Systems(cont.) Converting Decimal to Binary Number Remainder (37) =() 2 Numbering System 4
5 Numbering Systems (cont.) Converting Binary to Decimal () 2 =X2 + X2 +X2 2 + x2 3 + x2 4 +x2 5 = = ( 37) Numbering System 5
6 Numbering Systems(cont.) Converting Decimal to Octal Number Remainder (37) =(45) 8 Numbering System 6
7 Numbering Systems(cont.) Converting Binary to Octal ( 37) = (45) 8 = () 2 Notice the special relation between binary and octal, if we take every three bits we will find that: () 2 = x2 +x2 +x2 2 = (5) 8 () 2 = x2 +x2 +x2 2 = (4) 8 Numbering System 7
8 Numbering Systems (cont.) Converting Decimal to Hexadecimal Number ( 37) = (25) 6 Remainder Numbering System 8
9 6 3 Numbering Systems (cont.) Converting Decimal to Hexadecimal Number Remainder 6 5 (F) (3) = (F) 6 Numbering System 9
10 Numbering Systems(cont.) Converting Binary to Hexadecimal ( 37) = (25) 6 = () 2 Notice the special relation between binary and Hexadecimal, if we take every four bits we will find that: () 2 = x2 +x2 +x2 2 + x2 = (5) 6 () 2 = x2 +x2 +x2 2 + x2 = (2) 6 Numbering System
11 Computer Representation of Information Basic unit of information is the Bit or Binary digit. With a single bit, we can represent two distinct values and. With two bits, we can represent four distinct values:,,, and. In general, with m bits, we can represent 2m distinct values. A byte is a grouping of 8 bits. A word is a grouping of either 6, 32, or 64 bits, depending on the computer system. A word is typically 32 bits on most systems, a half word is 6 bits, and a double word is 64 bits. Numbering System
12 Representation of Characters Characters are typically represented by single byte. The ASCII standard (American Standard Code for Information Interchange) defines unique binary codes for English letters, digits, and special symbols. The ASCII standard defines only 28 characters, with decimal codes to 27. A single byte can represent up to 256 characters. The remaining 28 characters, coded 28 to 255, can be used for a second language. For example, the ASCII standard can be extended for Arabic letters. Some languages, such as Chinese, Japanese, and Korean, have more than 256 characters. Characters can be encoded using 2 bytes, rather than a single byte. Numbering System 2
13 Representation of Characters Binary Decimal Character Representation Code space 32! A 65 B 66 Z 9 [ 9 a 97 b 98 Numbering System 3
14 Representation of Integers Unsigned Integers Represented using a fixed number of bits or bytes With m bits, we can have 2 m distinct values:,, 2,, 2 m. Using byte to represent an integer, m = 8, 2 8 distinct values:,, 2,, 2 8 = 255. Using 2 bytes to represent an integer, m = 6, 2 6 distinct values:,, 2,, 2 6 = Using 4 bytes to represent an integer, m = 32, 2 32 distinct values:,, 2,, 2 32 = Signed Integers Unsigned representation of integers does not allow negative numbers. We need to divide the 2 m distinct values into positive and negative values. Two methods are used to represent signed integers: SignMagnitude Representation Two s Complement Representation Numbering System 4
15 SignMagnitude Representation Signed integers can be represented as a sign and a magnitude. Using m bits to represent a signed integer: the most significant bit is used to represent the sign. sign = is positive. sign = is negative. The least significant m bits are used to represent the magnitude. With m bits for the magnitude, the range of the magnitude is from to 2 m. For an mbit signed integer in signmagnitude representation, the range of values is from 2 m to + 2 m. When m = 8, the range of values is from 27 to +27. Examples using 8bit signmagnitude representation (m = 8) +29 = 2 29 = 2 + = 2 = 2 There are two different representations of (+ and ). Addition of a positive and a negative number must be treated as a subtraction problem. The sign and the magnitude of both operands must be checked to obtain the correct result Numbering System 5
16 Two s Complement Representation Signmagnitude representation is natural for humans, but not for computers. A better representation for computers is the 2 s complement representation. 2 s complement of an mbit number N = (Bitwise complement of N) + Bitwise complement of N is called the s complement of N. Examples of 8bit numbers and their 2 s complement representation: + = 2 = 2 s complement of 2 = 2 + = = 2 29 = 2 s complement of 2 = 2 + = = 2 s complement of 2 = 2 + = 2 For an mbit signed integer in 2 s complement notation, the range of integer values is from 2 m to 2 m. When m = 8, the range is from 28 to 27. When m = 6, the range is from to When m = 32, the range is from to Numbering System 6
17 Comparison Table for 8bit Number Representations 8bit Binary Decimal equivalent when Representation Unsigned SignMag 2 s Comp When 8bit binary representation is interpreted as unsigned: Decimal equivalent is counted from = 2 to 255 = 2 When interpreted as signmagnitude: Positive values are counted from + = 2 to +27 = 2 Negative values are counted from 27 = 2 to = 2 When interpreted as 2 s complement: Positive values are counted from = 2 = to +27 = 2 Negative values are counted from 28 = 2 to = 2 Numbering System 7
18 Binary Addition a b c carry sum Examples: carry carry sum +2 sum carry carry sum 8 sum + 27 Numbering System 8
19 Binary Addition The addition of 3 bits a + b + c produces a sum bit and a carry bit. Signed Integers are represented in 2 s complement notation. Addition of integers in 2 s complement notation results in a signed integer. Although a carry out is produced in the 2nd and 4th computations, it is ignored. Numbering System 9
Number Representation
Number Representation CS10001: Programming & Data Structures Pallab Dasgupta Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur Topics to be Discussed How are numeric data
More information2011, The McGrawHill Companies, Inc. Chapter 3
Chapter 3 3.1 Decimal System The radix or base of a number system determines the total number of different symbols or digits used by that system. The decimal system has a base of 10 with the digits 0 through
More informationLSN 2 Number Systems. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology
LSN 2 Number Systems Department of Engineering Technology LSN 2 Decimal Number System Decimal number system has 10 digits (09) Base 10 weighting system... 10 5 10 4 10 3 10 2 10 1 10 0. 101 102 103
More informationCDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012
CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline Data Representation Binary Codes Why 6311 and Excess3? Data Representation (1/2) Each numbering
More informationOct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8
ECE Department Summer LECTURE #5: Number Systems EEL : Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz Decimal Number System: Our standard number system is base, also
More informationThe string of digits 101101 in the binary number system represents the quantity
Data Representation Section 3.1 Data Types Registers contain either data or control information Control information is a bit or group of bits used to specify the sequence of command signals needed for
More informationChapter 4: Computer Codes
Slide 1/30 Learning Objectives In this chapter you will learn about: Computer data Computer codes: representation of data in binary Most commonly used computer codes Collating sequence 36 Slide 2/30 Data
More informationEE 261 Introduction to Logic Circuits. Module #2 Number Systems
EE 261 Introduction to Logic Circuits Module #2 Number Systems Topics A. Number System Formation B. Base Conversions C. Binary Arithmetic D. Signed Numbers E. Signed Arithmetic F. Binary Codes Textbook
More informationBinary Representation. Number Systems. Base 10, Base 2, Base 16. Positional Notation. Conversion of Any Base to Decimal.
Binary Representation The basis of all digital data is binary representation. Binary  means two 1, 0 True, False Hot, Cold On, Off We must be able to handle more than just values for real world problems
More informationSolution for Homework 2
Solution for Homework 2 Problem 1 a. What is the minimum number of bits that are required to uniquely represent the characters of English alphabet? (Consider upper case characters alone) The number of
More informationComputer Science 281 Binary and Hexadecimal Review
Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two
More informationData Representation. Data Representation, Storage, and Retrieval. Data Representation. Data Representation. Data Representation. Data Representation
, Storage, and Retrieval ULM/HHIM Summer Program Project 3, Day 3, Part 3 Digital computers convert the data they process into a digital value. Text Audio Images/Graphics Video Digitizing 00000000... 6/8/20
More informationToday. Binary addition Representing negative numbers. Andrew H. Fagg: Embedded Real Time Systems: Binary Arithmetic
Today Binary addition Representing negative numbers 2 Binary Addition Consider the following binary numbers: 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 1 How do we add these numbers? 3 Binary Addition 0 0 1 0 0 1 1
More informationSigned Binary Arithmetic
Signed Binary Arithmetic In the real world of mathematics, computers must represent both positive and negative binary numbers. For example, even when dealing with positive arguments, mathematical operations
More informationplc numbers  13.1 Encoded values; BCD and ASCII Error detection; parity, gray code and checksums
plc numbers  3. Topics: Number bases; binary, octal, decimal, hexadecimal Binary calculations; s compliments, addition, subtraction and Boolean operations Encoded values; BCD and ASCII Error detection;
More informationBinary Representation
Binary Representation The basis of all digital data is binary representation. Binary  means two 1, 0 True, False Hot, Cold On, Off We must tbe able to handle more than just values for real world problems
More informationNumber and codes in digital systems
Number and codes in digital systems Decimal Numbers You are familiar with the decimal number system because you use them everyday. But their weighted structure is not understood. In the decimal number
More informationCSI 333 Lecture 1 Number Systems
CSI 333 Lecture 1 Number Systems 1 1 / 23 Basics of Number Systems Ref: Appendix C of Deitel & Deitel. Weighted Positional Notation: 192 = 2 10 0 + 9 10 1 + 1 10 2 General: Digit sequence : d n 1 d n 2...
More informationUseful Number Systems
Useful Number Systems Decimal Base = 10 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Binary Base = 2 Digit Set = {0, 1} Octal Base = 8 = 2 3 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7} Hexadecimal Base = 16 = 2
More informationNumber Systems I. CIS0082 Logic and Foundations of Mathematics. David Goodwin. 11:00, Tuesday 18 th October
Number Systems I CIS0082 Logic and Foundations of Mathematics David Goodwin david.goodwin@perisic.com 11:00, Tuesday 18 th October 2011 Outline 1 Number systems Numbers Natural numbers Integers Rational
More informationHOMEWORK # 2 SOLUTIO
HOMEWORK # 2 SOLUTIO Problem 1 (2 points) a. There are 313 characters in the Tamil language. If every character is to be encoded into a unique bit pattern, what is the minimum number of bits required to
More informationActivity 1: Bits and Bytes
ICS3U (Java): Introduction to Computer Science, Grade 11, University Preparation Activity 1: Bits and Bytes The Binary Number System Computers use electrical circuits that include many transistors and
More informationSection 1.4 Place Value Systems of Numeration in Other Bases
Section.4 Place Value Systems of Numeration in Other Bases Other Bases The HinduArabic system that is used in most of the world today is a positional value system with a base of ten. The simplest reason
More informationDecimal Numbers: Base 10 Integer Numbers & Arithmetic
Decimal Numbers: Base 10 Integer Numbers & Arithmetic Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Example: 3271 = (3x10 3 ) + (2x10 2 ) + (7x10 1 )+(1x10 0 ) Ward 1 Ward 2 Numbers: positional notation Number
More informationNumeral Systems. The number twentyfive can be represented in many ways: Decimal system (base 10): 25 Roman numerals:
Numeral Systems Which number is larger? 25 8 We need to distinguish between numbers and the symbols that represent them, called numerals. The number 25 is larger than 8, but the numeral 8 above is larger
More informationBinary Numbers. Binary Octal Hexadecimal
Binary Numbers Binary Octal Hexadecimal Binary Numbers COUNTING SYSTEMS UNLIMITED... Since you have been using the 10 different digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 all your life, you may wonder how
More informationBase Conversion written by Cathy Saxton
Base Conversion written by Cathy Saxton 1. Base 10 In base 10, the digits, from right to left, specify the 1 s, 10 s, 100 s, 1000 s, etc. These are powers of 10 (10 x ): 10 0 = 1, 10 1 = 10, 10 2 = 100,
More informationDigital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture  04 Digital Logic II May, I before starting the today s lecture
More informationELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE470/570: MicroprocessorBased System Design Fall 2014.
REVIEW OF NUMBER SYSTEMS Notes Unit 2 BINARY NUMBER SYSTEM In the decimal system, a decimal digit can take values from to 9. For the binary system, the counterpart of the decimal digit is the binary digit,
More informationLecture 2. Binary and Hexadecimal Numbers
Lecture 2 Binary and Hexadecimal Numbers Purpose: Review binary and hexadecimal number representations Convert directly from one base to another base Review addition and subtraction in binary representations
More information198:211 Computer Architecture
198:211 Computer Architecture Topics: Lecture 8 (W5) Fall 2012 Data representation 2.1 and 2.2 of the book Floating point 2.4 of the book 1 Computer Architecture What do computers do? Manipulate stored
More informationSystems I: Computer Organization and Architecture
Systems I: Computer Organization and Architecture Lecture 2: Number Systems and Arithmetic Number Systems  Base The number system that we use is base : 734 = + 7 + 3 + 4 = x + 7x + 3x + 4x = x 3 + 7x
More informationLevent EREN levent.eren@ieu.edu.tr A306 Office Phone:4889882 INTRODUCTION TO DIGITAL LOGIC
Levent EREN levent.eren@ieu.edu.tr A306 Office Phone:4889882 1 Number Systems Representation Positive radix, positional number systems A number with radix r is represented by a string of digits: A n
More information2 Number Systems 2.1. Foundations of Computer Science Cengage Learning
2 Number Systems 2.1 Foundations of Computer Science Cengage Learning 2.2 Objectives After studying this chapter, the student should be able to: Understand the concept of number systems. Distinguish between
More informationChapter Binary, Octal, Decimal, and Hexadecimal Calculations
Chapter 5 Binary, Octal, Decimal, and Hexadecimal Calculations This calculator is capable of performing the following operations involving different number systems. Number system conversion Arithmetic
More informationTo convert an arbitrary power of 2 into its English equivalent, remember the rules of exponential arithmetic:
Binary Numbers In computer science we deal almost exclusively with binary numbers. it will be very helpful to memorize some binary constants and their decimal and English equivalents. By English equivalents
More informationThe Essentials of Computer Organization and Architecture. Linda Null and Julia Lobur Jones and Bartlett Publishers, 2003
The Essentials of Computer Organization and Architecture Linda Null and Julia Lobur Jones and Bartlett Publishers, 2003 Chapter 2 Instructor's Manual Chapter Objectives Chapter 2, Data Representation,
More informationChapter 1: Digital Systems and Binary Numbers
Chapter 1: Digital Systems and Binary Numbers Digital age and information age Digital computers general purposes many scientific, industrial and commercial applications Digital systems telephone switching
More information2 Number Systems. Source: Foundations of Computer Science Cengage Learning. Objectives After studying this chapter, the student should be able to:
2 Number Systems 2.1 Source: Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: Understand the concept of number systems. Distinguish
More informationCounting in base 10, 2 and 16
Counting in base 10, 2 and 16 1. Binary Numbers A superimportant fact: (Nearly all) Computers store all information in the form of binary numbers. Numbers, characters, images, music files  all of these
More informationCPEN 214  Digital Logic Design Binary Systems
CPEN 4  Digital Logic Design Binary Systems C. Gerousis Digital Design 3 rd Ed., Mano Prentice Hall Digital vs. Analog An analog system has continuous range of values A mercury thermometer Vinyl records
More informationNumber Systems, Base Conversions, and Computer Data Representation
, Base Conversions, and Computer Data Representation Decimal and Binary Numbers When we write decimal (base 10) numbers, we use a positional notation system. Each digit is multiplied by an appropriate
More informationUnsigned Conversions from Decimal or to Decimal and other Number Systems
Page 1 of 5 Unsigned Conversions from Decimal or to Decimal and other Number Systems In all digital design, analysis, troubleshooting, and repair you will be working with binary numbers (or base 2). It
More informationCS 16: Assembly Language Programming for the IBM PC and Compatibles
CS 16: Assembly Language Programming for the IBM PC and Compatibles First, a little about you Your name Have you ever worked with/used/played with assembly language? If so, talk about it Why are you taking
More informationNumbering Systems. InThisAppendix...
G InThisAppendix... Introduction Binary Numbering System Hexadecimal Numbering System Octal Numbering System Binary Coded Decimal (BCD) Numbering System Real (Floating Point) Numbering System BCD/Binary/Decimal/Hex/Octal
More informationBinary Numbers. Bob Brown Information Technology Department Southern Polytechnic State University
Binary Numbers Bob Brown Information Technology Department Southern Polytechnic State University Positional Number Systems The idea of number is a mathematical abstraction. To use numbers, we must represent
More informationCS101 Lecture 11: Number Systems and Binary Numbers. Aaron Stevens 14 February 2011
CS101 Lecture 11: Number Systems and Binary Numbers Aaron Stevens 14 February 2011 1 2 1 3!!! MATH WARNING!!! TODAY S LECTURE CONTAINS TRACE AMOUNTS OF ARITHMETIC AND ALGEBRA PLEASE BE ADVISED THAT CALCULTORS
More informationThe Answer to the 14 Most Frequently Asked Modbus Questions
Modbus Frequently Asked Questions WP34REV006091/7 The Answer to the 14 Most Frequently Asked Modbus Questions Exactly what is Modbus? Modbus is an open serial communications protocol widely used in
More information= Chapter 1. The Binary Number System. 1.1 Why Binary?
Chapter The Binary Number System. Why Binary? The number system that you are familiar with, that you use every day, is the decimal number system, also commonly referred to as the base0 system. When you
More informationToday s topics. Digital Computers. More on binary. Binary Digits (Bits)
Today s topics! Binary Numbers! Brookshear..! Slides from Prof. Marti Hearst of UC Berkeley SIMS! Upcoming! Networks Interactive Introduction to Graph Theory http://www.utm.edu/cgibin/caldwell/tutor/departments/math/graph/intro
More informationNUMBER SYSTEMS. 1.1 Introduction
NUMBER SYSTEMS 1.1 Introduction There are several number systems which we normally use, such as decimal, binary, octal, hexadecimal, etc. Amongst them we are most familiar with the decimal number system.
More informationBachelors of Computer Application Programming Principle & Algorithm (BCAS102T)
Unit I Introduction to c Language: C is a generalpurpose computer programming language developed between 1969 and 1973 by Dennis Ritchie at the Bell Telephone Laboratories for use with the Unix operating
More informationDigital Design. Assoc. Prof. Dr. Berna Örs Yalçın
Digital Design Assoc. Prof. Dr. Berna Örs Yalçın Istanbul Technical University Faculty of Electrical and Electronics Engineering Office Number: 2318 Email: siddika.ors@itu.edu.tr Grading 1st Midterm 
More informationPositional Numbering System
APPENDIX B Positional Numbering System A positional numbering system uses a set of symbols. The value that each symbol represents, however, depends on its face value and its place value, the value associated
More informationIntroduction to Programming
Introduction to Programming SS 2012 Adrian Kacso, Univ. Siegen adriana.dkacsoa@dunisiegena.de Tel.: 0271/7403966, Office: HB 8406 Stand: April 25, 2012 Betriebssysteme / verteilte Systeme Introduction
More informationThe programming language C. sws1 1
The programming language C sws1 1 The programming language C invented by Dennis Ritchie in early 1970s who used it to write the first Hello World program C was used to write UNIX Standardised as K&C (Kernighan
More informationPemrograman Dasar. Basic Elements Of Java
Pemrograman Dasar Basic Elements Of Java Compiling and Running a Java Application 2 Portable Java Application 3 Java Platform Platform: hardware or software environment in which a program runs. Oracle
More informationComputers. Hardware. The Central Processing Unit (CPU) CMPT 125: Lecture 1: Understanding the Computer
Computers CMPT 125: Lecture 1: Understanding the Computer Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 3, 2009 A computer performs 2 basic functions: 1.
More information2010/9/19. Binary number system. Binary numbers. Outline. Binary to decimal
2/9/9 Binary number system Computer (electronic) systems prefer binary numbers Binary number: represent a number in base2 Binary numbers 2 3 + 7 + 5 Some terminology Bit: a binary digit ( or ) Hexadecimal
More informationLecture 2: Number Representation
Lecture 2: Number Representation CSE 30: Computer Organization and Systems Programming Summer Session II 2011 Dr. Ali Irturk Dept. of Computer Science and Engineering University of California, San Diego
More informationNumber Conversions Dr. Sarita Agarwal (Acharya Narendra Dev College,University of Delhi)
Conversions Dr. Sarita Agarwal (Acharya Narendra Dev College,University of Delhi) INTRODUCTION System A number system defines a set of values to represent quantity. We talk about the number of people
More informationDigital codes. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
Digital codes This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
More informationDNA Data and Program Representation. Alexandre David 1.2.05 adavid@cs.aau.dk
DNA Data and Program Representation Alexandre David 1.2.05 adavid@cs.aau.dk Introduction Very important to understand how data is represented. operations limits precision Digital logic built on 2valued
More informationTHE BINARY NUMBER SYSTEM
THE BINARY NUMBER SYSTEM Dr. Robert P. Webber, Longwood University Our civilization uses the base 10 or decimal place value system. Each digit in a number represents a power of 10. For example, 365.42
More informationLecture 4 Representing Data on the Computer. Ramani Duraiswami AMSC/CMSC 662 Fall 2009
Lecture 4 Representing Data on the Computer Ramani Duraiswami AMSC/CMSC 662 Fall 2009 x = ±(1+f) 2 e 0 f < 1 f = (integer < 2 52 )/ 2 521022 e 1023 e = integer Effects of floating point Effects of floating
More informationFirst Bytes Programming Lab 2
First Bytes Programming Lab 2 This lab is available online at www.cs.utexas.edu/users/scottm/firstbytes. Introduction: In this lab you will investigate the properties of colors and how they are displayed
More informationMemory is implemented as an array of electronic switches
Memory Structure Memory is implemented as an array of electronic switches Each switch can be in one of two states 0 or 1, on or off, true or false, purple or gold, sitting or standing BInary digits (bits)
More information3. Convert a number from one number system to another
3. Convert a number from one number system to another Conversion between number bases: Hexa (16) Decimal (10) Binary (2) Octal (8) More Interest Way we need conversion? We need decimal system for real
More informationBinary. ! You are probably familiar with decimal
Arithmetic operations in assembly language Prof. Gustavo Alonso Computer Science Department ETH Zürich alonso@inf.ethz.ch http://www.inf.ethz.ch/department/is/iks/ Binary! You are probably familiar with
More informationLecture 03 Bits, Bytes and Data Types
Lecture 03 Bits, Bytes and Data Types In this lecture Computer Languages Assembly Language The compiler Operating system Data and program instructions Bits, Bytes and Data Types ASCII table Data Types
More informationChapter 2. Binary Values and Number Systems
Chapter 2 Binary Values and Number Systems Numbers Natural numbers, a.k.a. positive integers Zero and any number obtained by repeatedly adding one to it. Examples: 100, 0, 45645, 32 Negative numbers A
More information1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal:
Exercises 1  number representations Questions 1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal: (a) 3012 (b)  435 2. For each of
More informationReview 1/2. CS61C Characters and Floating Point. Lecture 8. February 12, Review 2/2 : 12 new instructions Arithmetic:
Review 1/2 CS61C Characters and Floating Point Lecture 8 February 12, 1999 Handling case when number is too big for representation (overflow) Representing negative numbers (2 s complement) Comparing signed
More informationBits and Bytes. Computer Literacy Lecture 4 29/09/2008
Bits and Bytes Computer Literacy Lecture 4 29/09/2008 Lecture Overview Lecture Topics How computers encode information How to quantify information and memory How to represent and communicate binary data
More informationEncoding Text with a Small Alphabet
Chapter 2 Encoding Text with a Small Alphabet Given the nature of the Internet, we can break the process of understanding how information is transmitted into two components. First, we have to figure out
More informationI PUC  Computer Science. Practical s Syllabus. Contents
I PUC  Computer Science Practical s Syllabus Contents Topics 1 Overview Of a Computer 1.1 Introduction 1.2 Functional Components of a computer (Working of each unit) 1.3 Evolution Of Computers 1.4 Generations
More informationCOMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012
Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about
More informationIntel Hexadecimal Object File Format Specification Revision A, 1/6/88
Intel Hexadecimal Object File Format Specification Revision A, 1/6/88 DISCLAIMER Intel makes no representation or warranties with respect to the contents hereof and specifically disclaims any implied warranties
More informationClassful Subnetting Explained
Classful ting Explained When given an IP Address and a Mask, how can you determine other information such as: The subnet address of this subnet The broadcast address of this subnet The range of Host Addresses
More informationClassless Subnetting Explained
Classless Subnetting Explained When given an IP Address, Major Network Mask, and a Subnet Mask, how can you determine other information such as: The subnet address of this subnet The broadcast address
More informationMachine Architecture and Number Systems. Major Computer Components. Schematic Diagram of a Computer. The CPU. The Bus. Main Memory.
1 Topics Machine Architecture and Number Systems Major Computer Components Bits, Bytes, and Words The Decimal Number System The Binary Number System Converting from Decimal to Binary Major Computer Components
More informationChapter 3: Dataflow Modeling
Chapter 3: Dataflow Modeling Prof. MingBo Lin Department of Electronic Engineering National Taiwan University of Science and Technology Digital System Designs and Practices Using Verilog HDL and FPGAs
More informationCPU Organization and Assembly Language
COS 140 Foundations of Computer Science School of Computing and Information Science University of Maine October 2, 2015 Outline 1 2 3 4 5 6 7 8 Homework and announcements Reading: Chapter 12 Homework:
More informationBINARY CODED DECIMAL: B.C.D.
BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.
More informationNumber of bits needed to address hosts 8
Advanced Subnetting Example 1: Your ISP has assigned you a Class C network address of 198.47.212.0. You have 3 networks in your company with the largest containing 134 hosts. You need to figure out if
More informationData Storage 3.1. Foundations of Computer Science Cengage Learning
3 Data Storage 3.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List five different data types used in a computer. Describe how
More informationNUMBER SYSTEMS. William Stallings
NUMBER SYSTEMS William Stallings The Decimal System... The Binary System...3 Converting between Binary and Decimal...3 Integers...4 Fractions...5 Hexadecimal Notation...6 This document available at WilliamStallings.com/StudentSupport.html
More informationGoals. Unary Numbers. Decimal Numbers. 3,148 is. 1000 s 100 s 10 s 1 s. Number Bases 1/12/2009. COMP370 Intro to Computer Architecture 1
Number Bases //9 Goals Numbers Understand binary and hexadecimal numbers Be able to convert between number bases Understand binary fractions COMP37 Introduction to Computer Architecture Unary Numbers Decimal
More informationBinary Numbers The Computer Number System
Binary Numbers The Computer Number System Number systems are simply ways to count things. Ours is the base0 or radix0 system. Note that there is no symbol for 0 or for the base of any system. We count,2,3,4,5,6,7,8,9,
More informationDecimal, Hexadecimal and Binary Numbers Writing an assembly language program
Decimal, Hexadecimal and Binary Numbers Writing an assembly language program o Disassembly of MC9S12 op codes o Use flow charts to lay out structure of program o Use common flow structures ifthen ifthenelse
More informationDigital Logic Design. Introduction
Digital Logic Design Introduction A digital computer stores data in terms of digits (numbers) and proceeds in discrete steps from one state to the next. The states of a digital computer typically involve
More informationThe New IoT Standard: Any App for Any Device Using Any Data Format. Mike Weiner Product Manager, Omega DevCloud KORE Telematics
The New IoT Standard: Any App for Any Device Using Any Data Format Mike Weiner Product Manager, Omega DevCloud KORE Telematics About KORE The world s largest M2M/IoT services provider 12 Carriers Enterprise
More informationData Storage. Chapter 3. Objectives. 31 Data Types. Data Inside the Computer. After studying this chapter, students should be able to:
Chapter 3 Data Storage Objectives After studying this chapter, students should be able to: List five different data types used in a computer. Describe how integers are stored in a computer. Describe how
More informationJapanese Character Printers EPL2 Programming Manual Addendum
Japanese Character Printers EPL2 Programming Manual Addendum This addendum contains information unique to Zebra Technologies Japanese character bar code printers. The Japanese configuration printers support
More informationBinary math. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
Binary math This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
More informationDecimal to Binary Conversion
Decimal to Binary Conversion A tool that makes the conversion of decimal values to binary values simple is the following table. The first row is created by counting right to left from one to eight, for
More informationBinary, Hexadecimal, Octal, and BCD Numbers
23CH_PHCalter_TMSETE_949118 23/2/2007 1:37 PM Page 1 Binary, Hexadecimal, Octal, and BCD Numbers OBJECTIVES When you have completed this chapter, you should be able to: Convert between binary and decimal
More informationTechnical Support Bulletin Nr.18 Modbus Tips
Technical Support Bulletin Nr.18 Modbus Tips Contents! Definitions! Implemented commands! Examples of commands or frames! Calculating the logical area! Reading a signed variable! Example of commands supported
More informationThe use of binary codes to represent characters
The use of binary codes to represent characters Teacher s Notes Lesson Plan x Length 60 mins Specification Link 2.1.4/hi Character Learning objective (a) Explain the use of binary codes to represent characters
More informationComputer Systems. Computer Systems COMP1208. Objectives of the Module. Course Assessment. Reading List. What will you need
Computer Systems Computer Systems Lecturer: Ruth Coffey Room KE4027, email: ruth.coffey@dit.ie Today s Lecture >> Module Overview Objectives of Module Course Assessment Reading List Introduction to Computer
More information