# Systems I: Computer Organization and Architecture

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Systems I: Computer Organization and Architecture Lecture 2: Number Systems and Arithmetic Number Systems - Base The number system that we use is base : 734 = = x + 7x + 3x + 4x = x 3 + 7x 2 + 3x + 4x = 7x + 2x + 4x + 5x. = 7x 2 + 2x + 4x + 5x - Why use base?

2 Number Systems - Base 2 For computers, base 2 is more convenient (why?) 2 = x6 + x8 + x4 + x2 + x = 9 2 = x32 + x6 + x8 + x4 + x2 + x = = x4 + x2 + x + x.5 + x.25 + x.25 = 5.25 Example - 2 =? 2 =?. 2 =? Number Systems - Base 6 Hexadecimal (base 6) numbers are commonly used because it is convert them into binary (base 2) and vice versa. 8CE 6 = 8x x6 + 4x = = F9 = 3x x6 + 9x = = 7

3 Number Systems - Base 6 (continued) Base 2 is easily converted into base 6: 2 = = 8 C E 6 2 = = D B A =? 6 2 =? 6 Number Systems - Base 6 (continued) Converting base 6 into base 2 works the same way: F3A5 6 = 2 76EF 6 = 2 AB3D 6 =? 2 5C.38 6 =? 2

4 Number Systems Base 8 Octal (base 8) numbers used to be commonly used because it is convert them into binary (base 2) and vice versa. However, the absence of 8 and 9 is not obvious enough and they were frequently mistaken for decimal values = 4 x x x x 8 = 4 x x 64 + x x = = 2254 Number Systems - Base 8 (continued) Base 2 is easily converted into base 8: 2 = = = = =? 8 2 =? 8

5 Number Systems - Base 8 (continued) Converting base 8 into base 2 works the same way: = = =? =? 2 Converting From Decimal to Binary 9 9 R 4 R 2 2 R R R

6 Converting From Decimal to Hexadecimal R 3 R 4 ED 6 Converting From Decimal to Octal R 5 3 R 5 R

7 Binary, Octal, Decimal and Hexadecimal Equivalents Binary Binary Decimal Decimal Hex. Hex A B C D 9 F E Octal Octal Addition of Binary Numbers C X Y X+Y C X Y X+Y

8 Addition of Binary Numbers (continued) C X Y X+Y C X Y X+Y C X Y X+Y Addition of Hexadecimal Numbers 9B9 6 C7E6 6 E9F E F

9 Complements There are several different ways in which we can represent negative numbers: Signed-Magnitude Representation s Complement Representation 2s Complement Representation Signed-Magnitude Representation In signed-magnitude representation, the sign bit is set to if negative and cleared to if positive: ( = -9)

10 s Complement Representation In signed-magnitude representation, the sign bit is set to if negative and the other bits are also reversed ( = +6) overflow bit 2s Complement Representation In 2s complement representation, we subtract the absolute value from 2 n : ( = +7)

11 2s Complement Representation (continued) The 2s complement representation can also be found by reversing the bits (into s complement) and then adding : 6 => => + 43 => => + Overflow If an addition operation produces a result that exceeds our number system s range, overflow has occurred. Addition of two numbers of the same sign produces overflow; addition two numbers of opposite sign cannot cause overflow = +3 + = = +4 = -2

12 Subtraction Subtraction works in a similar fashion, but the borrow (an initial carry bit) is a : +4 initial carry Subtraction (continued)

13 Binary Multiplication Multiplication is repeated addition of the multiplicand, where the number of additions depends on the multiplier: x multiplicand multiplier shifted multiplicands product Partial Product Method It is more convenient to add each shifted multiplicand as it is created to a partial product: partial products x x 3 43 shifted multiplicands

14 Partial Product Method Another Example -5 x -3 shifted multiplicand shifted and negated multiplicand Binary Division reduced divisor shifted divisor remainder

15 Binary Representation of Decimal Numbers Decimal Digit BCD (842) 242 Excess Floating Point Representations The floating point representation of a number has two part: fraction and an exponent: = x 4 In general, a number can be expressed as m x r e where m is the mantissa, r is the radix and e is the exponent. Because we know that computer always use binary numbers (radix = 2), only m and e need to be represented. Therefore, we can represent. using m = and e = (because. = +. x 2 +4 )

16 Floating Point Representations (continued) A floating-point number is normalized if the most significant place in the mantissa is nonzero. 35 is normalized 35 is not normalized. is not normalized, but is normalized; this requires changing the exponent to 4. The standard method of storing exponent is excess-64, where an exponent of is zero an exponent of is positive an exponent of is negative. Gray Codes Sometimes electromechanical applications of digital systems (machine tools, automotive brake systems and copiers) require a digital value that indicates a mechanical position. A standard binary code may see more than one bit change from one position to another, which could lead to an incorrect reading if mechanical assembly is imperfect.

17 Binary Code vs. Gray Code Binary Code Gray Code ASCII representation of characters ASCII (American Standard Code for Information Interchange) is a numeric code used to represent characters. All characters are represented this way including: words (character strings) numbers punctuation control characters There are separate values for upper case and lower case characters: A 65 z 22 B 66 blank 32 Z 9 \$ 52 a b

18 Control Codes ASCII (a 7-bit code) has 2 7 = 28 values. We only need 62 for alphanumeric characters. Even after accounting for common punctuation, there are far more available code values than we need. What do we use them for? Control codes include DEL (for delete), NUL (for null). STX (Start of Text), CR (for carriage return), etc. Error Detection Codes An error is a corruption of the data from its correct state. There are several codes that allow use to detect an error. These include: Parity CRC Checksum

19 Parity Parity is an extra bit appended to our data which indicates whether the data bits add up to an even (for even parity) or odd (for odd parity) value. Parity Generation Message (xyz) P(odd) P(even)

20 x y z Odd Parity x y z P(odd) CRC CRC (Cyclic Redundancy Check) is an error detecting code. CRC can spot single-bit errors as well as clustered error.

21 Checksum Checksum codes involve adding bytes modulo 256. This allows checksums to spot one-byte errors. Checksums can use other modulos which would allow for spotting different errors as well.

### Digital Fundamentals

Digital Fundamentals with PLD Programming Floyd Chapter 2 29 Pearson Education Decimal Numbers The position of each digit in a weighted number system is assigned a weight based on the base or radix of

### The string of digits 101101 in the binary number system represents the quantity

Data Representation Section 3.1 Data Types Registers contain either data or control information Control information is a bit or group of bits used to specify the sequence of command signals needed for

### Chap 3 Data Representation

Chap 3 Data Representation 3-11 Data Types How to representation and conversion between these data types? 3-11 Data Types : Number System Radix : Decimal : radix 10 Binary : radix 2 3-11 Data Types : Number

### EEE130 Digital Electronics I Lecture #2

EEE130 Digital Electronics I Lecture #2 -Number Systems, Operations and Codes- By Dr. Shahrel A. Suandi Topics to be discussed 2-1 Decimal Numbers 2-2 Binary Numbers 2-3 Decimal-to-Binary Conversion 2-4

### Data types. lecture 4

Data types lecture 4 Information in digital computers is represented using binary number system. The base, i.e. radix, of the binary system is 2. Other common number systems: octal (base 8), decimal (base

### 2.1 Binary Numbers. 2.3 Number System Conversion. From Binary to Decimal. From Decimal to Binary. Section 2 Binary Number System Page 1 of 8

Section Binary Number System Page 1 of 8.1 Binary Numbers The number system we use is a positional number system meaning that the position of each digit has an associated weight. The value of a given number

### Chapter 1: Digital Systems and Binary Numbers

Chapter 1: Digital Systems and Binary Numbers Digital age and information age Digital computers general purposes many scientific, industrial and commercial applications Digital systems telephone switching

### Chapter 1 Digital Systems and Information

Logic and Computer Design Fundamentals Chapter 1 Digital Systems and Information Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. Overview Digital Systems, Computers, and Beyond Information

### Oct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8

ECE Department Summer LECTURE #5: Number Systems EEL : Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz Decimal Number System: -Our standard number system is base, also

### CHAPTER 2 Data Representation in Computer Systems

CHAPTER 2 Data Representation in Computer Systems 2.1 Introduction 47 2.2 Positional Numbering Systems 48 2.3 Converting Between Bases 48 2.3.1 Converting Unsigned Whole Numbers 49 2.3.2 Converting Fractions

### Levent EREN levent.eren@ieu.edu.tr A-306 Office Phone:488-9882 INTRODUCTION TO DIGITAL LOGIC

Levent EREN levent.eren@ieu.edu.tr A-306 Office Phone:488-9882 1 Number Systems Representation Positive radix, positional number systems A number with radix r is represented by a string of digits: A n

### By the end of the lecture, you should be able to:

Extra Lecture: Number Systems Objectives - To understand: Base of number systems: decimal, binary, octal and hexadecimal Textual information stored as ASCII Binary addition/subtraction, multiplication

### 2011, The McGraw-Hill Companies, Inc. Chapter 3

Chapter 3 3.1 Decimal System The radix or base of a number system determines the total number of different symbols or digits used by that system. The decimal system has a base of 10 with the digits 0 through

### LSN 2 Number Systems. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology

LSN 2 Number Systems Department of Engineering Technology LSN 2 Decimal Number System Decimal number system has 10 digits (0-9) Base 10 weighting system... 10 5 10 4 10 3 10 2 10 1 10 0. 10-1 10-2 10-3

### CHAPTER V NUMBER SYSTEMS AND ARITHMETIC

CHAPTER V-1 CHAPTER V CHAPTER V NUMBER SYSTEMS AND ARITHMETIC CHAPTER V-2 NUMBER SYSTEMS RADIX-R REPRESENTATION Decimal number expansion 73625 10 = ( 7 10 4 ) + ( 3 10 3 ) + ( 6 10 2 ) + ( 2 10 1 ) +(

### Chapter 4. Binary Data Representation and Binary Arithmetic

Christian Jacob Chapter 4 Binary Data Representation and Binary Arithmetic 4.1 Binary Data Representation 4.2 Important Number Systems for Computers 4.2.1 Number System Basics 4.2.2 Useful Number Systems

### Chapter No.5 DATA REPRESENTATION

Chapter No.5 DATA REPRESENTATION Q.5.01 Complete the following statements. i) Data is a collection of ii) Data becomes information when properly. iii) Octal equivalent of binary number 1100010 is iv) 2

### The Essentials of Computer Organization and Architecture. Linda Null and Julia Lobur Jones and Bartlett Publishers, 2003

The Essentials of Computer Organization and Architecture Linda Null and Julia Lobur Jones and Bartlett Publishers, 2003 Chapter 2 Instructor's Manual Chapter Objectives Chapter 2, Data Representation,

### plc numbers - 13.1 Encoded values; BCD and ASCII Error detection; parity, gray code and checksums

plc numbers - 3. Topics: Number bases; binary, octal, decimal, hexadecimal Binary calculations; s compliments, addition, subtraction and Boolean operations Encoded values; BCD and ASCII Error detection;

### 1. Number Representation

CSEE 3827: Fundamentals of Computer Systems, Spring 2011 1. Number Representation Prof. Martha Kim (martha@cs.columbia.edu) Web: http://www.cs.columbia.edu/~martha/courses/3827/sp11/ Contents (H&H 1.3-1.4,

### Radix Number Systems. Number Systems. Number Systems 4/26/2010. basic idea of a radix number system how do we count:

Number Systems binary, octal, and hexadecimal numbers why used conversions, including to/from decimal negative binary numbers floating point numbers character codes basic idea of a radix number system

### Chapter II Binary Data Representation

Chapter II Binary Data Representation The atomic unit of data in computer systems is the bit, which is actually an acronym that stands for BInary digit. It can hold only 2 values or states: 0 or 1, true

### Number Representation

Number Representation Number System :: The Basics We are accustomed to using the so-called decimal number system Ten digits ::,,,3,4,5,6,7,8,9 Every digit position has a weight which is a power of Base

### Unit 2: Number Systems, Codes and Logic Functions

Unit 2: Number Systems, Codes and Logic Functions Introduction A digital computer manipulates discrete elements of data and that these elements are represented in the binary forms. Operands used for calculations

Review of Number Systems The study of number systems is important from the viewpoint of understanding how data are represented before they can be processed by any digital system including a computer. Different

### Number Systems & Encoding

Number Systems & Encoding Lecturer: Sri Parameswaran Author: Hui Annie Guo Modified: Sri Parameswaran Week2 1 Lecture overview Basics of computing with digital systems Binary numbers Floating point numbers

### الدكتور المھندس عادل مانع داخل

الدكتور المھندس عادل مانع داخل / میسان جامعة / كلیة الھندسة قسم الھندسة الكھرباي یة Chapter 1: Digital Systems Discrete Data Examples: 26 letters of the alphabet (A, B etc) 10 decimal digits (0, 1, 2 etc)

### CPE 323 Data Types and Number Representations

CPE 323 Data Types and Number Representations Aleksandar Milenkovic Numeral Systems: Decimal, binary, hexadecimal, and octal We ordinarily represent numbers using decimal numeral system that has 10 as

### Data Representation Binary Numbers

Data Representation Binary Numbers Integer Conversion Between Decimal and Binary Bases Task accomplished by Repeated division of decimal number by 2 (integer part of decimal number) Repeated multiplication

### Digital Logic. The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer.

Digital Logic 1 Data Representations 1.1 The Binary System The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer. The system we

### EE 261 Introduction to Logic Circuits. Module #2 Number Systems

EE 261 Introduction to Logic Circuits Module #2 Number Systems Topics A. Number System Formation B. Base Conversions C. Binary Arithmetic D. Signed Numbers E. Signed Arithmetic F. Binary Codes Textbook

### EE 3170 Microcontroller Applications

EE 37 Microcontroller Applications Lecture 3 : Digital Computer Fundamentals - Number Representation (.) Based on slides for ECE37 by Profs. Sloan, Davis, Kieckhafer, Tan, and Cischke Number Representation

### Data Representation in Computers

Chapter 3 Data Representation in Computers After studying this chapter the student will be able to: *Learn about binary, octal, decimal and hexadecimal number systems *Learn conversions between two different

### Bits, Data Types, and Operations. University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

Bits, Data Types, and Operations University of Texas at Austin CS3H - Computer Organization Spring 2 Don Fussell How do we represent data in a computer? At the lowest level, a computer is an electronic

### Logic Design. Dr. Yosry A. Azzam

Logic Design Dr. Yosry A. Azzam Binary systems Chapter 1 Agenda Binary Systems : Binary Numbers, Binary Codes, Binary Logic ASCII Code (American Standard Code for Information Interchange) Boolean Algebra

### 2. Number Systems - Positional Number Systems (1) - 2. Number Systems - Binary Numbers - 2. Number Systems - Positional Number Systems (2) -

Sistemas Digitais I LESI - 2º ano Lesson 2 - Number Systems Prof. João Miguel Fernandes (miguel@di.uminho.pt) Dept. Informática - Positional Number Systems (1) - We use daily a positional number system.

### Review of Number Systems Binary, Octal, and Hexadecimal Numbers and Two's Complement

Review of Number Systems Binary, Octal, and Hexadecimal Numbers and Two's Complement Topic 1: Binary, Octal, and Hexadecimal Numbers The number system we generally use in our everyday lives is a decimal

### Number Representation

Number Representation CS10001: Programming & Data Structures Pallab Dasgupta Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur Topics to be Discussed How are numeric data

### Number Systems and Base Conversions

Number Systems and Base Conversions As you know, the number system that we commonly use is the decimal or base- 10 number system. That system has 10 digits, 0 through 9. While it's very convenient for

### Integer and Real Numbers Representation in Microprocessor Techniques

Brno University of Technology Integer and Real Numbers Representation in Microprocessor Techniques Microprocessor Techniques and Embedded Systems Lecture 1 Dr. Tomas Fryza 30-Sep-2011 Contents Numerical

### CSC 1103: Digital Logic. Lecture Six: Data Representation

CSC 1103: Digital Logic Lecture Six: Data Representation Martin Ngobye mngobye@must.ac.ug Mbarara University of Science and Technology MAN (MUST) CSC 1103 1 / 32 Outline 1 Digital Computers 2 Number Systems

### Number Systems and. Data Representation

Number Systems and Data Representation 1 Lecture Outline Number Systems Binary, Octal, Hexadecimal Representation of characters using codes Representation of Numbers Integer, Floating Point, Binary Coded

### EM108 Software Development for Engineers Section 5 Storing Information

EM108 5 Storing Information page 1 of 11 EM108 Software Development for Engineers Section 5 Storing Information 5.1 Motivation: Various information types o Various types of numbers o Text o Images, Audios,

### Introduction Number Systems and Conversion

UNIT 1 Introduction Number Systems and Conversion Objectives 1. Introduction The first part of this unit introduces the material to be studied later. In addition to getting an overview of the material

### Here 4 is the least significant digit (LSD) and 2 is the most significant digit (MSD).

Number System Introduction Number systems provide the basis for all operations in information processing systems. In a number system the information is divided into a group of symbols; for example, 26

### CSI 333 Lecture 1 Number Systems

CSI 333 Lecture 1 Number Systems 1 1 / 23 Basics of Number Systems Ref: Appendix C of Deitel & Deitel. Weighted Positional Notation: 192 = 2 10 0 + 9 10 1 + 1 10 2 General: Digit sequence : d n 1 d n 2...

### Switching Circuits & Logic Design

Switching Circuits & Logic Design Jie-Hong Roland Jiang 江介宏 Department of Electrical Engineering National Taiwan University Fall 2013 1 1 Number Systems and Conversion Babylonian number system (3100 B.C.)

### Computer is a binary digital system. Data. Unsigned Integers (cont.) Unsigned Integers. Binary (base two) system: Has two states: 0 and 1

Computer Programming Programming Language Is telling the computer how to do something Wikipedia Definition: Applies specific programming languages to solve specific computational problems with solutions

### Binary Codes. Objectives. Binary Codes for Decimal Digits

Binary Codes Objectives In this lesson, you will study: 1. Several binary codes including Binary Coded Decimal (BCD), Error detection codes, Character codes 2. Coding versus binary conversion. Binary Codes

### Binary Representation. Number Systems. Base 10, Base 2, Base 16. Positional Notation. Conversion of Any Base to Decimal.

Binary Representation The basis of all digital data is binary representation. Binary - means two 1, 0 True, False Hot, Cold On, Off We must be able to handle more than just values for real world problems

### NUMBERING SYSTEMS C HAPTER 1.0 INTRODUCTION 1.1 A REVIEW OF THE DECIMAL SYSTEM 1.2 BINARY NUMBERING SYSTEM

12 Digital Principles Switching Theory C HAPTER 1 NUMBERING SYSTEMS 1.0 INTRODUCTION Inside today s computers, data is represented as 1 s and 0 s. These 1 s and 0 s might be stored magnetically on a disk,

### Number Systems, Base Conversions, and Computer Data Representation

, Base Conversions, and Computer Data Representation Decimal and Binary Numbers When we write decimal (base 10) numbers, we use a positional notation system. Each digit is multiplied by an appropriate

### The largest has a 0 in the sign position and 0's in all other positions:

10.2 Sign Magnitude Representation Sign Magnitude is straight-forward method for representing both positive and negative integers. It uses the most significant digit of the digit string to indicate the

### THE ISLAMIC UNIVERSITY OF GAZA ENGINEERING FACULTY DEPARTMENT OF COMPUTER ENGINEERING DIGITAL LOGIC DESIGN DISCUSSION ECOM Eng. Huda M.

THE ISLAMIC UNIVERSITY OF GAZA ENGINEERING FACULTY DEPARTMENT OF COMPUTER ENGINEERING DIGITAL LOGIC DESIGN DISCUSSION ECOM 2012 Eng. Huda M. Dawoud September, 2015 1.1 List the octal and hexadecimal numbers

### Common Number Systems Number Systems

5/29/204 Common Number Systems Number Systems System Base Symbols Used by humans? Used in computers? Decimal 0 0,, 9 Yes No Binary 2 0, No Yes Octal 8 0,, 7 No No Hexadecimal 6 0,, 9, A, B, F No No Number

### 1. Convert the following binary exponential expressions to their 'English'

Answers to Practice Problems Practice Problems - Integer Number System Conversions 1. Convert the decimal integer 427 10 into the following number systems: a. 110101011 2 c. 653 8 b. 120211 3 d. 1AB 16

### Binary Representation. Number Systems. Positional Notation

Binary Representation The basis of all digital data is binary representation. Binary - means two 1, 0 True, False Hot, Cold On, Off We must be able to handle more than just values for real world problems

### Number Representation and Arithmetic in Various Numeral Systems

1 Number Representation and Arithmetic in Various Numeral Systems Computer Organization and Assembly Language Programming 203.8002 Adapted by Yousef Shajrawi, licensed by Huong Nguyen under the Creative

### 1 Number System (Lecture 1 and 2 supplement)

1 Number System (Lecture 1 and 2 supplement) By Dr. Taek Kwon Many different number systems perhaps from the prehistoric era have been developed and evolved. Among them, binary number system is one of

### COMPSCI 210. Binary Fractions. Agenda & Reading

COMPSCI 21 Binary Fractions Agenda & Reading Topics: Fractions Binary Octal Hexadecimal Binary -> Octal, Hex Octal -> Binary, Hex Decimal -> Octal, Hex Hex -> Binary, Octal Animation: BinFrac.htm Example

### TECH. Arithmetic & Logic Unit. CH09 Computer Arithmetic. Number Systems. ALU Inputs and Outputs. Binary Number System

CH09 Computer Arithmetic CPU combines of ALU and Control Unit, this chapter discusses ALU The Arithmetic and Logic Unit (ALU) Number Systems Integer Representation Integer Arithmetic Floating-Point Representation

### Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture - 04 Digital Logic II May, I before starting the today s lecture

### Digital Electronics. 1.0 Introduction to Number Systems. Module

Module 1 www.learnabout-electronics.org Digital Electronics 1.0 Introduction to What you ll learn in Module 1 Section 1.0. Recognise different number systems and their uses. Section 1.1 in Electronics.

### Encoding Systems: Combining Bits to form Bytes

Encoding Systems: Combining Bits to form Bytes Alphanumeric characters are represented in computer storage by combining strings of bits to form unique bit configuration for each character, also called

### Digital Arithmetic. Digital Arithmetic: Operations and Circuits Dr. Farahmand

Digital Arithmetic Digital Arithmetic: Operations and Circuits Dr. Farahmand Binary Arithmetic Digital circuits are frequently used for arithmetic operations Fundamental arithmetic operations on binary

### CSCI 230 Class Notes Binary Number Representations and Arithmetic

CSCI 230 Class otes Binary umber Representations and Arithmetic Mihran Tuceryan with some modifications by Snehasis Mukhopadhyay Jan 22, 1999 1 Decimal otation What does it mean when we write 495? How

### Sheet 7 (Chapter 10)

King Saud University College of Computer and Information Sciences Department of Information Technology CAP240 First semester 1430/1431 Multiple-choice Questions Sheet 7 (Chapter 10) 1. Which error detection

### 198:211 Computer Architecture

198:211 Computer Architecture Topics: Lecture 8 (W5) Fall 2012 Data representation 2.1 and 2.2 of the book Floating point 2.4 of the book 1 Computer Architecture What do computers do? Manipulate stored

### Chapter 2: Number Systems

Chapter 2: Number Systems Logic circuits are used to generate and transmit 1s and 0s to compute and convey information. This two-valued number system is called binary. As presented earlier, there are many

### Binary. ! You are probably familiar with decimal

Arithmetic operations in assembly language Prof. Gustavo Alonso Computer Science Department ETH Zürich alonso@inf.ethz.ch http://www.inf.ethz.ch/department/is/iks/ Binary! You are probably familiar with

### Floating Point Numbers. Question. Learning Outcomes. Number Representation - recap. Do you have your laptop here?

Question Floating Point Numbers 6.626068 x 10-34 Do you have your laptop here? A yes B no C what s a laptop D where is here? E none of the above Eddie Edwards eedwards@doc.ic.ac.uk https://www.doc.ic.ac.uk/~eedwards/compsys

### Lecture 1 Introduction, Numbers, and Number System Page 1 of 8

Lecture Introduction, Numbers and Number System Contents.. Number Systems (Appendix B)... 2. Example. Converting to Base 0... 2.2. Number Representation... 2.3. Number Conversion... 3. To convert a number

### Useful Number Systems

Useful Number Systems Decimal Base = 10 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Binary Base = 2 Digit Set = {0, 1} Octal Base = 8 = 2 3 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7} Hexadecimal Base = 16 = 2

### Chapter 4. Computer Arithmetic

Chapter 4 Computer Arithmetic 4.1 Number Systems A number system uses a specific radix (base). Radices that are power of 2 are widely used in digital systems. These radices include binary (base 2), quaternary

### Quiz for Chapter 3 Arithmetic for Computers 3.10

Date: Quiz for Chapter 3 Arithmetic for Computers 3.10 Not all questions are of equal difficulty. Please review the entire quiz first and then budget your time carefully. Name: Course: Solutions in RED

### Binary Numbers. Binary Numbers. Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria

Binary Numbers Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria Wolfgang.Schreiner@risc.uni-linz.ac.at http://www.risc.uni-linz.ac.at/people/schreine

### Computer Science 281 Binary and Hexadecimal Review

Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two

### Chapter 4: Computer Codes

Slide 1/30 Learning Objectives In this chapter you will learn about: Computer data Computer codes: representation of data in binary Most commonly used computer codes Collating sequence 36 Slide 2/30 Data

### Lecture 2. Binary and Hexadecimal Numbers

Lecture 2 Binary and Hexadecimal Numbers Purpose: Review binary and hexadecimal number representations Convert directly from one base to another base Review addition and subtraction in binary representations

### Presented By: Ms. Poonam Anand

Presented By: Ms. Poonam Anand Know the different types of numbers Describe positional notation Convert numbers in other bases to base 10 Convert base 10 numbers into numbers of other bases Describe the

### Binary Numbers. Binary Numbers. Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria

Binary Numbers Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria Wolfgang.Schreiner@risc.uni-linz.ac.at http://www.risc.uni-linz.ac.at/people/schreine

### CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012

CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline Data Representation Binary Codes Why 6-3-1-1 and Excess-3? Data Representation (1/2) Each numbering

### 1 Basic Computing Concepts (4) Data Representations

1 Basic Computing Concepts (4) Data Representations The Binary System The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer. The

### Binary Numbers. X. Zhang Fordham Univ.

Binary Numbers X. Zhang Fordham Univ. 1 Numeral System! A way for expressing numbers, using symbols in a consistent manner.!! "11" can be interpreted differently:!! in the binary symbol: three!! in the

### Understanding Binary Numbers. Different Number Systems. Conversion: Bin Hex. Conversion MAP. Binary (0, 1) Hexadecimal 0 9, A(10), B(11),, F(15) :

Understanding Binary Numbers Computers operate on binary values (0 and 1) Easy to represent binary values electrically Voltages and currents. Can be implemented using circuits Create the building blocks

### COMP2121: Microprocessors and Interfacing

Interfacing Lecture 3: Number Systems (I) http://www.cse.unsw.edu.au/~cs2121 Lecturer: Hui Wu Session 2, 2005 Overview Positional notation Decimal, hexadecimal and binary One complement Two s complement

### COMPUTER ARCHITECTURE IT0205

COMPUTER ARCHITECTURE IT0205 M.Thenmozhi/Kayalvizhi Jayavel/M.B.Panbu Asst.Prof.(Sr.G)/Asst.Prof.(Sr.G)/Asst.Prof.(O.G) Department of IT SRM University, Kattankulathur 1 Disclaimer The contents of the

### Goals. Unary Numbers. Decimal Numbers. 3,148 is. 1000 s 100 s 10 s 1 s. Number Bases 1/12/2009. COMP370 Intro to Computer Architecture 1

Number Bases //9 Goals Numbers Understand binary and hexadecimal numbers Be able to convert between number bases Understand binary fractions COMP37 Introduction to Computer Architecture Unary Numbers Decimal

### UNIT I NUMBER SYSTEM AND BINARY CODES

1 UNIT I NUMBER SYSTEM AND BINARY CODES 1.0 Aims and Objectives 1.1 Introduction 1.2 Number System 1.2.1 Decimal Number System 1.2.2 Bi-stable Devices 1.2.3 Binary Number System 1.2.4 Octal number System

### Numeral Systems. The number twenty-five can be represented in many ways: Decimal system (base 10): 25 Roman numerals:

Numeral Systems Which number is larger? 25 8 We need to distinguish between numbers and the symbols that represent them, called numerals. The number 25 is larger than 8, but the numeral 8 above is larger

### Binary Representation and Computer Arithmetic

Binary Representation and Computer Arithmetic The decimal system of counting and keeping track of items was first created by Hindu mathematicians in India in A.D. 4. Since it involved the use of fingers

### Arithmetic of Number Systems

2 Arithmetic of Number Systems INTRODUCTION Arithmetic operations in number systems are usually done in binary because designing of logic networks is much easier than decimal. In this chapter we will discuss

### Chapter 1 Binary Systems 1-1. Digital Systems

Chapter 1 Binary Systems 1-1. Digital Systems The General-purpose digital computer is the bestknown example of a digital system. The major parts of a computer are a memory unit, a central processing unit,

### School for Professional Studies UNDERGRADUATE PROGRAM COMPUTER SCIENCE FUNDAMENTALS SUPPLEMENTAL COURSE MATERIALS CS208-00T

School for Professional Studies UNDERGRADUATE PROGRAM COMPUTER SCIENCE FUNDAMENTALS SUPPLEMENTAL COURSE MATERIALS CS208-00T Table of Contents Suggested 8-week Schedule... Chapter 1: NUMBERING SYSTEMS AND

### NUMBER SYSTEMS. 1.1 Introduction

NUMBER SYSTEMS 1.1 Introduction There are several number systems which we normally use, such as decimal, binary, octal, hexadecimal, etc. Amongst them we are most familiar with the decimal number system.

### Number Systems and Data Representation CS221

Number Systems and Data Representation CS221 Inside today s computers, data is represented as 1 s and 0 s. These 1 s and 0 s might be stored magnetically on a disk, or as a state in a transistor, core,

### CHAPTER THREE. 3.1 Binary Addition. Binary Math and Signed Representations

CHAPTER THREE Binary Math and Signed Representations Representing numbers with bits is one thing. Doing something with them is an entirely different matter. This chapter discusses some of the basic mathematical

### UNIT 2: NUMBER SYSTEM AND CODES.

UNIT 2: NUMBER SYSTEM AND CODES. Structure 2.1 Introduction 2.2 Objectives 2.3 Binary Numbers 2.3.1 Binary-to-Decimal conversion 2.3.2 Decimal-to-Binary Conversion 2.4 Octal Numbers 2.4.1 Octal-to-Binary