# Chapter 4: Computer Codes

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Slide 1/30

2 Learning Objectives In this chapter you will learn about: Computer data Computer codes: representation of data in binary Most commonly used computer codes Collating sequence 36 Slide 2/30

3 Data Types Numeric Data consists of only numbers 0, 1, 2,, 9 Alphabetic Data consists of only the letters A, B, C,, Z, in both uppercase and lowercase, and blank character Alphanumeric Data is a string of symbols where a symbol may be one of the letters A, B, C,, Z, in either uppercase or lowercase, or one of the digits 0, 1, 2,, 9, or a special character, such as + - * /,. ( ) = etc. 36 Slide 3/30

4 Computer Codes Computer codes are used for internal representation of data in computers As computers use binary numbers for internal data representation, computer codes use binary coding schemes In binary coding, every symbol that appears in the data is represented by a group of bits The group of bits used to represent a symbol is called a byte (Continued on next slide) 36 Slide 4/30

5 Computer Codes (Continued from previous slide..) As most modern coding schemes use 8 bits to represent a symbol, the term byte is often used to mean a group of 8 bits Commonly used computer codes are BCD, EBCDIC, and ASCII 36 Slide 5/30

6 BCD BCD stands for Binary Coded Decimal It is one of the early computer codes It uses 6 bits to represent a symbol It can represent 64 (2 6 ) different characters 36 Slide 6/30

7 Coding of Alphabetic and Numeric Characters in BCD Char BCD Code Zone Digit Octal Char BCD Code Zone Digit Octal A N B O C P D Q E R F S G T H U I V J W K X L Y M Z (Continued on next slide) 37 Slide 7/30

8 Coding of Alphabetic and Numeric Characters in BCD (Continued from previous slide..) Character BCD Code Zone Digit Octal Equivalent Slide 8/30

9 BCD Coding Scheme (Example 1) Example Show the binary digits used to record the word BASE in BCD Solution: B = in BCD binary notation A = in BCD binary notation S = 10 in BCD binary notation E = 11 in BCD binary notation So the binary digits B A S E will record the word BASE in BCD 38 Slide 9/30

10 BCD Coding Scheme (Example 2) Example Using octal notation, show BCD coding for the word DIGIT Solution: D = 64 in BCD octal notation I = 71 in BCD octal notation G = 67 in BCD octal notation I = 71 in BCD octal notation T = 23 in BCD octal notation Hence, BCD coding for the word DIGIT in octal notation will be D I G I T 38 Slide 10/30

11 EBCDIC EBCDIC stands for Extended Binary Coded Decimal Interchange Code It uses 8 bits to represent a symbol It can represent 256 (2 8 ) different characters 38 Slide 11/30

12 Coding of Alphabetic and Numeric Characters in EBCDIC Char A B C D E EBCDIC Code Digit Zone Hex C1 C2 C3 C4 C5 Char N O P Q R EBCDIC Code Digit Zone Hex D5 D6 D7 D8 D9 F C6 S E2 G C7 T 1110 E3 H C8 U 1110 E4 I C9 V 1110 E5 J K L M D1 D2 D3 D4 W X Y Z E6 E7 E8 E9 (Continued on next slide) 39 Slide 12/30

13 Coding of Alphabetic and Numeric Characters in EBCDIC (Continued from previous slide..) Character EBCDIC Code Digit Zone Hexadecima l Equivalent F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 39 Slide 13/30

14 Zoned Decimal Numbers Zoned decimal numbers are used to represent numeric values (positive, negative, or unsigned) in EBCDIC A sign indicator (C for plus, D for minus, and F for unsigned) is used in the zone position of the rightmost digit Zones for all other digits remain as F, the zone value for numeric characters in EBCDIC In zoned format, there is only one digit per byte 39 Slide 14/30

15 Examples Zoned Decimal Numbers Numeric Value EBCDIC Sign Indicator F3F4F5 F3F4C5 F3F4D5 F for unsigned C for positive D for negative 40 Slide 15/30

16 Packed Decimal Numbers Packed decimal numbers are formed from zoned decimal numbers in the following manner: Step 1: The zone half and the digit half of the rightmost byte are reversed Step 2: All remaining zones are dropped out Packed decimal format requires fewer number of bytes than zoned decimal format for representing a number Numbers represented in packed decimal format can be used for arithmetic operations 39 Slide 16/30

17 Examples of Conversion of Zoned Decimal Numbers to Packed Decimal Format Numeric Value EBCDIC F3F4F5 F3F4C5 F3F4D5 F3F4F5F6 Sign Indicator 345F 345C 345D 03456F 40 Slide 17/30

18 EBCDIC Coding Scheme Example Using binary notation, write EBCDIC coding for the word BIT. many bytes are required for this representation? How Solution: B = in EBCDIC binary notation I = in EBCDIC binary notation T = 1110 in EBCDIC binary notation Hence, EBCDIC coding for the word BIT in binary notation will be B I T 3 bytes will be required for this representation because each letter requires 1 byte (or 8 bits) 40 Slide 18/30

19 ASCII ASCII stands for American Standard Code for Information Interchange. ASCII is of two types ASCII-7 and ASCII-8 ASCII-7 uses 7 bits to represent a symbol and can represent 128 (2 7 ) different characters ASCII-8 uses 8 bits to represent a symbol and can represent 256 (2 8 ) different characters First 128 characters in ASCII-7 and ASCII-8 are same 40 Slide 19/30

20 Coding of Numeric and Alphabetic Characters in ASCII Character ASCII-7 / ASCII-8 Zone Digit Hexadecimal Equivalent (Continued on next slide) 42 Slide 20/30

21 Coding of Numeric and Alphabetic Characters in ASCII (Continued from previous slide..) Character A B C D E F G H I J K L M ASCII-7 / ASCII-8 Zone Digit Hexadecimal Equivalent A 4B 4C 4D (Continued on next slide) 42 Slide 21/30

22 Coding of Numeric and Alphabetic Characters in ASCII (Continued from previous slide..) Character N O P Q R S T U V W X Y Z ASCII-7 / ASCII-8 Zone Digit Hexadecimal Equivalent 4E 4F A 42 Slide 22/30

23 ASCII-7 Coding Scheme Example Write binary coding for the word BOY in ASCII-7. How many bytes are required for this representation? Solution: B = in ASCII-7 binary notation O = 111 in ASCII-7 binary notation Y = in ASCII-7 binary notation Hence, binary coding for the word BOY in ASCII-7 will be B O Y Since each character in ASCII-7 requires one byte for its representation and there are 3 characters in the word BOY, 3 bytes will be required for this representation 43 Slide 23/30

24 ASCII-8 Coding Scheme Example Write binary coding for the word SKY in ASCII-8. How many bytes are required for this representation? Solution: S = 0111 in ASCII-8 binary notation K = 1011 in ASCII-8 binary notation Y = 1001 in ASCII-8 binary notation Hence, binary coding for the word SKY in ASCII-8 will be S K Y Since each character in ASCII-8 requires one byte for its representation and there are 3 characters in the word SKY, 3 bytes will be required for this representation 43 Slide 24/30

25 Unicode Why Unicode: No single encoding system supports all languages Different encoding systems conflict Unicode features: Provides a consistent way of encoding multilingual plain text Defines codes for characters used in all major languages of the world Defines codes for special characters, mathematical symbols, technical symbols, and diacritics 44 Slide 25/30

26 Unicode Unicode features (continued): Capacity to encode as many as a million characters Assigns each character a unique numeric value and name Reserves a part of the code space for private use Affords simplicity and consistency of ASCII, even corresponding characters have same code Specifies an algorithm for the presentation of text with bi-directional behavior Encoding Forms UTF-8, UTF-16, UTF Slide 26/30

27 Collating Sequence Collating sequence defines the assigned ordering among the characters used by a computer Collating sequence may vary, depending on the type of computer code used by a particular computer In most computers, collating sequences follow the following rules: 1. Letters are considered in alphabetic order (A < B < C < Z) 2. Digits are considered in numeric order (0 < 1 < 2 < 9) 46 Slide 27/30

28 Sorting in EBCDIC Example Suppose a computer uses EBCDIC as its internal representation of characters. In which order will this computer sort the strings 23, A1, 1A? Solution: In EBCDIC, numeric characters are treated to be greater than alphabetic characters. Hence, in the said computer, numeric characters will be placed after alphabetic characters and the given string will be treated as: A1 < 1A < 23 Therefore, the sorted sequence will be: A1, 1A, Slide 28/30

29 Sorting in ASCII Example Suppose a computer uses ASCII for its internal representation of characters. In which order will this computer sort the strings 23, A1, 1A, a2, 2a, aa, and Aa? Solution: In ASCII, numeric characters are treated to be less than alphabetic characters. Hence, in the said computer, numeric characters will be placed before alphabetic characters and the given string will be treated as: 1A < 23 < 2a < A1 < Aa < a2 < aa Therefore, the sorted sequence will be: 1A, 23, 2a, A1, Aa, a2, and aa 47 Slide 29/30

30 Key Words/Phrases Alphabetic data Alphanumeric data American Standard Code for Information Interchange (ASCII) Binary Coded Decimal (BCD) code Byte Collating sequence Computer codes Control characters Extended Binary-Coded Decimal Interchange Code (EBCDIC) Hexadecimal equivalent Numeric data Octal equivalent Packed decimal numbers Unicode Zoned decimal numbers 47 Slide 30/30

### CSC 1103: Digital Logic. Lecture Six: Data Representation

CSC 1103: Digital Logic Lecture Six: Data Representation Martin Ngobye mngobye@must.ac.ug Mbarara University of Science and Technology MAN (MUST) CSC 1103 1 / 32 Outline 1 Digital Computers 2 Number Systems

### EE 3170 Microcontroller Applications

EE 37 Microcontroller Applications Lecture 3 : Digital Computer Fundamentals - Number Representation (.) Based on slides for ECE37 by Profs. Sloan, Davis, Kieckhafer, Tan, and Cischke Number Representation

### Encoding Systems: Combining Bits to form Bytes

Encoding Systems: Combining Bits to form Bytes Alphanumeric characters are represented in computer storage by combining strings of bits to form unique bit configuration for each character, also called

### Chapter No.5 DATA REPRESENTATION

Chapter No.5 DATA REPRESENTATION Q.5.01 Complete the following statements. i) Data is a collection of ii) Data becomes information when properly. iii) Octal equivalent of binary number 1100010 is iv) 2

### Data Representation in Computers

Chapter 3 Data Representation in Computers After studying this chapter the student will be able to: *Learn about binary, octal, decimal and hexadecimal number systems *Learn conversions between two different

### 1 Basic Computing Concepts (4) Data Representations

1 Basic Computing Concepts (4) Data Representations The Binary System The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer. The

### Data Representation. Data Representation, Storage, and Retrieval. Data Representation. Data Representation. Data Representation. Data Representation

, Storage, and Retrieval ULM/HHIM Summer Program Project 3, Day 3, Part 3 Digital computers convert the data they process into a digital value. Text Audio Images/Graphics Video Digitizing 00000000... 6/8/20

### Chap 3 Data Representation

Chap 3 Data Representation 3-11 Data Types How to representation and conversion between these data types? 3-11 Data Types : Number System Radix : Decimal : radix 10 Binary : radix 2 3-11 Data Types : Number

### Number Representation

Number Representation Number System :: The Basics We are accustomed to using the so-called decimal number system Ten digits ::,,,3,4,5,6,7,8,9 Every digit position has a weight which is a power of Base

### Unit 2: Number Systems, Codes and Logic Functions

Unit 2: Number Systems, Codes and Logic Functions Introduction A digital computer manipulates discrete elements of data and that these elements are represented in the binary forms. Operands used for calculations

Review of Number Systems The study of number systems is important from the viewpoint of understanding how data are represented before they can be processed by any digital system including a computer. Different

### Number Systems and. Data Representation

Number Systems and Data Representation 1 Lecture Outline Number Systems Binary, Octal, Hexadecimal Representation of characters using codes Representation of Numbers Integer, Floating Point, Binary Coded

### Digital Fundamentals

Digital Fundamentals with PLD Programming Floyd Chapter 2 29 Pearson Education Decimal Numbers The position of each digit in a weighted number system is assigned a weight based on the base or radix of

### Number Representation

Number Representation CS10001: Programming & Data Structures Pallab Dasgupta Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur Topics to be Discussed How are numeric data

### The largest has a 0 in the sign position and 0's in all other positions:

10.2 Sign Magnitude Representation Sign Magnitude is straight-forward method for representing both positive and negative integers. It uses the most significant digit of the digit string to indicate the

### Number Systems and Data Representation CS221

Number Systems and Data Representation CS221 Inside today s computers, data is represented as 1 s and 0 s. These 1 s and 0 s might be stored magnetically on a disk, or as a state in a transistor, core,

### A B C

Data Representation Module 2 CS 272 Sam Houston State University Dr. Tim McGuire Copyright 2001 by Timothy J. McGuire, Ph.D. 1 Positional Number Systems Decimal (base 10) is an example e.g., 435 means

### Section 1.4 Place Value Systems of Numeration in Other Bases

Section.4 Place Value Systems of Numeration in Other Bases Other Bases The Hindu-Arabic system that is used in most of the world today is a positional value system with a base of ten. The simplest reason

### Activity 1: Bits and Bytes

ICS3U (Java): Introduction to Computer Science, Grade 11, University Preparation Activity 1: Bits and Bytes The Binary Number System Computers use electrical circuits that include many transistors and

### Computer Number Systems

Computer Number Systems Thorne, Edition 2 : Section 1.3, Appendix I (Irvine, Edition VI : Section 1.3) SYSC3006 1 Starting from What We Already Know Decimal Numbers Based Number Systems : 1. Base defines

### Number Systems, Base Conversions, and Computer Data Representation

, Base Conversions, and Computer Data Representation Decimal and Binary Numbers When we write decimal (base 10) numbers, we use a positional notation system. Each digit is multiplied by an appropriate

### Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture - 04 Digital Logic II May, I before starting the today s lecture

### Binary Numbers. X. Zhang Fordham Univ.

Binary Numbers X. Zhang Fordham Univ. 1 Numeral System! A way for expressing numbers, using symbols in a consistent manner.!! "11" can be interpreted differently:!! in the binary symbol: three!! in the

### Base Conversion written by Cathy Saxton

Base Conversion written by Cathy Saxton 1. Base 10 In base 10, the digits, from right to left, specify the 1 s, 10 s, 100 s, 1000 s, etc. These are powers of 10 (10 x ): 10 0 = 1, 10 1 = 10, 10 2 = 100,

### EE 261 Introduction to Logic Circuits. Module #2 Number Systems

EE 261 Introduction to Logic Circuits Module #2 Number Systems Topics A. Number System Formation B. Base Conversions C. Binary Arithmetic D. Signed Numbers E. Signed Arithmetic F. Binary Codes Textbook

### Signed Binary Arithmetic

Signed Binary Arithmetic In the real world of mathematics, computers must represent both positive and negative binary numbers. For example, even when dealing with positive arguments, mathematical operations

### The string of digits 101101 in the binary number system represents the quantity

Data Representation Section 3.1 Data Types Registers contain either data or control information Control information is a bit or group of bits used to specify the sequence of command signals needed for

### Useful Number Systems

Useful Number Systems Decimal Base = 10 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Binary Base = 2 Digit Set = {0, 1} Octal Base = 8 = 2 3 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7} Hexadecimal Base = 16 = 2

### Chapter 4. Binary Data Representation and Binary Arithmetic

Christian Jacob Chapter 4 Binary Data Representation and Binary Arithmetic 4.1 Binary Data Representation 4.2 Important Number Systems for Computers 4.2.1 Number System Basics 4.2.2 Useful Number Systems

### A First Book of C++ Chapter 2 Data Types, Declarations, and Displays

A First Book of C++ Chapter 2 Data Types, Declarations, and Displays Objectives In this chapter, you will learn about: Data Types Arithmetic Operators Variables and Declarations Common Programming Errors

### plc numbers - 13.1 Encoded values; BCD and ASCII Error detection; parity, gray code and checksums

plc numbers - 3. Topics: Number bases; binary, octal, decimal, hexadecimal Binary calculations; s compliments, addition, subtraction and Boolean operations Encoded values; BCD and ASCII Error detection;

### Number Systems and Base Conversions

Number Systems and Base Conversions As you know, the number system that we commonly use is the decimal or base- 10 number system. That system has 10 digits, 0 through 9. While it's very convenient for

### Here 4 is the least significant digit (LSD) and 2 is the most significant digit (MSD).

Number System Introduction Number systems provide the basis for all operations in information processing systems. In a number system the information is divided into a group of symbols; for example, 26

### By the end of the lecture, you should be able to:

Extra Lecture: Number Systems Objectives - To understand: Base of number systems: decimal, binary, octal and hexadecimal Textual information stored as ASCII Binary addition/subtraction, multiplication

### 2011, The McGraw-Hill Companies, Inc. Chapter 3

Chapter 3 3.1 Decimal System The radix or base of a number system determines the total number of different symbols or digits used by that system. The decimal system has a base of 10 with the digits 0 through

### Oct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8

ECE Department Summer LECTURE #5: Number Systems EEL : Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz Decimal Number System: -Our standard number system is base, also

### Chapter 3: Number Systems

Slide 1/40 Learning Objectives In this chapter you will learn about: Non-positional number system Positional number system Decimal number system Binary number system Octal number system Hexadecimal number

### CHAPTER 2 Data Representation in Computer Systems

CHAPTER 2 Data Representation in Computer Systems 2.1 Introduction 47 2.2 Positional Numbering Systems 48 2.3 Converting Between Bases 48 2.3.1 Converting Unsigned Whole Numbers 49 2.3.2 Converting Fractions

### Part 1 Theory Fundamentals

Part 1 Theory Fundamentals 2 Chapter 1 Information Representation Learning objectives By the end of this chapter you should be able to: show understanding of the basis of different number systems show

### Binary Numbers. Binary Numbers. Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria

Binary Numbers Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria Wolfgang.Schreiner@risc.uni-linz.ac.at http://www.risc.uni-linz.ac.at/people/schreine

### 1.3 Data Representation

8628-28 r4 vs.fm Page 9 Thursday, January 2, 2 2:4 PM.3 Data Representation 9 appears at Level 3, uses short mnemonics such as ADD, SUB, and MOV, which are easily translated to the ISA level. Assembly

### 2.1 Binary Numbers. 2.3 Number System Conversion. From Binary to Decimal. From Decimal to Binary. Section 2 Binary Number System Page 1 of 8

Section Binary Number System Page 1 of 8.1 Binary Numbers The number system we use is a positional number system meaning that the position of each digit has an associated weight. The value of a given number

### CPE 323 Data Types and Number Representations

CPE 323 Data Types and Number Representations Aleksandar Milenkovic Numeral Systems: Decimal, binary, hexadecimal, and octal We ordinarily represent numbers using decimal numeral system that has 10 as

### THE ISLAMIC UNIVERSITY OF GAZA ENGINEERING FACULTY DEPARTMENT OF COMPUTER ENGINEERING DIGITAL LOGIC DESIGN DISCUSSION ECOM Eng. Huda M.

THE ISLAMIC UNIVERSITY OF GAZA ENGINEERING FACULTY DEPARTMENT OF COMPUTER ENGINEERING DIGITAL LOGIC DESIGN DISCUSSION ECOM 2012 Eng. Huda M. Dawoud September, 2015 1.1 List the octal and hexadecimal numbers

### Logic Design. Dr. Yosry A. Azzam

Logic Design Dr. Yosry A. Azzam Binary systems Chapter 1 Agenda Binary Systems : Binary Numbers, Binary Codes, Binary Logic ASCII Code (American Standard Code for Information Interchange) Boolean Algebra

### Binary Numbers. Binary Numbers. Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria

Binary Numbers Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria Wolfgang.Schreiner@risc.uni-linz.ac.at http://www.risc.uni-linz.ac.at/people/schreine

### EM108 Software Development for Engineers Section 5 Storing Information

EM108 5 Storing Information page 1 of 11 EM108 Software Development for Engineers Section 5 Storing Information 5.1 Motivation: Various information types o Various types of numbers o Text o Images, Audios,

### COMP2121: Microprocessors and Interfacing

Interfacing Lecture 3: Number Systems (I) http://www.cse.unsw.edu.au/~cs2121 Lecturer: Hui Wu Session 2, 2005 Overview Positional notation Decimal, hexadecimal and binary One complement Two s complement

### Number System. Some important number systems are as follows. Decimal number system Binary number system Octal number system Hexadecimal number system

Number System When we type some letters or words, the computer translates them in numbers as computers can understand only numbers. A computer can understand positional number system where there are only

### Radix Number Systems. Number Systems. Number Systems 4/26/2010. basic idea of a radix number system how do we count:

Number Systems binary, octal, and hexadecimal numbers why used conversions, including to/from decimal negative binary numbers floating point numbers character codes basic idea of a radix number system

### Systems I: Computer Organization and Architecture

Systems I: Computer Organization and Architecture Lecture 2: Number Systems and Arithmetic Number Systems - Base The number system that we use is base : 734 = + 7 + 3 + 4 = x + 7x + 3x + 4x = x 3 + 7x

### Computer Science 281 Binary and Hexadecimal Review

Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two

### Number Systems & Encoding

Number Systems & Encoding Lecturer: Sri Parameswaran Author: Hui Annie Guo Modified: Sri Parameswaran Week2 1 Lecture overview Basics of computing with digital systems Binary numbers Floating point numbers

### CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012

CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline Data Representation Binary Codes Why 6-3-1-1 and Excess-3? Data Representation (1/2) Each numbering

### ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-470/570: Microprocessor-Based System Design Fall 2014.

REVIEW OF NUMBER SYSTEMS Notes Unit 2 BINARY NUMBER SYSTEM In the decimal system, a decimal digit can take values from to 9. For the binary system, the counterpart of the decimal digit is the binary digit,

### Binary, Hexadecimal, Octal, and BCD Numbers

23CH_PHCalter_TMSETE_949118 23/2/2007 1:37 PM Page 1 Binary, Hexadecimal, Octal, and BCD Numbers OBJECTIVES When you have completed this chapter, you should be able to: Convert between binary and decimal

### Digital Arithmetic. Digital Arithmetic: Operations and Circuits Dr. Farahmand

Digital Arithmetic Digital Arithmetic: Operations and Circuits Dr. Farahmand Binary Arithmetic Digital circuits are frequently used for arithmetic operations Fundamental arithmetic operations on binary

### Binary Representation. Number Systems. Positional Notation

Binary Representation The basis of all digital data is binary representation. Binary - means two 1, 0 True, False Hot, Cold On, Off We must be able to handle more than just values for real world problems

### Binary Representation. Number Systems. Base 10, Base 2, Base 16. Positional Notation. Conversion of Any Base to Decimal.

Binary Representation The basis of all digital data is binary representation. Binary - means two 1, 0 True, False Hot, Cold On, Off We must be able to handle more than just values for real world problems

### Introduction Number Systems and Conversion

UNIT 1 Introduction Number Systems and Conversion Objectives 1. Introduction The first part of this unit introduces the material to be studied later. In addition to getting an overview of the material

### BINARY-CODED DECIMAL (BCD)

BINARY-CODED DECIMAL (BCD) Definition The binary-coded decimal (BCD) is an encoding for decimal numbers in which each digit is represented by its own binary sequence. Basics In computing and electronic

### Binary Numbers. Bob Brown Information Technology Department Southern Polytechnic State University

Binary Numbers Bob Brown Information Technology Department Southern Polytechnic State University Positional Number Systems The idea of number is a mathematical abstraction. To use numbers, we must represent

### الدكتور المھندس عادل مانع داخل

الدكتور المھندس عادل مانع داخل / میسان جامعة / كلیة الھندسة قسم الھندسة الكھرباي یة Chapter 1: Digital Systems Discrete Data Examples: 26 letters of the alphabet (A, B etc) 10 decimal digits (0, 1, 2 etc)

### 6 3 4 9 = 6 10 + 3 10 + 4 10 + 9 10

Lesson The Binary Number System. Why Binary? The number system that you are familiar with, that you use every day, is the decimal number system, also commonly referred to as the base- system. When you

### Chapter II Binary Data Representation

Chapter II Binary Data Representation The atomic unit of data in computer systems is the bit, which is actually an acronym that stands for BInary digit. It can hold only 2 values or states: 0 or 1, true

### CHAPTER 3 Number System and Codes

CHAPTER 3 Number System and Codes 3.1 Introduction On hearing the word number, we immediately think of familiar decimal number system with its 10 digits; 0,1, 2,3,4,5,6, 7, 8 and 9. these numbers are called

### Computer Architecture CPIT 210 LAB 1 Manual. Prepared By: Mohammed Ghazi Al Obeidallah.

Computer Architecture CPIT 210 LAB 1 Manual Prepared By: Mohammed Ghazi Al Obeidallah malabaidallah@kau.edu.sa LAB 1 Outline: 1. Students should understand basic concepts of Decimal system, Binary system,

### ASCII Code. Numerous codes were invented, including Émile Baudot's code (known as Baudot

ASCII Code Data coding Morse code was the first code used for long-distance communication. Samuel F.B. Morse invented it in 1844. This code is made up of dots and dashes (a sort of binary code). It was

### Counting in base 10, 2 and 16

Counting in base 10, 2 and 16 1. Binary Numbers A super-important fact: (Nearly all) Computers store all information in the form of binary numbers. Numbers, characters, images, music files --- all of these

### Data types. lecture 4

Data types lecture 4 Information in digital computers is represented using binary number system. The base, i.e. radix, of the binary system is 2. Other common number systems: octal (base 8), decimal (base

### Digital Logic. The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer.

Digital Logic 1 Data Representations 1.1 The Binary System The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer. The system we

### Chapter 2 Numeric Representation.

Chapter 2 Numeric Representation. Most of the things we encounter in the world around us are analog; they don t just take on one of two values. How then can they be represented digitally? The key is that

### Digital System Design Prof. D. Roychoudhury Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Digital System Design Prof. D. Roychoudhury Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture - 03 Digital Logic - I Today, we will start discussing on Digital

### Cyber Security Workshop Encryption Reference Manual

Cyber Security Workshop Encryption Reference Manual May 2015 Basic Concepts in Encoding and Encryption Binary Encoding Examples Encryption Cipher Examples 1 P a g e Encoding Concepts Binary Encoding Basics

### NUMBER REPRESENTATIONS IN THE COMPUTER for COSC 120

NUMBER REPRESENTATIONS IN THE COMPUTER for COSC 120 First, a reminder of how we represent base ten numbers. Base ten uses ten (decimal) digits: 0, 1, 2,3, 4, 5, 6, 7, 8, 9. In base ten, 10 means ten. Numbers

### Computer is a binary digital system. Data. Unsigned Integers (cont.) Unsigned Integers. Binary (base two) system: Has two states: 0 and 1

Computer Programming Programming Language Is telling the computer how to do something Wikipedia Definition: Applies specific programming languages to solve specific computational problems with solutions

### NUMBER SYSTEMS CHAPTER 19-1

NUMBER SYSTEMS 19.1 The Decimal System 19. The Binary System 19.3 Converting between Binary and Decimal Integers Fractions 19.4 Hexadecimal Notation 19.5 Key Terms and Problems CHAPTER 19-1 19- CHAPTER

### NUMBERING SYSTEMS C HAPTER 1.0 INTRODUCTION 1.1 A REVIEW OF THE DECIMAL SYSTEM 1.2 BINARY NUMBERING SYSTEM

12 Digital Principles Switching Theory C HAPTER 1 NUMBERING SYSTEMS 1.0 INTRODUCTION Inside today s computers, data is represented as 1 s and 0 s. These 1 s and 0 s might be stored magnetically on a disk,

### Lecture.5. Number System:

Number System: Lecturer: Dr. Laith Abdullah Mohammed Lecture.5. The number system that we use in day-to-day life is called Decimal Number System. It makes use of 10 fundamental digits i.e. 0, 1, 2, 3,

### Binary Representation

Binary Representation The basis of all digital data is binary representation. Binary - means two 1, 0 True, False Hot, Cold On, Off We must tbe able to handle more than just values for real world problems

### = Chapter 1. The Binary Number System. 1.1 Why Binary?

Chapter The Binary Number System. Why Binary? The number system that you are familiar with, that you use every day, is the decimal number system, also commonly referred to as the base-0 system. When you

### Understanding Binary Numbers. Different Number Systems. Conversion: Bin Hex. Conversion MAP. Binary (0, 1) Hexadecimal 0 9, A(10), B(11),, F(15) :

Understanding Binary Numbers Computers operate on binary values (0 and 1) Easy to represent binary values electrically Voltages and currents. Can be implemented using circuits Create the building blocks

### NUMBER SYSTEMS. William Stallings

NUMBER SYSTEMS William Stallings The Decimal System... The Binary System...3 Converting between Binary and Decimal...3 Integers...4 Fractions...5 Hexadecimal Notation...6 This document available at WilliamStallings.com/StudentSupport.html

### Binary Representation and Computer Arithmetic

Binary Representation and Computer Arithmetic The decimal system of counting and keeping track of items was first created by Hindu mathematicians in India in A.D. 4. Since it involved the use of fingers

### 2. Number Systems - Positional Number Systems (1) - 2. Number Systems - Binary Numbers - 2. Number Systems - Positional Number Systems (2) -

Sistemas Digitais I LESI - 2º ano Lesson 2 - Number Systems Prof. João Miguel Fernandes (miguel@di.uminho.pt) Dept. Informática - Positional Number Systems (1) - We use daily a positional number system.

### Informats. Informats in the OS/390 Environment. Considerations for Using Informats under OS/390. EBCDIC and Character Data CHAPTER 14

205 CHAPTER 14 Informats Informats in the OS/390 Environment 205 Considerations for Using Informats under OS/390 205 EBCDIC and Character Data 205 Floating-Point Number Format and Portability 206 Reading

### A Short Introduction to Binary Numbers

A Short Introduction to Binary Numbers Brian J. Shelburne Department of Mathematics and Computer Science Wittenberg University 0. Introduction The development of the computer was driven by the need to

### Bits, Data Types, and Operations. University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

Bits, Data Types, and Operations University of Texas at Austin CS3H - Computer Organization Spring 2 Don Fussell How do we represent data in a computer? At the lowest level, a computer is an electronic

### IMPORTANT TERMS PROBLEMS PROBLEMS 47 SECTIONS 2-1 AND 2-2

PROBLEMS 47 IMPORTANT TERMS hexadecimal number system straight binary coding binary-coded-decimal (BCD) code PROBLEMS SECTIONS 2-1 AND 2-2 Gray code byte nibble word word size alphanumeric code American

### Number Systems Richard E. Haskell

NUMBER SYSTEMS D Number Systems Richard E. Haskell Data inside a computer are represented by binary digits or bits. The logical values of these binary digits are denoted by and, while the corresponding

### Assembly Language for Intel-Based Computers, 4 th Edition. Chapter 1: Basic Concepts

Assembly Language for Intel-Based Computers, 4 th Edition Kip R. Irvine Chapter 1: Basic Concepts Slides prepared by Kip R. Irvine Revision date: 07/21/2002 Chapter corrections (Web) Assembly language

### DATA REPRESENTATION POSITIONAL NUMBER SYSTEMS. For octal (base 8) we use the 8 symbols 0, 1, 2, 3, 4, 5, 6, 7

DATA REPRESENTATION POSITIONAL NUMBER SYSTEMS! Positional numbers can use any number as a base! Given a base, b, distinct symbols must be used to represent the numbers 0, 1,..., b-1 For base 10 we use

### Integer Numbers. The Number Bases of Integers Textbook Chapter 3

Integer Numbers The Number Bases of Integers Textbook Chapter 3 Number Systems Unary, or marks: /////// = 7 /////// + ////// = ///////////// Grouping lead to Roman Numerals: VII + V = VVII = XII Better:

### CSI 333 Lecture 1 Number Systems

CSI 333 Lecture 1 Number Systems 1 1 / 23 Basics of Number Systems Ref: Appendix C of Deitel & Deitel. Weighted Positional Notation: 192 = 2 10 0 + 9 10 1 + 1 10 2 General: Digit sequence : d n 1 d n 2...

### UNIT 2 : NUMBER SYSTEMS

UNIT 2 : NUMBER SYSTEMS page 2.0 Introduction 1 2.1 Decimal Numbers 2 2.2 The Binary System 3 2.3 The Hexadecimal System 5 2.4 Number Base Conversion 6 2.4.1 Decimal To Binary 6 2.4.2 Decimal to Hex 7

### ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-378: Digital Logic and Microprocessor Design Winter 2015.

ECE-378: Digital Logic and Microprocessor Design Winter 5 UNSIGNED INTEGER NUMBERS Notes - Unit 4 DECIMAL NUMBER SYSTEM A decimal digit can take values from to 9: Digit-by-digit representation of a positive

### CMPS 10 Winter Homework Assignment 5

CMPS 10 Winter 2011- Homework Assignment 5 Problems: Chapter 4 (p.184): 1abc, 3abcd, 4ab, 5abc, 6, 7, 9abcd, 15abcd, 17, 18, 19, 20 1. Given our discussion of positional numbering systems in Section 4.2.1,

### Common Number Systems Number Systems

5/29/204 Common Number Systems Number Systems System Base Symbols Used by humans? Used in computers? Decimal 0 0,, 9 Yes No Binary 2 0, No Yes Octal 8 0,, 7 No No Hexadecimal 6 0,, 9, A, B, F No No Number