# Chapter 3: Number Systems

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Slide 1/40

2 Learning Objectives In this chapter you will learn about: Non-positional number system Positional number system Decimal number system Binary number system Octal number system Hexadecimal number system (Continued on next slide) 20 Slide 2/40

3 Learning Objectives (Continued from previous slide..) Convert a number s base Another base to decimal base Decimal base to another base Some base to another base Shortcut methods for converting Binary to octal number Octal to binary number Binary to hexadecimal number Hexadecimal to binary number Fractional numbers in binary number system 20 Slide 3/40

4 Number Systems Two types of number systems are: Non-positional number systems Positional number systems 20 Slide 4/40

5 Non-positional Number Systems Characteristics Use symbols such as I for 1, II for 2, III for 3, IIII for 4, IIIII for 5, etc Each symbol represents the same value regardless of its position in the number The symbols are simply added to find out the value of a particular number Difficulty It is difficult to perform arithmetic with such a number system 20 Slide 5/40

6 Positional Number Systems Characteristics Use only a few symbols called digits These symbols represent different values depending on the position they occupy in the number (Continued on next slide) 20 Slide 6/40

7 Positional Number Systems (Continued from previous slide..) The value of each digit is determined by: 1. The digit itself 2. The position of the digit in the number 3. The base of the number system (base = total number of digits in the number system) The maximum value of a single digit is always equal to one less than the value of the base 21 Slide 7/40

8 Decimal Number System Characteristics A positional number system Has 10 symbols or digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Hence, its base = 10 The maximum value of a single digit is 9 (one less than the value of the base) Each position of a digit represents a specific power of the base (10) We use this number system in our day-to-day life (Continued on next slide) 21 Slide 8/40

9 Decimal Number System (Continued from previous slide..) Example = (2 x 10 3 ) + (5 x 10 2 ) + (8 x 10 1 ) + (6 x 10 0 ) = Slide 9/40

10 Binary Number System Characteristics A positional number system Has only 2 symbols or digits (0 and 1). Hence its base = 2 The maximum value of a single digit is 1 (one less than the value of the base) Each position of a digit represents a specific power of the base (2) This number system is used in computers (Continued on next slide) 21 Slide 10/40

11 Binary Number System (Continued from previous slide..) Example = (1 x 2 4 ) + (0 x 2 3 ) + (1 x 2 2 ) + (0 x 2 1 ) x (1 x 2 0 ) = = Slide 11/40

12 Representing Numbers in Different Number Systems In order to be specific about which number system we are referring to, it is a common practice to indicate the base as a subscript. Thus, we write: = Slide 12/40

13 Bit Bit stands for binary digit A bit in computer terminology means either a 0 or a 1 A binary number consisting of n bits is called an n-bit number 22 Slide 13/40

14 Octal Number System Characteristics A positional number system Has total 8 symbols or digits (0, 1, 2, 3, 4, 5, 6, 7). Hence, its base = 8 The maximum value of a single digit is 7 (one less than the value of the base Each position of a digit represents a specific power of the base (8) (Continued on next slide) 22 Slide 14/40

15 Octal Number System (Continued from previous slide..) Since there are only 8 digits, 3 bits (2 3 = 8) are sufficient to represent any octal number in binary Example = (2 x 8 3 ) + (0 x 8 2 ) + (5 x 8 1 ) + (7 x 8 0 ) = = Slide 15/40

16 Hexadecimal Number System Characteristics A positional number system Has total 16 symbols or digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F). Hence its base = 16 The symbols A, B, C, D, E and F represent the decimal values 10, 11, 12, 13, 14 and 15 respectively The maximum value of a single digit is 15 (one less than the value of the base) (Continued on next slide) 22 Slide 16/40

17 Hexadecimal Number System (Continued from previous slide..) Each position of a digit represents a specific power of the base (16) Since there are only 16 digits, 4 bits (2 4 = 16) are sufficient to represent any hexadecimal number in binary Example 1AF 16 = (1 x 16 2 ) + (A x 16 1 ) + (F x 16 0 ) = 1 x x x 1 = = Slide 17/40

18 Method Converting a Number of Another Base to a Decimal Number Step 1: Determine the column (positional) value of each digit Step 2: Multiply the obtained column values by the digits in the corresponding columns Step 3: Calculate the sum of these products (Continued on next slide) 23 Slide 18/40

19 Example Converting a Number of Another Base to a Decimal Number (Continued from previous slide..) =? = 4 x x x x 8 0 = 4 x x x 1 = = Sum of these products Common values multiplied by the corresponding digits 23 Slide 19/40

20 Division-Remainder Method Converting a Decimal Number to a Number of Another Base Step 1: Divide the decimal number to be converted by the value of the new base Step 2: Record the remainder from Step 1 as the rightmost digit (least significant digit) of the new base number Step 3: Divide the quotient of the previous divide by the new base (Continued on next slide) 25 Slide 20/40

21 Converting a Decimal Number to a Number of Another Base (Continued from previous slide..) Step 4: Record the remainder from Step 3 as the next digit (to the left) of the new base number Repeat Steps 3 and 4, recording remainders from right to left, until the quotient becomes zero in Step 3 Note that the last remainder thus obtained will be the most significant digit (MSD) of the new base number (Continued on next slide) 25 Slide 21/40

22 Example =? 8 Converting a Decimal Number to a Number of Another Base (Continued from previous slide..) Solution: Remainder s Hence, = Slide 22/40

23 Method Converting a Number of Some Base to a Number of Another Base Step 1: Convert the original number to a decimal number (base 10) Step 2: Convert the decimal number so obtained to the new base number (Continued on next slide) 27 Slide 23/40

24 Example =? 4 Converting a Number of Some Base to a Number of Another Base (Continued from previous slide..) Solution: Step 1: Convert from base 6 to base = 5 x x x 6 0 = 5 x x x 1 = = (Continued on next slide) 27 Slide 24/40

25 Step 2: Convert to base 4 Converting a Number of Some Base to a Number of Another Base (Continued from previous slide..) Remainders Hence, = So, = = Thus, = Slide 25/40

26 Method Shortcut Method for Converting a Binary Number to its Equivalent Octal Number Step 1: Divide the digits into groups of three starting from the right Step 2: Convert each group of three binary digits to one octal digit using the method of binary to decimal conversion (Continued on next slide) 29 Slide 26/40

27 Example =? 8 Shortcut Method for Converting a Binary Number to its Equivalent Octal Number (Continued from previous slide..) Step 1: Divide the binary digits into groups of 3 starting from right Step 2: Convert each group into one octal digit = 0 x x x 2 0 = = 1 x x x 2 0 = = 0 x x x 2 0 = 2 Hence, = Slide 27/40

28 Method Shortcut Method for Converting an Octal Number to Its Equivalent Binary Number Step 1: Convert each octal digit to a 3 digit binary number (the octal digits may be treated as decimal for this conversion) Step 2: Combine all the resulting binary groups (of 3 digits each) into a single binary number (Continued on next slide) 30 Slide 28/40

29 Example Shortcut Method for Converting an Octal Number to Its Equivalent Binary Number (Continued from previous slide..) =? 2 Step 1: Convert each octal digit to 3 binary digits 5 8 = 101 2, 6 8 = 110 2, 2 8 = Step 2: Combine the binary groups = Hence, = Slide 29/40

30 Method Shortcut Method for Converting a Binary Number to its Equivalent Hexadecimal Number Step 1: Divide the binary digits into groups of four starting from the right Step 2: Combine each group of four binary digits to one hexadecimal digit (Continued on next slide) 30 Slide 30/40

31 Example Shortcut Method for Converting a Binary Number to its Equivalent Hexadecimal Number (Continued from previous slide..) =? 16 Step 1: Divide the binary digits into groups of four starting from the right Step 2: Convert each group into a hexadecimal digit = 0 x x x x 2 0 = 3 10 = = 1 x x x x 2 0 = 3 10 = D 16 Hence, = 3D Slide 31/40

32 Method Shortcut Method for Converting a Hexadecimal Number to its Equivalent Binary Number Step 1: Convert the decimal equivalent of each hexadecimal digit to a 4 digit binary number Step 2: Combine all the resulting binary groups (of 4 digits each) in a single binary number (Continued on next slide) 31 Slide 32/40

33 Example Shortcut Method for Converting a Hexadecimal Number to its Equivalent Binary Number (Continued from previous slide..) 2AB 16 =? 2 Step 1: Convert each hexadecimal digit to a 4 digit binary number 2 16 = 2 10 = A 16 = = B 16 = = Slide 33/40

34 Shortcut Method for Converting a Hexadecimal Number to its Equivalent Binary Number (Continued from previous slide..) Step 2: Combine the binary groups 2AB 16 = A B Hence, 2AB 16 = Slide 34/40

35 Fractional Numbers Fractional numbers number system are formed same way as decimal In general, a number in a number system with base b would be written as: a n a n-1 a 0. a -1 a -2 a -m And would be interpreted to mean: a n x b n + a n-1 x b n a 0 x b 0 + a -1 x b -1 + a -2 x b a -m x b -m The symbols a n, a n-1,, a -m in above representation should be one of the b symbols allowed in the number system 33 Slide 35/40

36 Formation of Fractional Numbers in Binary Number System (Example) Binary Point Position Position Value Quantity / 2 1 / 4 1 / 8 1 / 16 Represented (Continued on next slide) 33 Slide 36/40

37 Example Formation of Fractional Numbers in Binary Number System (Example) (Continued from previous slide..) = 1 x x x x x x 2-3 = = Slide 37/40

38 Formation of Fractional Numbers in Octal Number System (Example) Octal Point Position Position Value Quantity / 8 1 / 64 1 / 512 Represented (Continued on next slide) 33 Slide 38/40

39 Example Formation of Fractional Numbers in Octal Number System (Example) (Continued from previous slide..) = 1 x x x x x 8-2 = / / 64 = = Slide 39/40

40 Key Words/Phrases Base Binary number system Binary point Bit Decimal number system Division-Remainder technique Fractional numbers Hexadecimal number system Least Significant Digit (LSD) Memory dump Most Significant Digit (MSD) Non-positional number system Number system Octal number system Positional number system 34 Slide 40/40

### NUMBER SYSTEMS. 1.1 Introduction

NUMBER SYSTEMS 1.1 Introduction There are several number systems which we normally use, such as decimal, binary, octal, hexadecimal, etc. Amongst them we are most familiar with the decimal number system.

### 2 Number Systems. Source: Foundations of Computer Science Cengage Learning. Objectives After studying this chapter, the student should be able to:

2 Number Systems 2.1 Source: Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: Understand the concept of number systems. Distinguish

### Number Conversions Dr. Sarita Agarwal (Acharya Narendra Dev College,University of Delhi)

Conversions Dr. Sarita Agarwal (Acharya Narendra Dev College,University of Delhi) INTRODUCTION System- A number system defines a set of values to represent quantity. We talk about the number of people

### Lecture 11: Number Systems

Lecture 11: Number Systems Numeric Data Fixed point Integers (12, 345, 20567 etc) Real fractions (23.45, 23., 0.145 etc.) Floating point such as 23. 45 e 12 Basically an exponent representation Any number

### 2 Number Systems 2.1. Foundations of Computer Science Cengage Learning

2 Number Systems 2.1 Foundations of Computer Science Cengage Learning 2.2 Objectives After studying this chapter, the student should be able to: Understand the concept of number systems. Distinguish between

### Useful Number Systems

Useful Number Systems Decimal Base = 10 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Binary Base = 2 Digit Set = {0, 1} Octal Base = 8 = 2 3 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7} Hexadecimal Base = 16 = 2

### Positional Numbering System

APPENDIX B Positional Numbering System A positional numbering system uses a set of symbols. The value that each symbol represents, however, depends on its face value and its place value, the value associated

### 3. Convert a number from one number system to another

3. Convert a number from one number system to another Conversion between number bases: Hexa (16) Decimal (10) Binary (2) Octal (8) More Interest Way we need conversion? We need decimal system for real

### Section 1.4 Place Value Systems of Numeration in Other Bases

Section.4 Place Value Systems of Numeration in Other Bases Other Bases The Hindu-Arabic system that is used in most of the world today is a positional value system with a base of ten. The simplest reason

### Base Conversion written by Cathy Saxton

Base Conversion written by Cathy Saxton 1. Base 10 In base 10, the digits, from right to left, specify the 1 s, 10 s, 100 s, 1000 s, etc. These are powers of 10 (10 x ): 10 0 = 1, 10 1 = 10, 10 2 = 100,

### CSI 333 Lecture 1 Number Systems

CSI 333 Lecture 1 Number Systems 1 1 / 23 Basics of Number Systems Ref: Appendix C of Deitel & Deitel. Weighted Positional Notation: 192 = 2 10 0 + 9 10 1 + 1 10 2 General: Digit sequence : d n 1 d n 2...

### Lecture 2. Binary and Hexadecimal Numbers

Lecture 2 Binary and Hexadecimal Numbers Purpose: Review binary and hexadecimal number representations Convert directly from one base to another base Review addition and subtraction in binary representations

### Chapter 2. Binary Values and Number Systems

Chapter 2 Binary Values and Number Systems Numbers Natural numbers, a.k.a. positive integers Zero and any number obtained by repeatedly adding one to it. Examples: 100, 0, 45645, 32 Negative numbers A

### COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012

Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about

### NUMBER SYSTEMS. William Stallings

NUMBER SYSTEMS William Stallings The Decimal System... The Binary System...3 Converting between Binary and Decimal...3 Integers...4 Fractions...5 Hexadecimal Notation...6 This document available at WilliamStallings.com/StudentSupport.html

### LSN 2 Number Systems. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology

LSN 2 Number Systems Department of Engineering Technology LSN 2 Decimal Number System Decimal number system has 10 digits (0-9) Base 10 weighting system... 10 5 10 4 10 3 10 2 10 1 10 0. 10-1 10-2 10-3

### 6 3 4 9 = 6 10 + 3 10 + 4 10 + 9 10

Lesson The Binary Number System. Why Binary? The number system that you are familiar with, that you use every day, is the decimal number system, also commonly referred to as the base- system. When you

### Binary Representation

Binary Representation The basis of all digital data is binary representation. Binary - means two 1, 0 True, False Hot, Cold On, Off We must tbe able to handle more than just values for real world problems

### Number Systems I. CIS008-2 Logic and Foundations of Mathematics. David Goodwin. 11:00, Tuesday 18 th October

Number Systems I CIS008-2 Logic and Foundations of Mathematics David Goodwin david.goodwin@perisic.com 11:00, Tuesday 18 th October 2011 Outline 1 Number systems Numbers Natural numbers Integers Rational

### Oct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8

ECE Department Summer LECTURE #5: Number Systems EEL : Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz Decimal Number System: -Our standard number system is base, also

### Chapter 7 Lab - Decimal, Binary, Octal, Hexadecimal Numbering Systems

Chapter 7 Lab - Decimal, Binary, Octal, Hexadecimal Numbering Systems This assignment is designed to familiarize you with different numbering systems, specifically: binary, octal, hexadecimal (and decimal)

### Computer Science 281 Binary and Hexadecimal Review

Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two

### CPEN 214 - Digital Logic Design Binary Systems

CPEN 4 - Digital Logic Design Binary Systems C. Gerousis Digital Design 3 rd Ed., Mano Prentice Hall Digital vs. Analog An analog system has continuous range of values A mercury thermometer Vinyl records

### Binary Numbers. Bob Brown Information Technology Department Southern Polytechnic State University

Binary Numbers Bob Brown Information Technology Department Southern Polytechnic State University Positional Number Systems The idea of number is a mathematical abstraction. To use numbers, we must represent

### Binary Representation. Number Systems. Base 10, Base 2, Base 16. Positional Notation. Conversion of Any Base to Decimal.

Binary Representation The basis of all digital data is binary representation. Binary - means two 1, 0 True, False Hot, Cold On, Off We must be able to handle more than just values for real world problems

### Chapter 4: Computer Codes

Slide 1/30 Learning Objectives In this chapter you will learn about: Computer data Computer codes: representation of data in binary Most commonly used computer codes Collating sequence 36 Slide 2/30 Data

### Binary, Hexadecimal, Octal, and BCD Numbers

23CH_PHCalter_TMSETE_949118 23/2/2007 1:37 PM Page 1 Binary, Hexadecimal, Octal, and BCD Numbers OBJECTIVES When you have completed this chapter, you should be able to: Convert between binary and decimal

### CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012

CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline Data Representation Binary Codes Why 6-3-1-1 and Excess-3? Data Representation (1/2) Each numbering

### The string of digits 101101 in the binary number system represents the quantity

Data Representation Section 3.1 Data Types Registers contain either data or control information Control information is a bit or group of bits used to specify the sequence of command signals needed for

### THE BINARY NUMBER SYSTEM

THE BINARY NUMBER SYSTEM Dr. Robert P. Webber, Longwood University Our civilization uses the base 10 or decimal place value system. Each digit in a number represents a power of 10. For example, 365.42

### Number Systems. Introduction / Number Systems

Number Systems Introduction / Number Systems Data Representation Data representation can be Digital or Analog In Analog representation values are represented over a continuous range In Digital representation

### To convert an arbitrary power of 2 into its English equivalent, remember the rules of exponential arithmetic:

Binary Numbers In computer science we deal almost exclusively with binary numbers. it will be very helpful to memorize some binary constants and their decimal and English equivalents. By English equivalents

### Binary Numbers The Computer Number System

Binary Numbers The Computer Number System Number systems are simply ways to count things. Ours is the base-0 or radix-0 system. Note that there is no symbol for 0 or for the base of any system. We count,2,3,4,5,6,7,8,9,

### Goals. Unary Numbers. Decimal Numbers. 3,148 is. 1000 s 100 s 10 s 1 s. Number Bases 1/12/2009. COMP370 Intro to Computer Architecture 1

Number Bases //9 Goals Numbers Understand binary and hexadecimal numbers Be able to convert between number bases Understand binary fractions COMP37 Introduction to Computer Architecture Unary Numbers Decimal

### Unsigned Conversions from Decimal or to Decimal and other Number Systems

Page 1 of 5 Unsigned Conversions from Decimal or to Decimal and other Number Systems In all digital design, analysis, troubleshooting, and repair you will be working with binary numbers (or base 2). It

### Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture - 04 Digital Logic II May, I before starting the today s lecture

### Decimal Numbers: Base 10 Integer Numbers & Arithmetic

Decimal Numbers: Base 10 Integer Numbers & Arithmetic Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Example: 3271 = (3x10 3 ) + (2x10 2 ) + (7x10 1 )+(1x10 0 ) Ward 1 Ward 2 Numbers: positional notation Number

### Number Systems and Radix Conversion

Number Systems and Radix Conversion Sanjay Rajopadhye, Colorado State University 1 Introduction These notes for CS 270 describe polynomial number systems. The material is not in the textbook, but will

### Binary Number System. 16. Binary Numbers. Base 10 digits: 0 1 2 3 4 5 6 7 8 9. Base 2 digits: 0 1

Binary Number System 1 Base 10 digits: 0 1 2 3 4 5 6 7 8 9 Base 2 digits: 0 1 Recall that in base 10, the digits of a number are just coefficients of powers of the base (10): 417 = 4 * 10 2 + 1 * 10 1

### COMPSCI 210. Binary Fractions. Agenda & Reading

COMPSCI 21 Binary Fractions Agenda & Reading Topics: Fractions Binary Octal Hexadecimal Binary -> Octal, Hex Octal -> Binary, Hex Decimal -> Octal, Hex Hex -> Binary, Octal Animation: BinFrac.htm Example

### CS321. Introduction to Numerical Methods

CS3 Introduction to Numerical Methods Lecture Number Representations and Errors Professor Jun Zhang Department of Computer Science University of Kentucky Lexington, KY 40506-0633 August 7, 05 Number in

### EE 261 Introduction to Logic Circuits. Module #2 Number Systems

EE 261 Introduction to Logic Circuits Module #2 Number Systems Topics A. Number System Formation B. Base Conversions C. Binary Arithmetic D. Signed Numbers E. Signed Arithmetic F. Binary Codes Textbook

### Machine Architecture and Number Systems. Major Computer Components. Schematic Diagram of a Computer. The CPU. The Bus. Main Memory.

1 Topics Machine Architecture and Number Systems Major Computer Components Bits, Bytes, and Words The Decimal Number System The Binary Number System Converting from Decimal to Binary Major Computer Components

### Lecture 8: Binary Multiplication & Division

Lecture 8: Binary Multiplication & Division Today s topics: Addition/Subtraction Multiplication Division Reminder: get started early on assignment 3 1 2 s Complement Signed Numbers two = 0 ten 0001 two

### Binary Numbers. Binary Octal Hexadecimal

Binary Numbers Binary Octal Hexadecimal Binary Numbers COUNTING SYSTEMS UNLIMITED... Since you have been using the 10 different digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 all your life, you may wonder how

### ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-470/570: Microprocessor-Based System Design Fall 2014.

REVIEW OF NUMBER SYSTEMS Notes Unit 2 BINARY NUMBER SYSTEM In the decimal system, a decimal digit can take values from to 9. For the binary system, the counterpart of the decimal digit is the binary digit,

### = Chapter 1. The Binary Number System. 1.1 Why Binary?

Chapter The Binary Number System. Why Binary? The number system that you are familiar with, that you use every day, is the decimal number system, also commonly referred to as the base-0 system. When you

### BINARY CODED DECIMAL: B.C.D.

BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.

### Decimal to Binary Conversion

Decimal to Binary Conversion A tool that makes the conversion of decimal values to binary values simple is the following table. The first row is created by counting right to left from one to eight, for

### 5.4 Solving Percent Problems Using the Percent Equation

5. Solving Percent Problems Using the Percent Equation In this section we will develop and use a more algebraic equation approach to solving percent equations. Recall the percent proportion from the last

### MODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.

MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on

### A Step towards an Easy Interconversion of Various Number Systems

A towards an Easy Interconversion of Various Number Systems Shahid Latif, Rahat Ullah, Hamid Jan Department of Computer Science and Information Technology Sarhad University of Science and Information Technology

### Everything you wanted to know about using Hexadecimal and Octal Numbers in Visual Basic 6

Everything you wanted to know about using Hexadecimal and Octal Numbers in Visual Basic 6 Number Systems No course on programming would be complete without a discussion of the Hexadecimal (Hex) number

### Accuplacer Arithmetic Study Guide

Testing Center Student Success Center Accuplacer Arithmetic Study Guide I. Terms Numerator: which tells how many parts you have (the number on top) Denominator: which tells how many parts in the whole

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

CHAPTER01 QUESTIONS MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Convert binary 010101 to octal. 1) A) 258 B) 58 C) 218 D) 158 2) Any number

### 2011, The McGraw-Hill Companies, Inc. Chapter 3

Chapter 3 3.1 Decimal System The radix or base of a number system determines the total number of different symbols or digits used by that system. The decimal system has a base of 10 with the digits 0 through

### Recall the process used for adding decimal numbers. 1. Place the numbers to be added in vertical format, aligning the decimal points.

2 MODULE 4. DECIMALS 4a Decimal Arithmetic Adding Decimals Recall the process used for adding decimal numbers. Adding Decimals. To add decimal numbers, proceed as follows: 1. Place the numbers to be added

### CS101 Lecture 11: Number Systems and Binary Numbers. Aaron Stevens 14 February 2011

CS101 Lecture 11: Number Systems and Binary Numbers Aaron Stevens 14 February 2011 1 2 1 3!!! MATH WARNING!!! TODAY S LECTURE CONTAINS TRACE AMOUNTS OF ARITHMETIC AND ALGEBRA PLEASE BE ADVISED THAT CALCULTORS

### 2. Perform the division as if the numbers were whole numbers. You may need to add zeros to the back of the dividend to complete the division

Math Section 5. Dividing Decimals 5. Dividing Decimals Review from Section.: Quotients, Dividends, and Divisors. In the expression,, the number is called the dividend, is called the divisor, and is called

### Binary. ! You are probably familiar with decimal

Arithmetic operations in assembly language Prof. Gustavo Alonso Computer Science Department ETH Zürich alonso@inf.ethz.ch http://www.inf.ethz.ch/department/is/iks/ Binary! You are probably familiar with

### 4.3 TABLE 3 TABLE 4. 1342 five 1 125 3 25 4 5 2 1 125 75 20 2 222.

.3 Conversion Between Number Bases 169.3 Conversion Between Number Bases Although the numeration systems discussed in the opening section were all base ten, other bases have occurred historically. For

### Signed Binary Arithmetic

Signed Binary Arithmetic In the real world of mathematics, computers must represent both positive and negative binary numbers. For example, even when dealing with positive arguments, mathematical operations

### Digital Design. Assoc. Prof. Dr. Berna Örs Yalçın

Digital Design Assoc. Prof. Dr. Berna Örs Yalçın Istanbul Technical University Faculty of Electrical and Electronics Engineering Office Number: 2318 E-mail: siddika.ors@itu.edu.tr Grading 1st Midterm -

### CHAPTER 3 Numbers and Numeral Systems

CHAPTER 3 Numbers and Numeral Systems Numbers play an important role in almost all areas of mathematics, not least in calculus. Virtually all calculus books contain a thorough description of the natural,

### Activity 1: Bits and Bytes

ICS3U (Java): Introduction to Computer Science, Grade 11, University Preparation Activity 1: Bits and Bytes The Binary Number System Computers use electrical circuits that include many transistors and

### YOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR!

DETAILED SOLUTIONS AND CONCEPTS - DECIMALS AND WHOLE NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! YOU MUST

### Borland C++ Compiler: Operators

Introduction Borland C++ Compiler: Operators An operator is a symbol that specifies which operation to perform in a statement or expression. An operand is one of the inputs of an operator. For example,

### Number and codes in digital systems

Number and codes in digital systems Decimal Numbers You are familiar with the decimal number system because you use them everyday. But their weighted structure is not understood. In the decimal number

### LABORATORY. Exploring Number Systems OBJECTIVES REFERENCES

Dmitriy Shironosov/ShutterStock, Inc. LABORATORY Exploring Number Systems 2 OBJECTIVES Experiment with number systems. Gain practice adding in binary and converting between bases. REFERENCES Software needed:

### Paramedic Program Pre-Admission Mathematics Test Study Guide

Paramedic Program Pre-Admission Mathematics Test Study Guide 05/13 1 Table of Contents Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 Page 9 Page 10 Page 11 Page 12 Page 13 Page 14 Page 15 Page

### Chapter Binary, Octal, Decimal, and Hexadecimal Calculations

Chapter 5 Binary, Octal, Decimal, and Hexadecimal Calculations This calculator is capable of performing the following operations involving different number systems. Number system conversion Arithmetic

APPENDIX C The Hexadecimal Number System and Memory Addressing U nderstanding the number system and the coding system that computers use to store data and communicate with each other is fundamental to

### Numbering Systems. InThisAppendix...

G InThisAppendix... Introduction Binary Numbering System Hexadecimal Numbering System Octal Numbering System Binary Coded Decimal (BCD) Numbering System Real (Floating Point) Numbering System BCD/Binary/Decimal/Hex/Octal

### Number Systems, Base Conversions, and Computer Data Representation

, Base Conversions, and Computer Data Representation Decimal and Binary Numbers When we write decimal (base 10) numbers, we use a positional notation system. Each digit is multiplied by an appropriate

### 2010/9/19. Binary number system. Binary numbers. Outline. Binary to decimal

2/9/9 Binary number system Computer (electronic) systems prefer binary numbers Binary number: represent a number in base-2 Binary numbers 2 3 + 7 + 5 Some terminology Bit: a binary digit ( or ) Hexadecimal

### COMBINATIONAL CIRCUITS

COMBINATIONAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/combinational_circuits.htm Copyright tutorialspoint.com Combinational circuit is a circuit in which we combine the different

### PREPARATION FOR MATH TESTING at CityLab Academy

PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRE-TEST

### Numeral Systems. The number twenty-five can be represented in many ways: Decimal system (base 10): 25 Roman numerals:

Numeral Systems Which number is larger? 25 8 We need to distinguish between numbers and the symbols that represent them, called numerals. The number 25 is larger than 8, but the numeral 8 above is larger

### Math. Mixed Number Fraction to Improper Fraction. Answers. Name: Convert the mixed number fraction to improper fraction = = 15

Convert the mixed number fraction to = 1 1 + = Get rid of your. 1 41 61. 8 6 1 = 1 10 1 = 41 ) 10 1 = 61. ) 6 = 8 1 = ) 1 = 1 4 1 = 1 = 1 10 4 = 64 64 6 4 = 8 6 = 6 = 6 6 = 6 8 1 = 1 = 9 4 = 8 1 1 = )

### LESSON PLANS FOR PERCENTAGES, FRACTIONS, DECIMALS, AND ORDERING Lesson Purpose: The students will be able to:

LESSON PLANS FOR PERCENTAGES, FRACTIONS, DECIMALS, AND ORDERING Lesson Purpose: The students will be able to: 1. Change fractions to decimals. 2. Change decimals to fractions. 3. Change percents to decimals.

### Systems I: Computer Organization and Architecture

Systems I: Computer Organization and Architecture Lecture 2: Number Systems and Arithmetic Number Systems - Base The number system that we use is base : 734 = + 7 + 3 + 4 = x + 7x + 3x + 4x = x 3 + 7x

### COMPASS Numerical Skills/Pre-Algebra Preparation Guide. Introduction Operations with Integers Absolute Value of Numbers 13

COMPASS Numerical Skills/Pre-Algebra Preparation Guide Please note that the guide is for reference only and that it does not represent an exact match with the assessment content. The Assessment Centre

### The Essentials of Computer Organization and Architecture. Linda Null and Julia Lobur Jones and Bartlett Publishers, 2003

The Essentials of Computer Organization and Architecture Linda Null and Julia Lobur Jones and Bartlett Publishers, 2003 Chapter 2 Instructor's Manual Chapter Objectives Chapter 2, Data Representation,

### Fractions to decimals

Worksheet.4 Fractions and Decimals Section Fractions to decimals The most common method of converting fractions to decimals is to use a calculator. A fraction represents a division so is another way of

### Data Representation. Data Representation, Storage, and Retrieval. Data Representation. Data Representation. Data Representation. Data Representation

, Storage, and Retrieval ULM/HHIM Summer Program Project 3, Day 3, Part 3 Digital computers convert the data they process into a digital value. Text Audio Images/Graphics Video Digitizing 00000000... 6/8/20

### Number Representation

Number Representation CS10001: Programming & Data Structures Pallab Dasgupta Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur Topics to be Discussed How are numeric data

### MATH-0910 Review Concepts (Haugen)

Unit 1 Whole Numbers and Fractions MATH-0910 Review Concepts (Haugen) Exam 1 Sections 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, and 2.5 Dividing Whole Numbers Equivalent ways of expressing division: a b,

### 6 The Hindu-Arabic System (800 BC)

6 The Hindu-Arabic System (800 BC) Today the most universally used system of numeration is the Hindu-Arabic system, also known as the decimal system or base ten system. The system was named for the Indian

### 3.4 Multiplication and Division of Rational Numbers

3.4 Multiplication and Division of Rational Numbers We now turn our attention to multiplication and division with both fractions and decimals. Consider the multiplication problem: 8 12 2 One approach is

### Levent EREN levent.eren@ieu.edu.tr A-306 Office Phone:488-9882 INTRODUCTION TO DIGITAL LOGIC

Levent EREN levent.eren@ieu.edu.tr A-306 Office Phone:488-9882 1 Number Systems Representation Positive radix, positional number systems A number with radix r is represented by a string of digits: A n

### Lecture 2: Number Representation

Lecture 2: Number Representation CSE 30: Computer Organization and Systems Programming Summer Session II 2011 Dr. Ali Irturk Dept. of Computer Science and Engineering University of California, San Diego

### Chapter 1: Digital Systems and Binary Numbers

Chapter 1: Digital Systems and Binary Numbers Digital age and information age Digital computers general purposes many scientific, industrial and commercial applications Digital systems telephone switching

### ARITHMETIC. Overview. Testing Tips

ARITHMETIC Overview The Arithmetic section of ACCUPLACER contains 17 multiple choice questions that measure your ability to complete basic arithmetic operations and to solve problems that test fundamental

### Logic Reference Guide

Logic eference Guide Advanced Micro evices INTOUCTION Throughout this data book and design guide we have assumed that you have a good working knowledge of logic. Unfortunately, there always comes a time

### Introduction to Fractions

Introduction to Fractions Fractions represent parts of a whole. The top part of a fraction is called the numerator, while the bottom part of a fraction is called the denominator. The denominator states

### Section 1.5 Arithmetic in Other Bases

Section Arithmetic in Other Bases Arithmetic in Other Bases The operations of addition, subtraction, multiplication and division are defined for counting numbers independent of the system of numeration

### Session 29 Scientific Notation and Laws of Exponents. If you have ever taken a Chemistry class, you may have encountered the following numbers:

Session 9 Scientific Notation and Laws of Exponents If you have ever taken a Chemistry class, you may have encountered the following numbers: There are approximately 60,4,79,00,000,000,000,000 molecules