# Binary Division. Decimal Division. Hardware for Binary Division. Simple 16-bit Divider Circuit

Save this PDF as:

Size: px
Start display at page:

Download "Binary Division. Decimal Division. Hardware for Binary Division. Simple 16-bit Divider Circuit"

## Transcription

1 Decimal Division Remember 4th grade long division? 43 // quotient // divisor dividend // remainder Shift divisor left (multiply by 10) until MSB lines up with dividend s Repeat until remaining dividend (remainder) < divisor Find largest single digit q such that (q*divisor) < dividend Set LSB of quotient to q Subtract (q*divisor) from dividend Shift quotient left by one digit (multiply by 10) Shift divisor right by one digit (divide by 10) Binary Division = = = = = = = = = = = = = = Hardware for Binary Division Same as decimal division, except (again) More individual steps (base is smaller) + Each step is simpler Find largest bit q such that (q*divisor) < dividend q = 0 or 1 Subtract (q*divisor) from dividend q = 0 or 1 no actual multiplication, subtract divisor or not One complication: largest q such that (q*divisor) < dividend How to know if (1*divisor) < dividend? Human (e.g., student) can eyeball this Computer cannot Subtract and see if result is negative 59 Simple 16-bit Divider Circuit control < 0 Remainder write dividend Control algorithm: repeat 17 times (N+1 iterations) Subtract Divisor from Remainder (Remainder initially = Dividend) Result >= 0? Remainder<=Result, write 1 into Quotient LSB Result < 0? Just write 0 into quotient LSB Shift divisor right 1 bit, shift quotient left 1 bit Divisor >>1 Quotient 16<<1 60

2 Even Better Divider Circuit Summary of Integer Arithmetic and ALU 16 Divisor Dividend Remainder/Quotient <<1 control Multiplier circuit optimizations also work for divider Shift Remainder left and do 16-bit subtractions Combine Quotient with right (unused) half of Remainder Booth and modified Booth analogs (but really nasty) Multiplication and division in one circuit (how?) Addition Half adder full adder, ripple carry Fast addition: carry select and carry lookahead Subtraction as addition Barrel shifter and shift registers Multiplication N-step multiplication (3 refined implementations) Booth s algorithm and N/2-step multiplication Division This Unit: Arithmetic and ALU Design Floating Point Arithmetic Application OS Compiler Firmware CPU I/O Memory Digital Circuits Gates & Transistors Integer Arithmetic and ALU Binary number representations Addition and subtraction The integer ALU Shifting and rotating Multiplication Division Floating Point Arithmetic Binary number representations FP arithmetic Accuracy Application OS Compiler Firmware CPU I/O Memory Digital Circuits Gates & Transistors Formats Precision and range IEEE 754 standard Operations Addition and subtraction Multiplication and division Error analysis Error and bias Rounding and truncation Only scientists care? 63 64

3 Floating Point (FP) Numbers Floating point numbers: numbers in scientific notation Two uses Use I: real numbers (numbers with non-zero fractions) * Use II: really big numbers 3.0 * * The World Before Floating Point Early computers were built for scientific calculations ENIAC: ballistic firing tables But didn t have primitive floating point data types Circuits were big Many accuracy problems Programmers built scale factors into programs Large constant multiplier turns all FP numbers to integers Before program starts, inputs multiplied by scale factor manually After program finishes, outputs divided by scale factor manually Yuck! The Fixed Width Dilemma Natural arithmetic has infinite width Infinite number of integers Infinite number of reals Infinitely more reals than integers (head spinning ) Hardware arithmetic has finite width N (e.g., 16,, 64) Can represent 2 N numbers If you could represent 2 N integers, which would they be? Easy, the 2 N 1 on either size of 0 If you could represent 2 N reals, which would they be? 2 N reals from 0 to 1, not too useful 2 N powers of two (1, 2, 4, 8, ), also not too useful Something in between: yes, but what? Range and Precision Range Distance between largest and smallest representable numbers Want big range Precision Distance between two consecutive representable numbers Want small precision In fixed bit width, can t have unlimited both 67 68

4 Scientific Notation Scientific notation: good compromise Number [S,F,E] = S * F * 2 E S: sign F: significand (fraction) E: exponent Floating point : binary (decimal) point has different magnitude + Sliding window of precision using notion of significant digits Small numbers very precise, many places after decimal point Big numbers are much less so, not all integers representable But for those instances you don t really care anyway Caveat: most representations are just approximations Sometimes weirdos like or come up + But good enough for most purposes IEEE 754 Standard Precision/Range Single precision: float in C -bit: 1-bit sign + 8-bit exponent + 23-bit significand Range: 2.0 * < N < 2.0 * Precision: ~7 significant (decimal) digits Double precision: double in C 64-bit: 1-bit sign + 11-bit exponent + 52-bit significand Range: 2.0 * < N < 2.0 * Precision: ~15 significant (decimal) digits Numbers > don t come up in many calculations ~ number of atoms in universe How Do Bits Represent Fractions? Sign: 0 or 1 easy Exponent: signed integer also easy Significand: unsigned fraction not obvious! How do we represent integers? Sums of positive powers of two S-bit unsigned integer A: A S 1 2 S 1 + A S 2 2 S A A So how can we represent fractions? Sums of negative powers of two S-bit unsigned fraction A: A S A S A 1 2 S+2 + A 0 2 S+1 More significant bits correspond to larger multipliers Some Examples What is 5 in floating point? Sign: 0 5 = 1.25 * 2 2 Significand: 1.25 = 1* *2 2 = Exponent: 2 = What is 0.5 in floating point? Sign: = 0.5 * 2 0 Significand: 0.5 = 1*2 1 = Exponent: 0 =

5 Normalized Numbers Notice 5 is 1.25 * 2 2 But isn t it also * 2 3 and * 2 4 and? With 8-bit exponent, we can have 8 representations of 5 Multiple representations for one number Would lead to computational errors Would waste bits Solution: choose normal (canonical) form Disallow de-normalized numbers IEEE 754 normal form: coefficient of 2 0 is always 1 Similar to scientific notation: one non-zero digit left of decimal Normalized representation of 5 is 1.25 * 2 2 (1.25 = 1*2 0 +1*2-2 ) * 2 3 is de-normalized (0.625 = 0*2 0 +1* *2-3 ) More About Normalization What is 0.5 in normalized floating point? Sign: = 1 * 2 1 Significand: 1 = 1*2 0 = Exponent: -1 = (assuming 2 s complement for now) IEEE 754: no need to represent coefficient of 2 0 explicitly It s always 1 + Buy yourself an extra bit of precision Pretty cute trick Problem: what about 0? How can we represent 0 if 2 0 is always implicitly 1? IEEE 754: The Whole Story Exponent: signed integer not so fast Exponent represented in excess or bias notation N-bits typically can represent signed numbers from 2 N 1 to 2 N 1 1 But in IEEE 754, they represent exponents from 2 N 1 +2 to 2 N 1 1 And they represent those as unsigned with an implicit 2 N 1 1 added Implicit added quantity is called the bias Actual exponent is E (2 N 1 1) Example: single precision (8-bit exponent) Bias is 127, exponent range is 126 to is represented as 1 = is represented as 254 = is represented as 127 = is represented as 128 = IEEE 754: Continued Notice: two exponent bit patterns are unused : represents de-normalized numbers Numbers that have implicit 0 (rather than 1) in 2 0 Zero is a special kind of de-normalized number + Exponent is all 0s, significand is all 0s There are both +0 and 0, but they are considered the same Also represent numbers smaller than smallest normalized numbers : represents infinity and NaN ± infinities have 0s in the significand ± NaNs do not 75 76

6 IEEE 754: To Infinity and Beyond What are infinity and NaN used for? To allow operations to proceed past overflow/underflow situations Overflow: operation yields exponent greater than 2 N 1 1 Underflow: operation yields exponent less than 2 N 1 +2 IEEE 754 defines operations on infinity and NaN N / 0 = infinity N / infinity = 0 0 / 0 = NaN Infinity / infinity = NaN Infinity infinity = NaN Anything and NaN = NaN IEEE 754: Final Format exp significand Biased exponent Normalized significand Exponent uses more significant bits than significand Helps when comparing FP numbers Exponent bias notation helps there too why? Every computer since about 1980 supports this standard Makes code portable (at the source level at least) Makes hardware faster (stand on each other s shoulders) Floating Point Arithmetic We will look at Addition/subtraction Multiplication/division Implementation Basically, integer arithmetic on significand and exponent Using integer ALUs Plus extra hardware for normalization To help us here, look at toy quarter precision format 8 bits: 1-bit sign + 3-bit exponent + 4-bit significand Bias is 3 (= 2 N-1 1) 79

### This Unit: Floating Point Arithmetic. CIS 371 Computer Organization and Design. Readings. Floating Point (FP) Numbers

This Unit: Floating Point Arithmetic CIS 371 Computer Organization and Design Unit 7: Floating Point App App App System software Mem CPU I/O Formats Precision and range IEEE 754 standard Operations Addition

### Computer Organization and Architecture

Computer Organization and Architecture Chapter 9 Computer Arithmetic Arithmetic & Logic Unit Performs arithmetic and logic operations on data everything that we think of as computing. Everything else in

### Divide: Paper & Pencil. Computer Architecture ALU Design : Division and Floating Point. Divide algorithm. DIVIDE HARDWARE Version 1

Divide: Paper & Pencil Computer Architecture ALU Design : Division and Floating Point 1001 Quotient Divisor 1000 1001010 Dividend 1000 10 101 1010 1000 10 (or Modulo result) See how big a number can be

### TECH. Arithmetic & Logic Unit. CH09 Computer Arithmetic. Number Systems. ALU Inputs and Outputs. Binary Number System

CH09 Computer Arithmetic CPU combines of ALU and Control Unit, this chapter discusses ALU The Arithmetic and Logic Unit (ALU) Number Systems Integer Representation Integer Arithmetic Floating-Point Representation

### Restoring division. 2. Run the algorithm Let s do 0111/0010 (7/2) unsigned. 3. Find remainder here. 4. Find quotient here.

Binary division Dividend = divisor q quotient + remainder CS/COE447: Computer Organization and Assembly Language Given dividend and divisor, we want to obtain quotient (Q) and remainder (R) Chapter 3 We

### quotient = dividend / divisor, with a remainder Given dividend and divisor, we want to obtain quotient (Q) and remainder (R)

Binary division quotient = dividend / divisor, with a remainder dividend = divisor quotient + remainder Given dividend and divisor, we want to obtain quotient (Q) and remainder (R) We will start from our

### Chapter 4. Computer Arithmetic

Chapter 4 Computer Arithmetic 4.1 Number Systems A number system uses a specific radix (base). Radices that are power of 2 are widely used in digital systems. These radices include binary (base 2), quaternary

### comp 180 Lecture 21 Outline of Lecture Floating Point Addition Floating Point Multiplication HKUST 1 Computer Science

Outline of Lecture Floating Point Addition Floating Point Multiplication HKUST 1 Computer Science IEEE 754 floating-point standard In order to pack more bits into the significant, IEEE 754 makes the leading

### Integer multiplication

Integer multiplication Suppose we have two unsigned integers, A and B, and we wish to compute their product. Let A be the multiplicand and B the multiplier: A n 1... A 1 A 0 multiplicand B n 1... B 1 B

### Data Representation Binary Numbers

Data Representation Binary Numbers Integer Conversion Between Decimal and Binary Bases Task accomplished by Repeated division of decimal number by 2 (integer part of decimal number) Repeated multiplication

### Binary Representation and Computer Arithmetic

Binary Representation and Computer Arithmetic The decimal system of counting and keeping track of items was first created by Hindu mathematicians in India in A.D. 4. Since it involved the use of fingers

### After adjusting the expoent value of the smaller number have

1 (a) Provide the hexadecimal representation of a denormalized number in single precision IEEE 754 notation. What is the purpose of denormalized numbers? A denormalized number is a floating point number

### By the end of the lecture, you should be able to:

Extra Lecture: Number Systems Objectives - To understand: Base of number systems: decimal, binary, octal and hexadecimal Textual information stored as ASCII Binary addition/subtraction, multiplication

### ECE 0142 Computer Organization. Lecture 3 Floating Point Representations

ECE 0142 Computer Organization Lecture 3 Floating Point Representations 1 Floating-point arithmetic We often incur floating-point programming. Floating point greatly simplifies working with large (e.g.,

### Floating-point computation

Real values and floating point values Floating-point representation IEEE 754 standard representation rounding special values Floating-point computation 1 Real values Not all values can be represented exactly

### Introduction to IEEE Standard 754 for Binary Floating-Point Arithmetic

Introduction to IEEE Standard 754 for Binary Floating-Point Arithmetic Computer Organization and Assembly Languages, NTU CSIE, 2004 Speaker: Jiun-Ren Lin Date: Oct 26, 2004 Floating point numbers Integers:

### Arithmetic Operations

Arithmetic Operations Dongbing Gu School of Computer Science and Electronic Engineering University of Essex UK Spring 2013 D. Gu (Univ. of Essex) Arithmetic Operations Spring 2013 1 / 34 Outline 1 Introduction

### Floating Point Numbers. Question. Learning Outcomes. Number Representation - recap. Do you have your laptop here?

Question Floating Point Numbers 6.626068 x 10-34 Do you have your laptop here? A yes B no C what s a laptop D where is here? E none of the above Eddie Edwards eedwards@doc.ic.ac.uk https://www.doc.ic.ac.uk/~eedwards/compsys

### Fixed-Point Arithmetic

Fixed-Point Arithmetic Fixed-Point Notation A K-bit fixed-point number can be interpreted as either: an integer (i.e., 20645) a fractional number (i.e., 0.75) 2 1 Integer Fixed-Point Representation N-bit

### Integer and Real Numbers Representation in Microprocessor Techniques

Brno University of Technology Integer and Real Numbers Representation in Microprocessor Techniques Microprocessor Techniques and Embedded Systems Lecture 1 Dr. Tomas Fryza 30-Sep-2011 Contents Numerical

### Quiz for Chapter 3 Arithmetic for Computers 3.10

Date: Quiz for Chapter 3 Arithmetic for Computers 3.10 Not all questions are of equal difficulty. Please review the entire quiz first and then budget your time carefully. Name: Course: Solutions in RED

### Lecture 8: Binary Multiplication & Division

Lecture 8: Binary Multiplication & Division Today s topics: Addition/Subtraction Multiplication Division Reminder: get started early on assignment 3 1 2 s Complement Signed Numbers two = 0 ten 0001 two

### Simulation & Synthesis Using VHDL

Floating Point Multipliers: Simulation & Synthesis Using VHDL By: Raj Kumar Singh - B.E. (Hons.) Electrical & Electronics Shivananda Reddy - B.E. (Hons.) Electrical & Electronics BITS, PILANI Outline Introduction

### Fractional Numbers. Fractional Number Notations. Fixed-point Notation. Fixed-point Notation

2 Fractional Numbers Fractional Number Notations 2010 - Claudio Fornaro Ver. 1.4 Fractional numbers have the form: xxxxxxxxx.yyyyyyyyy where the x es constitute the integer part of the value and the y

### ECE 0142 Computer Organization. Lecture 3 Floating Point Representations

ECE 0142 Computer Organization Lecture 3 Floating Point Representations 1 Floating-point arithmetic We often incur floating-point programming. Floating point greatly simplifies working with large (e.g.,

### COMPUTER ARCHITECTURE IT0205

COMPUTER ARCHITECTURE IT0205 M.Thenmozhi/Kayalvizhi Jayavel/M.B.Panbu Asst.Prof.(Sr.G)/Asst.Prof.(Sr.G)/Asst.Prof.(O.G) Department of IT SRM University, Kattankulathur 1 Disclaimer The contents of the

### 1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal:

Exercises 1 - number representations Questions 1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal: (a) 3012 (b) - 435 2. For each of

### Binary Number System. 16. Binary Numbers. Base 10 digits: 0 1 2 3 4 5 6 7 8 9. Base 2 digits: 0 1

Binary Number System 1 Base 10 digits: 0 1 2 3 4 5 6 7 8 9 Base 2 digits: 0 1 Recall that in base 10, the digits of a number are just coefficients of powers of the base (10): 417 = 4 * 10 2 + 1 * 10 1

### Number Systems and. Data Representation

Number Systems and Data Representation 1 Lecture Outline Number Systems Binary, Octal, Hexadecimal Representation of characters using codes Representation of Numbers Integer, Floating Point, Binary Coded

### CHAPTER 2 Data Representation in Computer Systems

CHAPTER 2 Data Representation in Computer Systems 2.1 Introduction 47 2.2 Positional Numbering Systems 48 2.3 Converting Between Bases 48 2.3.1 Converting Unsigned Whole Numbers 49 2.3.2 Converting Fractions

### Chapter II Binary Data Representation

Chapter II Binary Data Representation The atomic unit of data in computer systems is the bit, which is actually an acronym that stands for BInary digit. It can hold only 2 values or states: 0 or 1, true

### Introduction Number Systems and Conversion

UNIT 1 Introduction Number Systems and Conversion Objectives 1. Introduction The first part of this unit introduces the material to be studied later. In addition to getting an overview of the material

### Binary Numbers. Binary Numbers. Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria

Binary Numbers Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria Wolfgang.Schreiner@risc.uni-linz.ac.at http://www.risc.uni-linz.ac.at/people/schreine

### Digital Logic. The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer.

Digital Logic 1 Data Representations 1.1 The Binary System The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer. The system we

### CPE 323 Data Types and Number Representations

CPE 323 Data Types and Number Representations Aleksandar Milenkovic Numeral Systems: Decimal, binary, hexadecimal, and octal We ordinarily represent numbers using decimal numeral system that has 10 as

### Approximation Errors in Computer Arithmetic (Chapters 3 and 4)

Approximation Errors in Computer Arithmetic (Chapters 3 and 4) Outline: Positional notation binary representation of numbers Computer representation of integers Floating point representation IEEE standard

### Number Systems & Encoding

Number Systems & Encoding Lecturer: Sri Parameswaran Author: Hui Annie Guo Modified: Sri Parameswaran Week2 1 Lecture overview Basics of computing with digital systems Binary numbers Floating point numbers

### Representation of Floating Point Numbers in

Representation of Floating Point Numbers in Single Precision IEEE 754 Standard Value = N = (-1) S X 2 E-127 X (1.M) 0 < E < 255 Actual exponent is: e = E - 127 sign 1 8 23 S E M exponent: excess 127 binary

### Binary Numbers. Binary Numbers. Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria

Binary Numbers Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria Wolfgang.Schreiner@risc.uni-linz.ac.at http://www.risc.uni-linz.ac.at/people/schreine

### Computer Science 281 Binary and Hexadecimal Review

Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two

### FLOATING POINT NUMBERS

FLOATING POINT NUMBERS Introduction Richard Hayden (with thanks to Naranker Dulay) rh@doc.ic.ac.uk http://www.doc.ic.ac.uk/~rh/teaching or https://www.doc.ic.ac.uk/~wl/teachlocal/arch1 or CATE Numbers:

### CHAPTER THREE. 3.1 Binary Addition. Binary Math and Signed Representations

CHAPTER THREE Binary Math and Signed Representations Representing numbers with bits is one thing. Doing something with them is an entirely different matter. This chapter discusses some of the basic mathematical

### Recall that in base 10, the digits of a number are just coefficients of powers of the base (10):

Binary Number System 1 Base 10 digits: 0 1 2 3 4 5 6 7 8 9 Base 2 digits: 0 1 Recall that in base 10, the digits of a number are just coefficients of powers of the base (10): 417 = 4 * 10 2 + 1 * 10 1

### Y = abc = a b c.2 0

Chapter 2 Bits, Data Types & Operations Integer Representation Floating-point Representation Other data types Why do Computers use Base 2? Base 10 Number Representation Natural representation for human

### Integer Numbers. The Number Bases of Integers Textbook Chapter 3

Integer Numbers The Number Bases of Integers Textbook Chapter 3 Number Systems Unary, or marks: /////// = 7 /////// + ////// = ///////////// Grouping lead to Roman Numerals: VII + V = VVII = XII Better:

### Presented By: Ms. Poonam Anand

Presented By: Ms. Poonam Anand Know the different types of numbers Describe positional notation Convert numbers in other bases to base 10 Convert base 10 numbers into numbers of other bases Describe the

### Decimal Numbers: Base 10 Integer Numbers & Arithmetic

Decimal Numbers: Base 10 Integer Numbers & Arithmetic Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Example: 3271 = (3x10 3 ) + (2x10 2 ) + (7x10 1 )+(1x10 0 ) Ward 1 Ward 2 Numbers: positional notation Number

### Fixed-Point Numbers. Positional representation: k whole and l fractional digits. x x 1. x k 2. . x 1

Fied-Point Numbers Positional representation: k whole and l fractional digits Value of a number: = ( k 1 k 2... 1 0. 1 2... l ) r = Σ i r i For eample: 2.375 = (10.011) two = (1 2 1 ) + (0 2 0 ) + (0 2

### Oct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8

ECE Department Summer LECTURE #5: Number Systems EEL : Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz Decimal Number System: -Our standard number system is base, also

### The string of digits 101101 in the binary number system represents the quantity

Data Representation Section 3.1 Data Types Registers contain either data or control information Control information is a bit or group of bits used to specify the sequence of command signals needed for

### CHAPTER 5 Round-off errors

CHAPTER 5 Round-off errors In the two previous chapters we have seen how numbers can be represented in the binary numeral system and how this is the basis for representing numbers in computers. Since any

### Number Representation

Number Representation Number System :: The Basics We are accustomed to using the so-called decimal number system Ten digits ::,,,3,4,5,6,7,8,9 Every digit position has a weight which is a power of Base

### Computer is a binary digital system. Data. Unsigned Integers (cont.) Unsigned Integers. Binary (base two) system: Has two states: 0 and 1

Computer Programming Programming Language Is telling the computer how to do something Wikipedia Definition: Applies specific programming languages to solve specific computational problems with solutions

### Digital Fundamentals

Digital Fundamentals with PLD Programming Floyd Chapter 2 29 Pearson Education Decimal Numbers The position of each digit in a weighted number system is assigned a weight based on the base or radix of

### 2010/9/19. Binary number system. Binary numbers. Outline. Binary to decimal

2/9/9 Binary number system Computer (electronic) systems prefer binary numbers Binary number: represent a number in base-2 Binary numbers 2 3 + 7 + 5 Some terminology Bit: a binary digit ( or ) Hexadecimal

### CSCI 230 Class Notes Binary Number Representations and Arithmetic

CSCI 230 Class otes Binary umber Representations and Arithmetic Mihran Tuceryan with some modifications by Snehasis Mukhopadhyay Jan 22, 1999 1 Decimal otation What does it mean when we write 495? How

### Bit operations carry* 0110 a 0111 b a+b. 1 and 3 exclusive OR (^) 2 and 4 and (&) 5 or ( )

Bit operations 1 and 3 exclusive OR (^) 2 and 4 and (&) 5 or ( ) 01100 carry* 0110 a 0111 b 01101 a+b * Always start with a carry-in of 0 Did it work? What is a? What is b? What is a+b? What if 8 bits

### Chapter 2: Number Systems

Chapter 2: Number Systems Logic circuits are used to generate and transmit 1s and 0s to compute and convey information. This two-valued number system is called binary. As presented earlier, there are many

### This 3-digit ASCII string could also be calculated as n = (Data[2]-0x30) +10*((Data[1]-0x30)+10*(Data[0]-0x30));

Introduction to Embedded Microcomputer Systems Lecture 5.1 2.9. Conversions ASCII to binary n = 100*(Data[0]-0x30) + 10*(Data[1]-0x30) + (Data[2]-0x30); This 3-digit ASCII string could also be calculated

### Introduction to Telecommunications and Computer Engineering Unit 2: Number Systems and Logic

Introduction to Telecommunications and Computer Engineering Unit 2: Number Systems and Logic Syedur Rahman Lecturer, CSE Department North South University syedur.rahman@wolfson.oon.org Acknowledgements

### Correctly Rounded Floating-point Binary-to-Decimal and Decimal-to-Binary Conversion Routines in Standard ML. By Prashanth Tilleti

Correctly Rounded Floating-point Binary-to-Decimal and Decimal-to-Binary Conversion Routines in Standard ML By Prashanth Tilleti Advisor Dr. Matthew Fluet Department of Computer Science B. Thomas Golisano

### Binary Multiplication. CMPE 325 Computer Architecture II. Implementing Multiplication. Multiplication. Solution #1. Solution #1: Operations

CMPE 5 Computer Architecture II Cem Ergün Eastern Mediterranean University Binary Multiplication At each step we multiply the multiplicand by a single digit from the multiplier. In binary, we multiply

### Measures of Error: for exact x and approximation x Absolute error e = x x. Relative error r = (x x )/x.

ERRORS and COMPUTER ARITHMETIC Types of Error in Numerical Calculations Initial Data Errors: from experiment, modeling, computer representation; problem dependent but need to know at beginning of calculation.

### CS-208 Computer Architecture

CS-208 Computer Architecture Lecture 5 Computer Arithmetic II: Shifters & Multipliers Fall 2014 Prof. Babak Falsafi parsa.epfl.ch/courses/cs208/ Adapted from slides originally developed by Profs. Hill,

### > 2. Error and Computer Arithmetic

> 2. Error and Computer Arithmetic Numerical analysis is concerned with how to solve a problem numerically, i.e., how to develop a sequence of numerical calculations to get a satisfactory answer. Part

### To convert an arbitrary power of 2 into its English equivalent, remember the rules of exponential arithmetic:

Binary Numbers In computer science we deal almost exclusively with binary numbers. it will be very helpful to memorize some binary constants and their decimal and English equivalents. By English equivalents

### Radix Number Systems. Number Systems. Number Systems 4/26/2010. basic idea of a radix number system how do we count:

Number Systems binary, octal, and hexadecimal numbers why used conversions, including to/from decimal negative binary numbers floating point numbers character codes basic idea of a radix number system

### Two s Complement Arithmetic

Two s Complement Arithmetic We now address the issue of representing integers as binary strings in a computer. There are four formats that have been used in the past; only one is of interest to us. The

### Arithmetic in MIPS. Objectives. Instruction. Integer arithmetic. After completing this lab you will:

6 Objectives After completing this lab you will: know how to do integer arithmetic in MIPS know how to do floating point arithmetic in MIPS know about conversion from integer to floating point and from

### COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012

Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about

### 1. Convert the following binary exponential expressions to their 'English'

Answers to Practice Problems Practice Problems - Integer Number System Conversions 1. Convert the decimal integer 427 10 into the following number systems: a. 110101011 2 c. 653 8 b. 120211 3 d. 1AB 16

### MIPS floating-point arithmetic

MIPS floating-point arithmetic Floating-point computations are vital for many applications, but correct implementation of floating-point hardware and software is very tricky. Today we ll study the IEEE

### Data types. lecture 4

Data types lecture 4 Information in digital computers is represented using binary number system. The base, i.e. radix, of the binary system is 2. Other common number systems: octal (base 8), decimal (base

### 198:211 Computer Architecture

198:211 Computer Architecture Topics: Lecture 8 & 9 Fall 2012 Integer Arithmetic Chapter 2.3 Overflow Integer Multiplication and Division Integer Arithmetic In a computer, all numbers are represented with

### A Short Introduction to Binary Numbers

A Short Introduction to Binary Numbers Brian J. Shelburne Department of Mathematics and Computer Science Wittenberg University 0. Introduction The development of the computer was driven by the need to

### The Essentials of Computer Organization and Architecture. Linda Null and Julia Lobur Jones and Bartlett Publishers, 2003

The Essentials of Computer Organization and Architecture Linda Null and Julia Lobur Jones and Bartlett Publishers, 2003 Chapter 2 Instructor's Manual Chapter Objectives Chapter 2, Data Representation,

### Digital Electronics. 1.0 Introduction to Number Systems. Module

Module 1 www.learnabout-electronics.org Digital Electronics 1.0 Introduction to What you ll learn in Module 1 Section 1.0. Recognise different number systems and their uses. Section 1.1 in Electronics.

### Here 4 is the least significant digit (LSD) and 2 is the most significant digit (MSD).

Number System Introduction Number systems provide the basis for all operations in information processing systems. In a number system the information is divided into a group of symbols; for example, 26

### Bits, Data Types, and Operations. University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

Bits, Data Types, and Operations University of Texas at Austin CS3H - Computer Organization Spring 2 Don Fussell How do we represent data in a computer? At the lowest level, a computer is an electronic

### CSE 1400 Applied Discrete Mathematics Conversions Between Number Systems

CSE 400 Applied Discrete Mathematics Conversions Between Number Systems Department of Computer Sciences College of Engineering Florida Tech Fall 20 Conversion Algorithms: Decimal to Another Base Conversion

### Verilog Review and Fixed Point Arithmetics. Overview

Verilog Review and Fixed Point Arithmetics CSE4210 Winter 2012 Mokhtar Aboelaze based on slides by Dr. Shoab A. Khan Overview Floating and Fixed Point Arithmetic System Design Flow Requirements and Specifications

### Representation of Data

Representation of Data In contrast with higher-level programming languages, C does not provide strong abstractions for representing data. Indeed, while languages like Racket has a rich notion of data type

### Number Representation and Arithmetic in Various Numeral Systems

1 Number Representation and Arithmetic in Various Numeral Systems Computer Organization and Assembly Language Programming 203.8002 Adapted by Yousef Shajrawi, licensed by Huong Nguyen under the Creative

### CS201: Architecture and Assembly Language

CS201: Architecture and Assembly Language Lecture Three Brendan Burns CS201: Lecture Three p.1/27 Arithmetic for computers Previously we saw how we could represent unsigned numbers in binary and how binary

### 4 Operations On Data

4 Operations On Data 4.1 Source: Foundations of Computer Science Cengage Learning Objectives After studying this chapter, students should be able to: List the three categories of operations performed on

### CALCULATOR AND COMPUTER ARITHMETIC

MathScope Handbook - Calc/Comp Arithmetic Page 1 of 7 Click here to return to the index 1 Introduction CALCULATOR AND COMPUTER ARITHMETIC Most of the computational work you will do as an Engineering Student

### Data Storage 3.1. Foundations of Computer Science Cengage Learning

3 Data Storage 3.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List five different data types used in a computer. Describe how

### Binary Numbers Again. Binary Arithmetic, Subtraction. Binary, Decimal addition

Binary Numbers Again Recall than N binary digits (N bits) can represent unsigned integers from 0 to 2 N -1. 4 bits = 0 to 15 8 bits = 0 to 255 16 bits = 0 to 65535 Besides simply representation, we would

### 1 Number System (Lecture 1 and 2 supplement)

1 Number System (Lecture 1 and 2 supplement) By Dr. Taek Kwon Many different number systems perhaps from the prehistoric era have been developed and evolved. Among them, binary number system is one of

### COMPUTER ARCHITECTURE. ALU (2) - Integer Arithmetic

HUMBOLDT-UNIVERSITÄT ZU BERLIN INSTITUT FÜR INFORMATIK COMPUTER ARCHITECTURE Lecture 11 ALU (2) - Integer Arithmetic Sommersemester 21 Leitung: Prof. Dr. Miroslaw Malek www.informatik.hu-berlin.de/rok/ca

### Operations on Decimals

Operations on Decimals Addition and subtraction of decimals To add decimals, write the numbers so that the decimal points are on a vertical line. Add as you would with whole numbers. Then write the decimal

### Fixed-point Mathematics

Appendix A Fixed-point Mathematics In this appendix, we will introduce the notation and operations that we use for fixed-point mathematics. For some platforms, e.g., low-cost mobile phones, fixed-point

### EE 261 Introduction to Logic Circuits. Module #2 Number Systems

EE 261 Introduction to Logic Circuits Module #2 Number Systems Topics A. Number System Formation B. Base Conversions C. Binary Arithmetic D. Signed Numbers E. Signed Arithmetic F. Binary Codes Textbook

### 198:211 Computer Architecture

198:211 Computer Architecture Topics: Lecture 8 (W5) Fall 2012 Data representation 2.1 and 2.2 of the book Floating point 2.4 of the book 1 Computer Architecture What do computers do? Manipulate stored

### CS321. Introduction to Numerical Methods

CS3 Introduction to Numerical Methods Lecture Number Representations and Errors Professor Jun Zhang Department of Computer Science University of Kentucky Lexington, KY 40506-0633 August 7, 05 Number in

### Arithmetic Processing. Basic Fixed Point NRS. Number Representation. Digit Values. Rule of Interpretation CS/EE 5830/6830 VLSI ARCHITECTURE

CS/EE 5830/6830 VLSI ARCHITECTURE Chapter 1 Basic Number Representations and Arithmetic Algorithms Arithmetic Processing AP = (operands, operation, results, conditions, singularities) Operands are: Set