Lecture 11: Number Systems
|
|
|
- Harry Melton
- 9 years ago
- Views:
Transcription
1 Lecture 11: Number Systems
2 Numeric Data Fixed point Integers (12, 345, etc) Real fractions (23.45, 23., etc.) Floating point such as e 12 Basically an exponent representation
3 Any number X in fixed point can be represented by a finite sequence of digits X = {x n-1,...x 1, x 0, x -1, x -m }, where, 0 x i < r and -m i n-1 We can compute decimal value of X as follows: V(X) = x i * r i { -m i n-1} OR V(X) = x i * r i {0 i n-1} + x j * r j { -m j -1} integral part fractional part Here r is base (radix) and V(X) is decimal value of X.
4 Number Systems System Base Digits Examples Decimal , Binary 2 0 & Octal , Hexadecimal , A,B,C,D,E,F 1AF2, F23.AA
5 Binary Number System Most modern computer systems operate using binary logic. The computer represents values using two voltage levels (usually 0V for logic 0 and higher V for logic 1). With two levels we can represent exactly two different values. These could be any two different values, but by convention we use the values zero and one. These two values, coincidentally, correspond to the two digits used by the binary number system.
6 The weighted values for each position is determined as follows: Leftmost digit is most significant digit (MSD) whereas rightmost digit is least significant digit (LSD)
7 Number Base Conversion Binary to Decimal It is very easy to convert from a binary number to a decimal number. Multiply each digit by its weighted position, and add each of the weighted values together. For example, the binary value represents: ( )b = 1*2 7 +1*2 6 +0*2 5 +0*2 4 +1*2 3 +0*2 2 +1* *2 = 1*128+1*64+0*32+0*16+1*8+0*4 +1*2+0*1 = = 202
8 Decimal to Binary Decimal to binary conversion is slightly more difficult. Repeated Division By 2 divide the decimal number by 2 Remainder is the LSD Quotient becomes new number. This process is continued by dividing the new number by 2 and storing the remainder until the quotient is 0. The remainders are written beginning at the least significant digit (right) and each new digit is written to more significant digit (the left) of the previous digit.
9 Consider the conversion of 166 to binary number Division Quot Rem Binary Number 166/ / / / / / / /
10 Decimal Fraction to Binary fraction Fraction (0.125) 10 = (0.001) b. Use the following method. Repeat the following until fraction becomes 0 or the number of digits have sufficient accuracy. Multiply a decimal fraction by 2. Separate integral and fractional part. new decimal fraction is fractional part obtained above.
11 Fraction Integral Part New fraction * * * Collect the integral part as follows: (0.125) 10 = (0.001) 2
12 Octal Number System Although this was once a popular number base, especially in the Digital Equipment Corporation PDP/8 and other old computer systems, it is rarely used today. The Octal system is based on the binary system with a 3-bit boundary. The Octal Number System: uses base 8 includes only the digits 0 through 7 (any other digit would make the number an invalid octal number) The weighted values for each position is as follows:
13 The weighted values for each position is determined as follows:
14 Binary to Octal Conversion It is easy to convert from an integer binary number to octal. This is accomplished by: Break the binary number into 3-bit sections from the LSB to the MSB. Convert the 3-bit binary number to its octal equivalent.
15 For example, the binary value ( ) 2 will be written: Corresponding octal number is: (127662) q The base q represent Octal base.
16 Octal to Binary Conversion It is also easy to convert from an integer octal number to binary number. This is done as follows: Convert the decimal number to its 3-bit binary equivalent. Combine the 3-bit sections by removing the spaces.
17 For example, the octal value (127662) q will be written : Corresponding binary number is: ( ) 2
18 Octal to Decimal Conversion To convert from Octal to Decimal, multiply the value in each position by its Octal weight and add each value. Using the value from the previous example, (127662) q, we would expect to obtain the decimal value (44978) 10.
19 Conversion of (127662) q to decimal number 1*8 5 2*8 4 7*8 3 6*8 2 6*8 1 2*8 0 1* * *512 6*64 6*8 2* = = (44978) 10
20 Decimal to Octal Conversion To convert decimal to octal is similar to the one done for Decimal to binary. Here repeated division is done by 8. Repeated Division By 8 Divide the decimal number by 8, and write the remainder on the side as the least significant digit. This process is continued by dividing the quotient by 8 and writing the remainder until the quotient is 0.
21 When performing the division, the remainders which will represent the octal equivalent of the decimal number are written beginning at the LSD (right) and each new digit is written to the next more significant digit (the left) of the previous digit. Consider decimal number (166) 10. Convert to its equivalent Octal number.
22 Division Quot Rem Octal Number 166/ / / Therefore, (166) 10 = (246) 8 or (246) q
23 Hexadecimal Number System The Hexadecimal Number System: uses base 16 includes only the digits 0 through 9 and the letters A, B, C, D, E, and F Hexadecimal numbers offer the two features: hex numbers are very compact it is easy to convert from hex to binary and binary to hex. The Hexadecimal system is based on the binary system using 4-bit (a Nibble) boundary. In the Hexadecimal number system, the hex values greater than 9 carry the following decimal value:
24 Binary (b) Decimal Hex(h) (0000) b (0) 10 (0) h (0001) b (1) 10 (1) h (0010) b (2) 10 (2) h (0011) b (3) 10 (3) h (0100) b (4) 10 (4) h (0101) b (5) 10 (5) h (0110) b (6) 10 (6) h (0111) b (7) 10 (7) h (1000) b (8) 10 (8) h (1001) b (9) 10 (9) h
25 Binary (b) Decimal Hex(h) (1010) b (10) 10 (A) h (1011) b (11) 10 (B) h (1100) b (12) 10 (C) h (1101) b (13) 10 (D) h (1110) b (14) 10 (E) h (1111) b (15) 10 (F) h
26 Hexadecimal to Binary Conversion simply brake the binary number into 4-bit groups beginning with the LSB and substitute the corresponding four bits in binary for each hexadecimal digit in the number. For example, to convert (ABCD) h into a binary value, simply convert each hexadecimal digit according to the table above. The binary equivalent is: (ABCD) h = ( ) 2
27 Binary to Hex Conversion It is easy to convert from an integer binary number to hex. This is accomplished by: Break the binary number into 4-bit sections from the LSB to the MSB. Pad the binary number with leading zeros if needed. Convert the 4-bit binary number to its Hex equivalent. For example, the binary value ( ) 2 will be written: ( ) 2 = (6FB2) h
28 Hex Decimal Conversion Hex to Decimal conversion Multiply the value in each position by its hex weight and add each value. We would expect to obtain the decimal value (44978) 10 corresponding to (AFB2) h. A* F* B* *16 0 = 10* * *16 + 2*1 = = (44978) 10 Decimal to Hex Conversion The typical method to convert from decimal to hex is repeated division by 16 (similar to other bases).
29 Base (r) Decimal Conversion Base r to Decimal Assume {x n-1,...x 1, x 0, x -1, x -m } in base r, X = + x 2 * r 2 + x 1 * r 1 + x 0 * r 0 + x -1 * r -1 + Decimal to Base r Repeated Division By r Write the remainder on the side as the LSD. This process is continued by dividing the quotient by r and writing the remainder until the quotient is 0.
CSI 333 Lecture 1 Number Systems
CSI 333 Lecture 1 Number Systems 1 1 / 23 Basics of Number Systems Ref: Appendix C of Deitel & Deitel. Weighted Positional Notation: 192 = 2 10 0 + 9 10 1 + 1 10 2 General: Digit sequence : d n 1 d n 2...
Goals. Unary Numbers. Decimal Numbers. 3,148 is. 1000 s 100 s 10 s 1 s. Number Bases 1/12/2009. COMP370 Intro to Computer Architecture 1
Number Bases //9 Goals Numbers Understand binary and hexadecimal numbers Be able to convert between number bases Understand binary fractions COMP37 Introduction to Computer Architecture Unary Numbers Decimal
NUMBER SYSTEMS. 1.1 Introduction
NUMBER SYSTEMS 1.1 Introduction There are several number systems which we normally use, such as decimal, binary, octal, hexadecimal, etc. Amongst them we are most familiar with the decimal number system.
3. Convert a number from one number system to another
3. Convert a number from one number system to another Conversion between number bases: Hexa (16) Decimal (10) Binary (2) Octal (8) More Interest Way we need conversion? We need decimal system for real
LSN 2 Number Systems. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology
LSN 2 Number Systems Department of Engineering Technology LSN 2 Decimal Number System Decimal number system has 10 digits (0-9) Base 10 weighting system... 10 5 10 4 10 3 10 2 10 1 10 0. 10-1 10-2 10-3
Chapter 2. Binary Values and Number Systems
Chapter 2 Binary Values and Number Systems Numbers Natural numbers, a.k.a. positive integers Zero and any number obtained by repeatedly adding one to it. Examples: 100, 0, 45645, 32 Negative numbers A
Oct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8
ECE Department Summer LECTURE #5: Number Systems EEL : Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz Decimal Number System: -Our standard number system is base, also
Section 1.4 Place Value Systems of Numeration in Other Bases
Section.4 Place Value Systems of Numeration in Other Bases Other Bases The Hindu-Arabic system that is used in most of the world today is a positional value system with a base of ten. The simplest reason
Binary Representation. Number Systems. Base 10, Base 2, Base 16. Positional Notation. Conversion of Any Base to Decimal.
Binary Representation The basis of all digital data is binary representation. Binary - means two 1, 0 True, False Hot, Cold On, Off We must be able to handle more than just values for real world problems
NUMBER SYSTEMS. William Stallings
NUMBER SYSTEMS William Stallings The Decimal System... The Binary System...3 Converting between Binary and Decimal...3 Integers...4 Fractions...5 Hexadecimal Notation...6 This document available at WilliamStallings.com/StudentSupport.html
Binary Number System. 16. Binary Numbers. Base 10 digits: 0 1 2 3 4 5 6 7 8 9. Base 2 digits: 0 1
Binary Number System 1 Base 10 digits: 0 1 2 3 4 5 6 7 8 9 Base 2 digits: 0 1 Recall that in base 10, the digits of a number are just coefficients of powers of the base (10): 417 = 4 * 10 2 + 1 * 10 1
Binary Representation
Binary Representation The basis of all digital data is binary representation. Binary - means two 1, 0 True, False Hot, Cold On, Off We must tbe able to handle more than just values for real world problems
Useful Number Systems
Useful Number Systems Decimal Base = 10 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Binary Base = 2 Digit Set = {0, 1} Octal Base = 8 = 2 3 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7} Hexadecimal Base = 16 = 2
Number Conversions Dr. Sarita Agarwal (Acharya Narendra Dev College,University of Delhi)
Conversions Dr. Sarita Agarwal (Acharya Narendra Dev College,University of Delhi) INTRODUCTION System- A number system defines a set of values to represent quantity. We talk about the number of people
Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture - 04 Digital Logic II May, I before starting the today s lecture
Base Conversion written by Cathy Saxton
Base Conversion written by Cathy Saxton 1. Base 10 In base 10, the digits, from right to left, specify the 1 s, 10 s, 100 s, 1000 s, etc. These are powers of 10 (10 x ): 10 0 = 1, 10 1 = 10, 10 2 = 100,
CPEN 214 - Digital Logic Design Binary Systems
CPEN 4 - Digital Logic Design Binary Systems C. Gerousis Digital Design 3 rd Ed., Mano Prentice Hall Digital vs. Analog An analog system has continuous range of values A mercury thermometer Vinyl records
Binary, Hexadecimal, Octal, and BCD Numbers
23CH_PHCalter_TMSETE_949118 23/2/2007 1:37 PM Page 1 Binary, Hexadecimal, Octal, and BCD Numbers OBJECTIVES When you have completed this chapter, you should be able to: Convert between binary and decimal
COMPSCI 210. Binary Fractions. Agenda & Reading
COMPSCI 21 Binary Fractions Agenda & Reading Topics: Fractions Binary Octal Hexadecimal Binary -> Octal, Hex Octal -> Binary, Hex Decimal -> Octal, Hex Hex -> Binary, Octal Animation: BinFrac.htm Example
Number Systems. Introduction / Number Systems
Number Systems Introduction / Number Systems Data Representation Data representation can be Digital or Analog In Analog representation values are represented over a continuous range In Digital representation
EE 261 Introduction to Logic Circuits. Module #2 Number Systems
EE 261 Introduction to Logic Circuits Module #2 Number Systems Topics A. Number System Formation B. Base Conversions C. Binary Arithmetic D. Signed Numbers E. Signed Arithmetic F. Binary Codes Textbook
The string of digits 101101 in the binary number system represents the quantity
Data Representation Section 3.1 Data Types Registers contain either data or control information Control information is a bit or group of bits used to specify the sequence of command signals needed for
2 Number Systems. Source: Foundations of Computer Science Cengage Learning. Objectives After studying this chapter, the student should be able to:
2 Number Systems 2.1 Source: Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: Understand the concept of number systems. Distinguish
CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012
CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline Data Representation Binary Codes Why 6-3-1-1 and Excess-3? Data Representation (1/2) Each numbering
6 3 4 9 = 6 10 + 3 10 + 4 10 + 9 10
Lesson The Binary Number System. Why Binary? The number system that you are familiar with, that you use every day, is the decimal number system, also commonly referred to as the base- system. When you
Computer Science 281 Binary and Hexadecimal Review
Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two
CS101 Lecture 11: Number Systems and Binary Numbers. Aaron Stevens 14 February 2011
CS101 Lecture 11: Number Systems and Binary Numbers Aaron Stevens 14 February 2011 1 2 1 3!!! MATH WARNING!!! TODAY S LECTURE CONTAINS TRACE AMOUNTS OF ARITHMETIC AND ALGEBRA PLEASE BE ADVISED THAT CALCULTORS
2011, The McGraw-Hill Companies, Inc. Chapter 3
Chapter 3 3.1 Decimal System The radix or base of a number system determines the total number of different symbols or digits used by that system. The decimal system has a base of 10 with the digits 0 through
Chapter 7 Lab - Decimal, Binary, Octal, Hexadecimal Numbering Systems
Chapter 7 Lab - Decimal, Binary, Octal, Hexadecimal Numbering Systems This assignment is designed to familiarize you with different numbering systems, specifically: binary, octal, hexadecimal (and decimal)
Lecture 2. Binary and Hexadecimal Numbers
Lecture 2 Binary and Hexadecimal Numbers Purpose: Review binary and hexadecimal number representations Convert directly from one base to another base Review addition and subtraction in binary representations
Positional Numbering System
APPENDIX B Positional Numbering System A positional numbering system uses a set of symbols. The value that each symbol represents, however, depends on its face value and its place value, the value associated
Unsigned Conversions from Decimal or to Decimal and other Number Systems
Page 1 of 5 Unsigned Conversions from Decimal or to Decimal and other Number Systems In all digital design, analysis, troubleshooting, and repair you will be working with binary numbers (or base 2). It
plc numbers - 13.1 Encoded values; BCD and ASCII Error detection; parity, gray code and checksums
plc numbers - 3. Topics: Number bases; binary, octal, decimal, hexadecimal Binary calculations; s compliments, addition, subtraction and Boolean operations Encoded values; BCD and ASCII Error detection;
Binary Numbers. Binary Octal Hexadecimal
Binary Numbers Binary Octal Hexadecimal Binary Numbers COUNTING SYSTEMS UNLIMITED... Since you have been using the 10 different digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 all your life, you may wonder how
Number Systems and Radix Conversion
Number Systems and Radix Conversion Sanjay Rajopadhye, Colorado State University 1 Introduction These notes for CS 270 describe polynomial number systems. The material is not in the textbook, but will
Number Representation
Number Representation CS10001: Programming & Data Structures Pallab Dasgupta Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur Topics to be Discussed How are numeric data
Numbering Systems. InThisAppendix...
G InThisAppendix... Introduction Binary Numbering System Hexadecimal Numbering System Octal Numbering System Binary Coded Decimal (BCD) Numbering System Real (Floating Point) Numbering System BCD/Binary/Decimal/Hex/Octal
Digital Design. Assoc. Prof. Dr. Berna Örs Yalçın
Digital Design Assoc. Prof. Dr. Berna Örs Yalçın Istanbul Technical University Faculty of Electrical and Electronics Engineering Office Number: 2318 E-mail: [email protected] Grading 1st Midterm -
Systems I: Computer Organization and Architecture
Systems I: Computer Organization and Architecture Lecture 2: Number Systems and Arithmetic Number Systems - Base The number system that we use is base : 734 = + 7 + 3 + 4 = x + 7x + 3x + 4x = x 3 + 7x
Levent EREN [email protected] A-306 Office Phone:488-9882 INTRODUCTION TO DIGITAL LOGIC
Levent EREN [email protected] A-306 Office Phone:488-9882 1 Number Systems Representation Positive radix, positional number systems A number with radix r is represented by a string of digits: A n
CS321. Introduction to Numerical Methods
CS3 Introduction to Numerical Methods Lecture Number Representations and Errors Professor Jun Zhang Department of Computer Science University of Kentucky Lexington, KY 40506-0633 August 7, 05 Number in
A Step towards an Easy Interconversion of Various Number Systems
A towards an Easy Interconversion of Various Number Systems Shahid Latif, Rahat Ullah, Hamid Jan Department of Computer Science and Information Technology Sarhad University of Science and Information Technology
Decimal to Binary Conversion
Decimal to Binary Conversion A tool that makes the conversion of decimal values to binary values simple is the following table. The first row is created by counting right to left from one to eight, for
COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012
Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about
Lecture 8: Binary Multiplication & Division
Lecture 8: Binary Multiplication & Division Today s topics: Addition/Subtraction Multiplication Division Reminder: get started early on assignment 3 1 2 s Complement Signed Numbers two = 0 ten 0001 two
CS201: Architecture and Assembly Language
CS201: Architecture and Assembly Language Lecture Three Brendan Burns CS201: Lecture Three p.1/27 Arithmetic for computers Previously we saw how we could represent unsigned numbers in binary and how binary
2010/9/19. Binary number system. Binary numbers. Outline. Binary to decimal
2/9/9 Binary number system Computer (electronic) systems prefer binary numbers Binary number: represent a number in base-2 Binary numbers 2 3 + 7 + 5 Some terminology Bit: a binary digit ( or ) Hexadecimal
Chapter 1: Digital Systems and Binary Numbers
Chapter 1: Digital Systems and Binary Numbers Digital age and information age Digital computers general purposes many scientific, industrial and commercial applications Digital systems telephone switching
Solution for Homework 2
Solution for Homework 2 Problem 1 a. What is the minimum number of bits that are required to uniquely represent the characters of English alphabet? (Consider upper case characters alone) The number of
Numeral Systems. The number twenty-five can be represented in many ways: Decimal system (base 10): 25 Roman numerals:
Numeral Systems Which number is larger? 25 8 We need to distinguish between numbers and the symbols that represent them, called numerals. The number 25 is larger than 8, but the numeral 8 above is larger
THE BINARY NUMBER SYSTEM
THE BINARY NUMBER SYSTEM Dr. Robert P. Webber, Longwood University Our civilization uses the base 10 or decimal place value system. Each digit in a number represents a power of 10. For example, 365.42
Divide: Paper & Pencil. Computer Architecture ALU Design : Division and Floating Point. Divide algorithm. DIVIDE HARDWARE Version 1
Divide: Paper & Pencil Computer Architecture ALU Design : Division and Floating Point 1001 Quotient Divisor 1000 1001010 Dividend 1000 10 101 1010 1000 10 (or Modulo result) See how big a number can be
1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal:
Exercises 1 - number representations Questions 1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal: (a) 3012 (b) - 435 2. For each of
Number and codes in digital systems
Number and codes in digital systems Decimal Numbers You are familiar with the decimal number system because you use them everyday. But their weighted structure is not understood. In the decimal number
Data Representation. What is a number? Decimal Representation. Interpreting bits to give them meaning. Part 1: Numbers. six seis
Data Representation Interpreting bits to give them meaning Part 1: Numbers Notes for CSC 100 - The Beauty and Joy of Computing The University of North Carolina at Greensboro What is a number? Question:
Chapter Binary, Octal, Decimal, and Hexadecimal Calculations
Chapter 5 Binary, Octal, Decimal, and Hexadecimal Calculations This calculator is capable of performing the following operations involving different number systems. Number system conversion Arithmetic
To convert an arbitrary power of 2 into its English equivalent, remember the rules of exponential arithmetic:
Binary Numbers In computer science we deal almost exclusively with binary numbers. it will be very helpful to memorize some binary constants and their decimal and English equivalents. By English equivalents
APPENDIX B. Routers route based on the network number. The router that delivers the data packet to the correct destination host uses the host ID.
APPENDIX B IP Subnetting IP Addressing Routers route based on the network number. The router that delivers the data packet to the correct destination host uses the host ID. IP Classes An IP address is
BINARY CODED DECIMAL: B.C.D.
BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.
This 3-digit ASCII string could also be calculated as n = (Data[2]-0x30) +10*((Data[1]-0x30)+10*(Data[0]-0x30));
Introduction to Embedded Microcomputer Systems Lecture 5.1 2.9. Conversions ASCII to binary n = 100*(Data[0]-0x30) + 10*(Data[1]-0x30) + (Data[2]-0x30); This 3-digit ASCII string could also be calculated
Machine Architecture and Number Systems. Major Computer Components. Schematic Diagram of a Computer. The CPU. The Bus. Main Memory.
1 Topics Machine Architecture and Number Systems Major Computer Components Bits, Bytes, and Words The Decimal Number System The Binary Number System Converting from Decimal to Binary Major Computer Components
PROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 TUTORIAL OUTCOME 2 Part 1
UNIT 22: PROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 TUTORIAL OUTCOME 2 Part 1 This work covers part of outcome 2 of the Edexcel standard module. The material is
Verilog - Representation of Number Literals
Verilog - Representation of Number Literals... And here there be monsters! (Capt. Barbossa) Numbers are represented as: value ( indicates optional part) size The number of binary
Today. Binary addition Representing negative numbers. Andrew H. Fagg: Embedded Real- Time Systems: Binary Arithmetic
Today Binary addition Representing negative numbers 2 Binary Addition Consider the following binary numbers: 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 1 How do we add these numbers? 3 Binary Addition 0 0 1 0 0 1 1
Everything you wanted to know about using Hexadecimal and Octal Numbers in Visual Basic 6
Everything you wanted to know about using Hexadecimal and Octal Numbers in Visual Basic 6 Number Systems No course on programming would be complete without a discussion of the Hexadecimal (Hex) number
Chapter 4: Computer Codes
Slide 1/30 Learning Objectives In this chapter you will learn about: Computer data Computer codes: representation of data in binary Most commonly used computer codes Collating sequence 36 Slide 2/30 Data
Binary Division. Decimal Division. Hardware for Binary Division. Simple 16-bit Divider Circuit
Decimal Division Remember 4th grade long division? 43 // quotient 12 521 // divisor dividend -480 41-36 5 // remainder Shift divisor left (multiply by 10) until MSB lines up with dividend s Repeat until
Today s topics. Digital Computers. More on binary. Binary Digits (Bits)
Today s topics! Binary Numbers! Brookshear.-.! Slides from Prof. Marti Hearst of UC Berkeley SIMS! Upcoming! Networks Interactive Introduction to Graph Theory http://www.utm.edu/cgi-bin/caldwell/tutor/departments/math/graph/intro
Measures of Error: for exact x and approximation x Absolute error e = x x. Relative error r = (x x )/x.
ERRORS and COMPUTER ARITHMETIC Types of Error in Numerical Calculations Initial Data Errors: from experiment, modeling, computer representation; problem dependent but need to know at beginning of calculation.
Binary Numbering Systems
Binary Numbering Systems April 1997, ver. 1 Application Note 83 Introduction Binary numbering systems are used in virtually all digital systems, including digital signal processing (DSP), networking, and
Computer Science PLUS I Volume 1 : Concepts Government of Tamilnadu
Computer Science PLUS I Volume 1 : Concepts Government of Tamilnadu Government of Tamilnadu First Edition 2005 Chairman Syllabus Committee Dr. Balagurusamy E, Vice Chancellor, Anna University, Chennai
NUMBER SYSTEMS APPENDIX D. You will learn about the following in this appendix:
APPENDIX D NUMBER SYSTEMS You will learn about the following in this appendix: The four important number systems in computing binary, octal, decimal, and hexadecimal. A number system converter program
Chapter 5. Binary, octal and hexadecimal numbers
Chapter 5. Binary, octal and hexadecimal numbers A place to look for some of this material is the Wikipedia page http://en.wikipedia.org/wiki/binary_numeral_system#counting_in_binary Another place that
Copyright 2012 Pearson Education, Inc. Chapter 1 INTRODUCTION TO COMPUTING AND ENGINEERING PROBLEM SOLVING
Chapter 1 INTRODUCTION TO COMPUTING AND ENGINEERING PROBLEM SOLVING Outline Objectives 1. Historical Perspective 2. Recent Engineering Achievements 3. Computing Systems 4. Data Representation and Storage
ECE 0142 Computer Organization. Lecture 3 Floating Point Representations
ECE 0142 Computer Organization Lecture 3 Floating Point Representations 1 Floating-point arithmetic We often incur floating-point programming. Floating point greatly simplifies working with large (e.g.,
Grade 6 Math Circles. Binary and Beyond
Faculty of Mathematics Waterloo, Ontario N2L 3G1 The Decimal System Grade 6 Math Circles October 15/16, 2013 Binary and Beyond The cool reality is that we learn to count in only one of many possible number
Cyber Security Workshop Encryption Reference Manual
Cyber Security Workshop Encryption Reference Manual May 2015 Basic Concepts in Encoding and Encryption Binary Encoding Examples Encryption Cipher Examples 1 P a g e Encoding Concepts Binary Encoding Basics
Digital codes. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
Digital codes This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
CHAPTER 5 Round-off errors
CHAPTER 5 Round-off errors In the two previous chapters we have seen how numbers can be represented in the binary numeral system and how this is the basis for representing numbers in computers. Since any
Chapter 1. Binary, octal and hexadecimal numbers
Chapter 1. Binary, octal and hexadecimal numbers This material is covered in the books: Nelson Magor Cooke et al, Basic mathematics for electronics (7th edition), Glencoe, Lake Forest, Ill., 1992. [Hamilton
Decimal Number (base 10) Binary Number (base 2)
LECTURE 5. BINARY COUNTER Before starting with counters there is some vital information that needs to be understood. The most important is the fact that since the outputs of a digital chip can only be
Streaming Lossless Data Compression Algorithm (SLDC)
Standard ECMA-321 June 2001 Standardizing Information and Communication Systems Streaming Lossless Data Compression Algorithm (SLDC) Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch
ELEG3924 Microprocessor Ch.7 Programming In C
Department of Electrical Engineering University of Arkansas ELEG3924 Microprocessor Ch.7 Programming In C Dr. Jingxian Wu [email protected] OUTLINE 2 Data types and time delay I/O programming and Logic operations
Bachelors of Computer Application Programming Principle & Algorithm (BCA-S102T)
Unit- I Introduction to c Language: C is a general-purpose computer programming language developed between 1969 and 1973 by Dennis Ritchie at the Bell Telephone Laboratories for use with the Unix operating
Number of bits needed to address hosts 8
Advanced Subnetting Example 1: Your ISP has assigned you a Class C network address of 198.47.212.0. You have 3 networks in your company with the largest containing 134 hosts. You need to figure out if
Digital Logic Design. Introduction
Digital Logic Design Introduction A digital computer stores data in terms of digits (numbers) and proceeds in discrete steps from one state to the next. The states of a digital computer typically involve
Lecture N -1- PHYS 3330. Microcontrollers
Lecture N -1- PHYS 3330 Microcontrollers If you need more than a handful of logic gates to accomplish the task at hand, you likely should use a microcontroller instead of discrete logic gates 1. Microcontrollers
Math Circle Beginners Group October 18, 2015
Math Circle Beginners Group October 18, 2015 Warm-up problem 1. Let n be a (positive) integer. Prove that if n 2 is odd, then n is also odd. (Hint: Use a proof by contradiction.) Suppose that n 2 is odd
We can express this in decimal notation (in contrast to the underline notation we have been using) as follows: 9081 + 900b + 90c = 9001 + 100c + 10b
In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should
Addition Methods. Methods Jottings Expanded Compact Examples 8 + 7 = 15
Addition Methods Methods Jottings Expanded Compact Examples 8 + 7 = 15 48 + 36 = 84 or: Write the numbers in columns. Adding the tens first: 47 + 76 110 13 123 Adding the units first: 47 + 76 13 110 123
Correctly Rounded Floating-point Binary-to-Decimal and Decimal-to-Binary Conversion Routines in Standard ML. By Prashanth Tilleti
Correctly Rounded Floating-point Binary-to-Decimal and Decimal-to-Binary Conversion Routines in Standard ML By Prashanth Tilleti Advisor Dr. Matthew Fluet Department of Computer Science B. Thomas Golisano
Memory Management Simulation Interactive Lab
Memory Management Simulation Interactive Lab The purpose of this lab is to help you to understand deadlock. We will use a MOSS simulator for this. The instructions for this lab are for a computer running
HOMEWORK # 2 SOLUTIO
HOMEWORK # 2 SOLUTIO Problem 1 (2 points) a. There are 313 characters in the Tamil language. If every character is to be encoded into a unique bit pattern, what is the minimum number of bits required to
Data Storage 3.1. Foundations of Computer Science Cengage Learning
3 Data Storage 3.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List five different data types used in a computer. Describe how
Data Storage. Chapter 3. Objectives. 3-1 Data Types. Data Inside the Computer. After studying this chapter, students should be able to:
Chapter 3 Data Storage Objectives After studying this chapter, students should be able to: List five different data types used in a computer. Describe how integers are stored in a computer. Describe how
Computers. Hardware. The Central Processing Unit (CPU) CMPT 125: Lecture 1: Understanding the Computer
Computers CMPT 125: Lecture 1: Understanding the Computer Tamara Smyth, [email protected] School of Computing Science, Simon Fraser University January 3, 2009 A computer performs 2 basic functions: 1.
COMBINATIONAL CIRCUITS
COMBINATIONAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/combinational_circuits.htm Copyright tutorialspoint.com Combinational circuit is a circuit in which we combine the different
IT:101 Cisco Networking Academy I Subnetting
IT:101 Cisco Networking Academy I Subnetting The IPv4 address is 32 bits long and it is written in the form of dotted decimal notation. IP address in binary format: 11000000.00000001.00000001.00000020
Session 29 Scientific Notation and Laws of Exponents. If you have ever taken a Chemistry class, you may have encountered the following numbers:
Session 9 Scientific Notation and Laws of Exponents If you have ever taken a Chemistry class, you may have encountered the following numbers: There are approximately 60,4,79,00,000,000,000,000 molecules
