After completing this chapter, the student will be able to:

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "After completing this chapter, the student will be able to:"

Transcription

1 Fundamentals of Electricity OBJECTVES After completing this chapter, the student will be able to: Define atom, matter, element, and molecule. List the parts of an atom. Define the valence shell of an atom. dentify the unit for measuring current. Draw the symbol used to represent current flow in a circuit. Describe the difference between conductors, insulators, and semiconductors. Define difference of potential, electromotive force, and voltage. Draw the symbol used to represent voltage. dentify the unit used to measure voltage. Define resistance. dentify characteristics of resistance in a circuit. dentify the unit for measuring resistance. Draw the symbol used to represent resistance in a circuit. See accompanying CD for interactive presentations and tutorials relating to Chapter 1. Everything, whether natural or man-made, can be broken down into either an element or a compound. However, the smallest part of each of these is the atom. The atom is made up of protons, neutrons, and electrons. The protons and neutrons group together to form the center of the atom called the nucleus. The electrons orbit the nucleus in shells located at various distances from the nucleus. When appropriate external force is applied to electrons in the outermost shell, they are knocked loose and become free electrons. The movement of free electrons is called current. The external force needed to create this current is called voltage. 3

2 SECTON 1 DC CRCUTS As it travels along its path, the current encounters some opposition, called resistance. This chapter looks at how current, voltage, and resistance collectively form the fundamentals of electricity. 11 MATTER, ELEMENTS, AND COMPOUNDS Matter is anything that occupies space and has weight. t may be found in anyone of three states: solid, liquid, or gas. Examples of matter include the air we breathe, the water we drink, the clothing we wear, and ourselves. Matter may be either an element or a compound. An element is the basic building block of nature. t is a substance that cannot be reduced to a simpler substance by chemical means. There are now over 100 known elements (Appendix 2). Examples of elements are gold, silver, copper, and oxygen. The chemical combination of two or more elements is called a compound (Figure 1-1). A compound can be separated by chemical but not by physical means. Examples of compounds are water, which consist of hydrogen and oxygen, and salt. which consists of sodium and chlorine. The smallest part of the compound that still retains the properties of the compound is called a molecule. A molecule is the chemical combination of two or more atoms. An atom is the smallest particle of an element that retains the characteristic of the element. The physical combination of elements and compounds is called a mixture. Examples of mixtures include air, which is made up of oxygen, nitrogen, carbon dioxide, and other gases, and salt water, which consists of salt and water. FGURE 1-1 The chemical combination of two or more elements is called a compound. A molecule is the chemical combination of two or more atoms. Examples are water (H 2 0) and salt (NaC!). ELEMENT 1 ELEMENT 2 COMPOUND

3 CHAPTER1 FUNDAMENTALS OF ELECTRCTY "1-1 QUESTONS 1. n what forms can matter be found? 2. What is a substance called that cannot be reduced to a simpler substance by chemical means? 3. What is the smallest possible particle that retains the characteristic of a compound? 4. What is the smallest possible particle that retains the characteristic of an element? 1m A CLOSER LOOK AT ATOMS As previously stated, an atom is the smallest particle of an element. Atoms of different elements differ from each other. f there are over 100 known elements, then there are over 100 known atoms. Every atom has a nucleus. The nucleus is located at the center of the atom. t contains positively charged particles called protons and uncharged particles called neutrons. Negatively charged particles called electrons orbit around the nucleus (Figure 1-2). The number of protons in the nucleus of the atom is called the element's atomic number. Atomic numbers distinguish one element from another. Each element also has an atomic weight. The atomic weight is the mass of the atom. t is determined by the total number of protons and neutrons in the nucleus. Electrons do not contribute to the total mass of the atom; an electron's mass is only 1/1845 that of a proton and is not significant enough to consider. The electrons orbit in concentric circles about the nucleus. Each orbit is called a shell. These shells are filled in sequence; K is filled first, then L, M, N, and so on (Figure 1-3). The maximum number of electrons that each shell can accommodate is shown in Figure 1-4. The outer shell is called the valence shell and the number of electrons it contains is the valence. The farther the valence shell is from the nucleus, the less attraction the nucleus has on each valence electron. Thus the potential for the atom to gain or lose electrons increases if the valence shell is not full and is located far enough away from the FGURE 1 3 The electrons are held in shells around the nucleus. FGURE 1 2 Parts of an atom. ELECTRON PROTON NEUTRON ORBT NUCLEUS

4 SECTON DC CRCUTS FGURE 1-4 The number of electrons each shell can accommodate. FGURE 1-6 Copper has a valence of 1. SHE;LL DESGNATON K L M N o P Q TOTAL NUMBEAOF ELECTRONS NUCLEUS nucleus. Conductivity of an atom depends on its valence band. The greater the number of electrons in the valence shell, the less it conducts. For example, an atom having seven electrons in the valence shell is less conductive than an atom having three electrons in the valence shell. Electrons in the valence shell can gain energy. f these electrons gain enough energy from an external force, they can leave the atom and become free electrons, moving randomly from atom to atom. Materials that contain a large number of free electrons are called conductors. Figure 1-5 compares the conductivity of various metals used as conductors. On the chart, silver, copper, and gold have a valence of 1 (Figure 1-6). However, silver is the best conductor because its free electron is more loosely bonded. nsulators, the opposite of conductors, prevent the flow of electricity, nsulators are stabilized by absorbing valence electrons from other atoms to fill their valence shells, thus eliminating free electrons. FGURE 1-7 nsulation properties of various materials used as insulators. FGURE 1-5 Conductivity of various metals used as conductors. Silver High Copper Gold Aluminum Tungsten ron Nichrome Low Mica Glass Teflon Paper (Paraffin) Rubber Bakelite Oils Procelain Air High Low

5 CHAPTER 1 FUNDAMENTALS OF ELECTRCTY Materials classified as insulators are compared in Figure 1-7. Mica is the best insulator because it has the fewest free electrons in its valence shell. A perfect insulator will have atoms with full valence shell. This means it cannot gain electrons. Halfway between conductors and insulators are semiconductors. Semiconductors are neither good conductors nor good insulators but are important because they can be altered to function as conductors or insulators. Silicon and germanium are two semiconductor materials. An atom that has the same number of electrons and protons is said to be electrically balanced. A balanced atom that receives one or more electrons is no longer balanced. t is said to be negatively charged and is called a negative ion. A balanced atom that loses one or more electrons is said to be positively charged and is called a positive ion. The process of gaining or losing electrons is called ionization. onization is significant in current flow. 1-2 QUESTONS l. What atomic particle has a positive charge and a large mass? 2. What atomic particle has no charge at all? 3. What atomic particle has a negative charge and a small mass? 4. What does the number of electrons in the outermost shell determine? 5. What is the term for describing the gaining or losing of electrons? lb CURRENT Given an appropriate external force, the movement of electrons is from negatively charged atoms to positively charged atoms. This flow of electrons is called current (). The symbol is used to represent current. The amount of current is the sum of the charges of the moving electrons past a given point. An electron has a very small charge, so the charge of 6.24 X electrons is added together and called a coulomb (C). When one coulomb of charge moves past a single point in one second it is called an ampere (A). The ampere is named for a French physicist named Andre Marie Ampere ( ). Current is measured in amperes. 1-3 QUESTONS l. What action causes current in an electric circuit? 2. What action results in an ampere of current? 3. What symbol is used to represent current? 4. What symbol is used to represent the unit ampere? ld VOLTAGE When there is an excess of electrons (negative charge) at one end of a conductor and a deficiency of electrons (positive charge) at the opposite end, a current flows between the two ends. A current flows through the conductor as long as this condition persists. The source that creates this excess of electrons at one end and the deficiency at the other end represents the potential. The potential is the ability of the source to perform electrical work. The actual work accomplished in a circuit is a result of the difference of potential available at the two ends of a conductor. t is this difference of potential that causes electrons to move or flow in a circuit (Figure 1-8). The difference of potential is referred to as electromotive force (emf) or voltage. Voltage is the force that moves the electrons in the circuit. Think of voltage as the pressure or pump that moves the electrons. The symbol Eis used in electronics to represent voltage. The unit for measuring voltage is the volt (V), named for Count Alessandro Volta ( ), inventor of the first cell to produce electricity.

6 SECTON 1 DC CRCUTS FGURE 1-8 Electrons flow in a circuit because of the difference of potential. 1"'-.~-VDFFERENCE OF POTENTAL + -..= LOAD _...J L 1-4 QUESTONS 1. What force moves electrons in a circuit? 2. What is the term that represents the potential between the two ends of a conductor? 3. What symbol is used to represent voltage? 4. What symbol is used to represent the unit volt? lj RESSTANCE As the free electrons move through the circuit, they encounter atoms that do not readily give up electrons. This opposition to the flow of electrons (the current) is called resistance (R). Every material offers some resistance or opposition to current flow. The degree of resistance of a material depends on its size, shape, and temperature. Materials with a low resistance are called conductors. Conductors have many free electrons and offer little resistance to current flow. As previously mentioned, silver, copper, gold, and aluminum are examples of good conductors. Materials with a high resistance are called insulators. nsulators have few free electrons and offer a high resistance to current flow. As previously mentioned, glass, rubber, and plastic are examples of good insulators. Resistance is measured in ohms, a unit named for the German physicist George Simon Ohm ( ). The symbol for the ohm is the Greek letter omega (Q). 1-5 QUESTONS 1. What is the term used to describe opposition to current flow? 2. What is the main difference between conductors and insulators? 3. What is the symbol used to represent resistance? 4. What is the symbol used to represent the unit of resistance? SUMMARY ~~. Matter is anything that occupies space. Matter can be an element or compound. An element is the basic building block of nature. A compound is a chemical combination of two or more elements. A molecule is the smallest unit of a compound that retains the properties of the compound. An atom is the smallest unit of matter that retains the structure of the element. An atom consists of a nucleus, which contains protons and neutrons. t also has one or more electrons that orbit around the nucleus. Protons have a positive charge, electrons have a negative charge, and neutrons have no charge.

7 CHAPTER 1 FUNDAMENTALS OF ELECTRCTY The atomic number of an element is the number of protons in the nucleus. The atomic weight of an atom is the sum of protons and neutrons. The orbits of the electrons are called shells. The outer shell of an atom is called the valence shell. The number of electrons in the valence shell is called the valence. An atom that has the same number of protons as electrons is electrically balanced. The process by which atoms gain or lose electrons is called ionization. The flow of electrons is called current. Current is represented by the symbol. The charge of 6,240,000,000,000,000,000 (or 6.24 X ) electrons is called a coulomb. An ampere of current is measured when one coulomb of charge moves past a given point in one second. Ampere is represented by the symbol A. Current is measured in amperes. An electric current flows through a conductor when there is an excess of electrons at one end and a deficiency at the other end. A source that supplies excess electrons represents a potential or electromotive force. The potential or electromotive force is referred to as voltage. Voltage is the force that moves electrons in a circuit. The symbol E is used to represent voltage. A volt (V) is the unit for measuring voltage. Resistance is the opposition to current flow. Resistance is represented by the symbol R. All materials offer some resistance to current flow. The resistance of a material is dependent on the material's size, shape, and temperature. Conductors are materials with low resistance. nsulators are materials with high resistance. Resistance is measured in ohms. The Greek letter omega (Q) is used to represent ohms. CHAPTER 1 SELF-TEST.. '~ ~~, i ~J' 1. What criteria determine whether an atom is a good conductor? 2. What determines whether a material is a conductor, semiconductor, or insulator? 3. Why is it essential to understand the relationship between conductors, semiconductors, and insulators? 4. Explain the difference between current, voltage, and resistance. 5. Describe how the resistance of a material is determined. 6. Name one standard that can be a resource to you in evaluating the safety compliance of an electric drill? 7. Where can you determine what health hazard, if any, solder in your lab poses? 8. n comparing electronics laboratory practices with applicable MSDS information (such as soldering practices), identify changes that could be made to improve safety in the lab.

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus?

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus? Name: Date: 1. Which of the following best describes an atom? A. protons and electrons grouped together in a random pattern B. protons and electrons grouped together in an alternating pattern C. a core

More information

Matter, Elements, Compounds, Chemical Bonds and Energy

Matter, Elements, Compounds, Chemical Bonds and Energy Science of Kriyayoga IST 111-01, Spring 2005 Matter, Elements, Compounds, Chemical Bonds and Energy In our discussion so far, we have discussed human nervous system and cell biology, in addition to the

More information

Atomic Structure. Atoms and elements

Atomic Structure. Atoms and elements Atomic Structure Atoms and elements Everything in the world is made up from about 100 elements. Every element is made up of very small particles called atoms. An element is a substance in which all the

More information

ELECTRICAL FUNDAMENTALS

ELECTRICAL FUNDAMENTALS General Electricity is a form of energy called electrical energy. It is sometimes called an "unseen" force because the energy itself cannot be seen, heard, touched, or smelled. However, the effects of

More information

During photosynthesis, plants use light energy (sunlight) from the sun, carbon dioxide (CO 2. ) and water (H 2

During photosynthesis, plants use light energy (sunlight) from the sun, carbon dioxide (CO 2. ) and water (H 2 Scientist Guide The Spice of Life Introduction Plants make the oxygen we breathe and the food we consume. They do this through a process known as photosynthesis. Photosynthesis is the single most important

More information

Objectives 200 CHAPTER 4 RESISTANCE

Objectives 200 CHAPTER 4 RESISTANCE Objectives Explain the differences among conductors, insulators, and semiconductors. Define electrical resistance. Solve problems using resistance, voltage, and current. Describe a material that obeys

More information

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each.

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each. Basic Chemistry Why do we study chemistry in a biology course? All living organisms are composed of chemicals. To understand life, we must understand the structure, function, and properties of the chemicals

More information

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds?

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds? CHAPTER 1 2 Ionic Bonds SECTION Chemical Bonding BEFORE YOU READ After you read this section, you should be able to answer these questions: What is ionic bonding? What happens to atoms that gain or lose

More information

Atoms. Chemistry 100. Bettelheim, Brown, Campbell & Farrell. Introduction to General, Organic and Biochemistry Chapter 2

Atoms. Chemistry 100. Bettelheim, Brown, Campbell & Farrell. Introduction to General, Organic and Biochemistry Chapter 2 Chemistry 100 Bettelheim, Brown, Campbell & Farrell Ninth Edition Introduction to General, Organic and Biochemistry Chapter 2 Atoms Classifications of Matter: Elements An Element is a substance (for example,

More information

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal 1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and

More information

Principles of Imaging Science I (RAD119) Physical Environment Classifications. Atomic Structure. Matter

Principles of Imaging Science I (RAD119) Physical Environment Classifications. Atomic Structure. Matter Principles of Imaging Science I (RAD119) Atomic Structure Atomic Structure & Matter In radiography, it is important to understand the structure of matter and the fundamentals of electromagnetic radiation

More information

Test Bank - Chapter 4 Multiple Choice

Test Bank - Chapter 4 Multiple Choice Test Bank - Chapter 4 The questions in the test bank cover the concepts from the lessons in Chapter 4. Select questions from any of the categories that match the content you covered with students. The

More information

PROTONS AND ELECTRONS

PROTONS AND ELECTRONS reflect Imagine that you have a bowl of oranges, bananas, pineapples, berries, pears, and watermelon. How do you identify each piece of fruit? Most likely, you are familiar with the characteristics of

More information

Ch. 14 The Periodic Table p. 390-406

Ch. 14 The Periodic Table p. 390-406 Name Period PRE-AP 14-1 Development of the Periodic Table Ch. 14 The Periodic Table p. 390-406 Dmitri Mendeleev published the first periodic table in 1869. He organized the elements by atomic mass. He

More information

ATOMS AND THE PERIODIC TABLE CHAPTER 3 PHYSICAL SCIENCE

ATOMS AND THE PERIODIC TABLE CHAPTER 3 PHYSICAL SCIENCE ATOMS AND THE PERIODIC TABLE CHAPTER 3 PHYSICAL SCIENCE Chapter 3 Vocabulary Words (27 words) Nucleus Atomic number Proton Mass number Neutron Isotopes Electron Atomic mass unit (amu) Energy level Average

More information

Course description: Introduces the student to basic electricity with an emphasis on Ohms Law.

Course description: Introduces the student to basic electricity with an emphasis on Ohms Law. The following is presented for information purposes only and comes with no warranty. See http://www.bristolwatch.com/ Course Title: Basic Electricity and Ohms Law Course description: Introduces the student

More information

1. According to the modern model of the atom, the nucleus of an atom is surrounded by one or more

1. According to the modern model of the atom, the nucleus of an atom is surrounded by one or more 1. According to the modern model of the atom, the nucleus of an atom is surrounded by one or more 8. The diagram below represents the nucleus of an atom. A) electrons B) neutrons C) positrons D) protons

More information

Trends of the Periodic Table Diary

Trends of the Periodic Table Diary Trends of the Periodic Table Diary Trends are patterns of behaviors that atoms on the periodic table of elements follow. Trends hold true most of the time, but there are exceptions, or blips, where the

More information

Periodic Table Instructional Background Patterns in Element Properties (History): Elements vary widely in their properties, but in an orderly way.

Periodic Table Instructional Background Patterns in Element Properties (History): Elements vary widely in their properties, but in an orderly way. Periodic Table Instructional Background Patterns in Element Properties (History): Elements vary widely in their properties, but in an orderly way. In 1869, the Russian chemist Dmitri Mendeleev produced

More information

19.1 Bonding and Molecules

19.1 Bonding and Molecules Most of the matter around you and inside of you is in the form of compounds. For example, your body is about 80 percent water. You learned in the last unit that water, H 2 O, is made up of hydrogen and

More information

Lewis Dot Structures of Atoms and Ions

Lewis Dot Structures of Atoms and Ions Why? The chemical properties of an element are based on the number of electrons in the outer shell of its atoms. We use Lewis dot structures to map these valence electrons in order to identify stable electron

More information

Chapter 5 TEST: The Periodic Table name

Chapter 5 TEST: The Periodic Table name Chapter 5 TEST: The Periodic Table name HPS # date: Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The order of elements in the periodic table is based

More information

Chapter 11- Electricity

Chapter 11- Electricity Chapter 11- Electricity Course Content Definition of Electricity Circuit Diagrams Series and Parallel Circuits Calculating total resistances Measurement of Electricity Ammeters and Voltmeters Ohm s Law

More information

Part I: Principal Energy Levels and Sublevels

Part I: Principal Energy Levels and Sublevels Part I: Principal Energy Levels and Sublevels As you already know, all atoms are made of subatomic particles, including protons, neutrons, and electrons. Positive protons and neutral neutrons are found

More information

Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory

Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory PAM1014 Introduction to Radiation Physics Basic Atomic Theory Objectives Introduce and Molecules The periodic Table Electronic Energy Levels Atomic excitation & de-excitation Ionisation Molecules Constituents

More information

Chapter 2: Atoms, Molecules & Life

Chapter 2: Atoms, Molecules & Life Chapter 2: Atoms, Molecules & Life What Are Atoms? An atom are the smallest unit of matter. Atoms are composed of Electrons = negatively charged particles. Neutrons = particles with no charge (neutral).

More information

7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions

7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions 7.4 Using the Bohr Theory LEARNING TIP Models such as Figures 1 to 4, on pages 218 and 219, help you visualize scientific explanations. As you examine Figures 1 to 4, look back and forth between the diagrams

More information

Electrostatics. Electrostatics Version 2

Electrostatics. Electrostatics Version 2 1. A 150-watt lightbulb is brighter than a 60.-watt lightbulb when both are operating at a potential difference of 110 volts. Compared to the resistance of and the current drawn by the 150-watt lightbulb,

More information

Review- The Periodic Table

Review- The Periodic Table Review- The Periodic Table Name Date Block Matching: Match the description in with the correct term in. Write the letter in the blank provided. Each term matches with only one description, so be sure to

More information

Chapter Five: Atomic Theory and Structure

Chapter Five: Atomic Theory and Structure Chapter Five: Atomic Theory and Structure Evolution of Atomic Theory The ancient Greek scientist Democritus is often credited with developing the idea of the atom Democritus proposed that matter was, on

More information

The Periodic Table of The Elements

The Periodic Table of The Elements The Periodic Table of The Elements The Periodic Table The periodic table is a chart that organizes all the elements according to different categories Divided into three basic categories: Metals Non-Metals

More information

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni Which metal in the list above has the most metallic character? Explain. Cesium as the

More information

Electronics Technology Fundamentals

Electronics Technology Fundamentals Lindem 11. jan 09 Electronics Technology Fundamentals Chapter 1 Principles of Electricity 1 1.1 The Starting Point Atomic Structure Atom smallest particle of matter that retains the physical characteristics

More information

Name Pre-Test : Atomic Structure and the Periodic Table

Name Pre-Test : Atomic Structure and the Periodic Table 1 Pre-Test : Atomic Structure and the Periodic Table Directions: Circle the letter to indicate whether the following statements are either true ( T ) or false ( F ). 1. Atomic structure refers to the building

More information

Chapter 2: The Chemical Context of Life

Chapter 2: The Chemical Context of Life Chapter 2: The Chemical Context of Life Name Period This chapter covers the basics that you may have learned in your chemistry class. Whether your teacher goes over this chapter, or assigns it for you

More information

What is an Atom? smallest particle of an element that still has the properties of that element

What is an Atom? smallest particle of an element that still has the properties of that element Date: Science 10 4.1 Atomic Theory & Bonding What is an Atom? smallest particle of an element that still has the properties of that element An atom = proton(s) + electron(s) + neutron(s) (PEN) Fun Fact:

More information

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur? PSI AP Chemistry Periodic Trends MC Review Name Periodic Law and the Quantum Model Use the PES spectrum of Phosphorus below to answer questions 1-3. 1. Which peak corresponds to the 1s orbital? (A) 1.06

More information

Electricity Review-Sheet

Electricity Review-Sheet Name: ate: 1. The unit of electrical charge in the MKS system is the. volt. ampere. coulomb. mho 2. Which sketch best represents the charge distribution around a neutral electroscope when a positively

More information

Introduction to Electricity & Magnetism. Dr Lisa Jardine-Wright Cavendish Laboratory

Introduction to Electricity & Magnetism. Dr Lisa Jardine-Wright Cavendish Laboratory Introduction to Electricity & Magnetism Dr Lisa Jardine-Wright Cavendish Laboratory Examples of uses of electricity Christmas lights Cars Electronic devices Human body Electricity? Electricity is the presence

More information

6. Each column of the periodic table is

6. Each column of the periodic table is 1. Atoms of elements that are in the same group have the same number of 5. Mendeleev left gaps in his periodic table because A. Protons B. Valence Electrons A. the table was too full B. no known elements

More information

Key Idea questions > How did Mendeleev arrange the elements in his periodic table? > How are elements arranged in the modern periodic table?

Key Idea questions > How did Mendeleev arrange the elements in his periodic table? > How are elements arranged in the modern periodic table? CHAPTER OUTLINE Section 1 Organizing the Elements Key Idea questions > How did Mendeleev arrange the elements in his periodic table? > How are elements arranged in the modern periodic table? Recognizing

More information

1. Structure and Properties of the Atom

1. Structure and Properties of the Atom SACE Stage 1 Chemistry - The Essentials 1. Structure and Properties of the Atom 1.1 Atoms: A simple definition of the atom is that it is the smallest particle that contains the properties of that element.

More information

Unit 3 Study Guide: Electron Configuration & The Periodic Table

Unit 3 Study Guide: Electron Configuration & The Periodic Table Name: Teacher s Name: Class: Block: Date: Unit 3 Study Guide: Electron Configuration & The Periodic Table 1. For each of the following elements, state whether the element is radioactive, synthetic or both.

More information

Name Date Hour Test 3A (145 Points) Electrons, Quantum Numbers and the Periodic Table

Name Date Hour Test 3A (145 Points) Electrons, Quantum Numbers and the Periodic Table Name Date Hour Test 3A (145 Points) Electrons, Quantum Numbers and the Periodic Table Multiple Choice: Read the question carefully. There is only one correct answer (3 points each). 1. Mosley s discovery

More information

Unit 3.2: The Periodic Table and Periodic Trends Notes

Unit 3.2: The Periodic Table and Periodic Trends Notes Unit 3.2: The Periodic Table and Periodic Trends Notes The Organization of the Periodic Table Dmitri Mendeleev was the first to organize the elements by their periodic properties. In 1871 he arranged the

More information

file:///biology Exploring Life/BiologyExploringLife04/

file:///biology Exploring Life/BiologyExploringLife04/ Objectives Compare and contrast ionic bonds and covalent bonds. Describe various ways to represent molecules. Summarize what happens in a chemical reaction. Key Terms ionic bond ion covalent bond molecule

More information

CHAPTER 17 NOTES FOR EIGHTH GRADE PHYSICAL SCIENCE ALL MATTER IS COMPOSED OF VERY SMALL PARTICLES CALLED ATOMS.

CHAPTER 17 NOTES FOR EIGHTH GRADE PHYSICAL SCIENCE ALL MATTER IS COMPOSED OF VERY SMALL PARTICLES CALLED ATOMS. CHAPTER 17 NOTES FOR EIGHTH GRADE PHYSICAL SCIENCE ALL MATTER IS COMPOSED OF VERY SMALL PARTICLES CALLED ATOMS. THE LAW OF ELECTRIC CHARGES STAES THAT LIKE CHARGES REPEL AND OPPOSITE CHARGES ATTRACT. BECAUSE

More information

Chemical bonds between atoms involve electrons.

Chemical bonds between atoms involve electrons. Chapter 6, Section 2 Key Concept: Chemical bonds hold compounds together. BEFORE, you learned Elements combine to form compounds Electrons are located in a cloud around the nucleus Atoms can lose or gain

More information

Grade 9 Science Unit: Atoms and Elements Topic 4: Periodic Table & Compounds

Grade 9 Science Unit: Atoms and Elements Topic 4: Periodic Table & Compounds Grade 9 Science Unit: Atoms and Elements Topic 4: Periodic Table & Compounds Topic Using the Periodic Table Metals, Non- Metals & Metalloids I can Explain and identify the periods of the Periodic Table.

More information

ATOMS A T O M S, I S O T O P E S, A N D I O N S. The Academic Support Center @ Daytona State College (Science 120, Page 1 of 39)

ATOMS A T O M S, I S O T O P E S, A N D I O N S. The Academic Support Center @ Daytona State College (Science 120, Page 1 of 39) ATOMS A T O M S, I S O T O P E S, A N D I O N S The Academic Support Center @ Daytona State College (Science 120, Page 1 of 39) THE ATOM All elements listed on the periodic table are made up of atoms.

More information

7-5.5. Translate chemical symbols and the chemical formulas of common substances to show the component parts of the substances including:

7-5.5. Translate chemical symbols and the chemical formulas of common substances to show the component parts of the substances including: 7-5.5 Translate chemical symbols and the chemical formulas of common substances to show the component parts of the substances including: NaCl [salt], H 2 O [water], C 6 H 12 O 6 [simple sugar], O 2 [oxygen

More information

Composition and Structure of the Atom. Protons: Positively charged, high mass particle. Neutrons: Neutral (no) charge, high mass

Composition and Structure of the Atom. Protons: Positively charged, high mass particle. Neutrons: Neutral (no) charge, high mass Composition and Structure of the Atom Atom: basic unit of an element; smallest unit that retains chemical properties of an element Subatomic particles: Small particles that are the building blocks from

More information

CHAPTER 4: MATTER & ENERGY

CHAPTER 4: MATTER & ENERGY CHAPTER 4: MATTER & ENERGY Problems: 1,3,5,7,13,17,19,21,23,25,27,29,31,33,37,41,43,45,47,49,51,53,55,57,59,63,65,67,69,77,79,81,83 4.1 Physical States of Matter Matter: Anything that has mass and occupies

More information

******* KEY ******* Atomic Structure & Periodic Table Test Study Guide

******* KEY ******* Atomic Structure & Periodic Table Test Study Guide Atomic Structure & Periodic Table Test Study Guide VOCABULARY: Write a brief definition of each term in the space provided. 1. Atoms: smallest unit of an element that has all of the properties of that

More information

Chapter 2 The Chemical Context of Life

Chapter 2 The Chemical Context of Life Chapter 2 The Chemical Context of Life Multiple-Choice Questions 1) About 25 of the 92 natural elements are known to be essential to life. Which four of these 25 elements make up approximately 96% of living

More information

Periodic Table Questions

Periodic Table Questions Periodic Table Questions 1. The elements characterized as nonmetals are located in the periodic table at the (1) far left; (2) bottom; (3) center; (4) top right. 2. An element that is a liquid at STP is

More information

6.5 Periodic Variations in Element Properties

6.5 Periodic Variations in Element Properties 324 Chapter 6 Electronic Structure and Periodic Properties of Elements 6.5 Periodic Variations in Element Properties By the end of this section, you will be able to: Describe and explain the observed trends

More information

Organizing the Elements

Organizing the Elements The Periodic Table Organizing the Elements A few elements, such as gold and copper, have been known for thousands of years - since ancient times Yet, only about 13 had been identified by the year 1700.

More information

The Atom and the Periodic Table. Electron Cloud Structure Energy Levels Rows on the Periodic Table Bohr Models Electron Dot Diagrams

The Atom and the Periodic Table. Electron Cloud Structure Energy Levels Rows on the Periodic Table Bohr Models Electron Dot Diagrams The Atom and the Periodic Table Electron Cloud Structure Energy Levels Rows on the Periodic Table Bohr Models Electron Dot Diagrams Review The vertical columns in the periodic table are called groups.

More information

UNIT (2) ATOMS AND ELEMENTS

UNIT (2) ATOMS AND ELEMENTS UNIT (2) ATOMS AND ELEMENTS 2.1 Elements An element is a fundamental substance that cannot be broken down by chemical means into simpler substances. Each element is represented by an abbreviation called

More information

Chemistry A: Periodic Table Packet Name: Hour: Page 1. Chemistry A Periodic Table

Chemistry A: Periodic Table Packet Name: Hour: Page 1. Chemistry A Periodic Table Chemistry A: Periodic Table Packet Name: Hour: Page 1 Chemistry A Periodic Table Chemistry A: Periodic Table Packet Name: Hour: Page 2 Worksheet #1: Periodic Table Inquiry Activity Directions: I know that

More information

18.2 Comparing Atoms. Atomic number. Chapter 18

18.2 Comparing Atoms. Atomic number. Chapter 18 As you know, some substances are made up of only one kind of atom and these substances are called elements. You already know something about a number of elements you ve heard of hydrogen, helium, silver,

More information

Chapter 6 The Periodic Table

Chapter 6 The Periodic Table Chapter 6 The Periodic Table Organizing the Periodic Table In a grocery store, the products are grouped according to similar characteristics. With a logical classification system, finding and comparing

More information

EXPERIMENT 4: Electron Configuration of elements

EXPERIMENT 4: Electron Configuration of elements Material: laboratory display of the elements and a wall periodic table is required. Objective: To learn the use of periodic table for writing electron configuration of elements. INTRODUCTION Basic building

More information

Chemical Building Blocks: Chapter 3: Elements and Periodic Table

Chemical Building Blocks: Chapter 3: Elements and Periodic Table Name: Class: Date: Chemical Building Blocks: Chapter 3: Elements and Periodic Table Study Guide Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

More information

Q1. Crude oil is a complex mixture of hydrocarbons, mainly alkanes. The number of carbon atoms in the molecules ranges from 1 to over 100.

Q1. Crude oil is a complex mixture of hydrocarbons, mainly alkanes. The number of carbon atoms in the molecules ranges from 1 to over 100. Q. Crude oil is a complex mixture of hydrocarbons, mainly alkanes. The number of carbon atoms in the molecules ranges from to over 00. (a) How does the boiling point change as the number of carbon atoms

More information

Test 2: Atomic Structure Review

Test 2: Atomic Structure Review Name: Monday, October 15, 2007 Test 2: Atomic Structure Review 1. Figure 1 The diagram shows the characteristic spectral line patterns of four elements. Also shown are spectral lines produced by an unknown

More information

Chapter 3 Atoms & the. Chapter 3 Section 2 The Simplest Matter Pages 80-85

Chapter 3 Atoms & the. Chapter 3 Section 2 The Simplest Matter Pages 80-85 Chapter 3 Atoms & the Periodic Table Chapter 3 Section 2 The Simplest Matter Pages 80-85 The Elements There are many different types of atoms. An element is matter made up of only one kind of atom. An

More information

Periodic Table of the Elements

Periodic Table of the Elements Periodic Table of the Elements Where did it come from? 1869 Demitri Mendeleev Russian chemist who discovered a pattern to the elements Wrote properties on cards Arranged cards according to properties

More information

Atomic Theory and Bonding

Atomic Theory and Bonding Atomic Theory and Bonding Textbook pages 168 183 Section 4.1 Summary Before You Read What do you already know about Bohr diagrams? Record your answer in the lines below. What are atoms? An atom is the

More information

Chapter 11. Chemical Bonds: The Formation of Compounds from Atoms

Chapter 11. Chemical Bonds: The Formation of Compounds from Atoms Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms 1 11.1 Periodic Trends in atomic properties 11.1 Periodic Trends in atomic properties design of periodic table is based on observing properties

More information

Directions: Multiple Choice For each of the following questions, choose the answer that best answers the question and place it on your answer sheet.

Directions: Multiple Choice For each of the following questions, choose the answer that best answers the question and place it on your answer sheet. CHEMISTRY TEST: THE PERIODIC TABLE Directions: Multiple Choice For each of the following questions, choose the answer that best answers the question and place it on your answer sheet. 1. Which of the following

More information

Chapter Outline. 3 Elements and Compounds. Elements and Atoms. Elements. Elements. Elements 9/4/2013

Chapter Outline. 3 Elements and Compounds. Elements and Atoms. Elements. Elements. Elements 9/4/2013 3 Elements and Compounds Chapter Outline 3.1 Elements A. Distribution of Elements Foundations of College Chemistry, 14 th Ed. Morris Hein and Susan Arena Copyright This reclining Buddha in Thailand is

More information

CHAPTER 4 TEST: Atoms, Atomic Theory and Atomic Structure

CHAPTER 4 TEST: Atoms, Atomic Theory and Atomic Structure CHAPTER 4 TEST: Atoms, Atomic Theory and Atomic Structure Matching. A. Bohr B. Democritus C. Rutherford D. Dalton E. Thomson F. Schrodinger name HPS # date: 1. 2. 3. 4. 5. 6. Greek thinker; called nature

More information

Atoms and Molecules. Preparation. Objectives. Standards. Materials. Grade Level: 5-8 Group Size: 20-30 Time: 60 90 Minutes Presenters: 2-4

Atoms and Molecules. Preparation. Objectives. Standards. Materials. Grade Level: 5-8 Group Size: 20-30 Time: 60 90 Minutes Presenters: 2-4 Atoms and Molecules Preparation Grade Level: 5-8 Group Size: 20-30 Time: 60 90 Minutes Presenters: 2-4 Objectives This lesson will enable students to: Describe how atoms are the building blocks of matter

More information

Bonding Web Practice. Trupia

Bonding Web Practice. Trupia 1. If the electronegativity difference between the elements in compound NaX is 2.1, what is element X? bromine fluorine chlorine oxygen 2. Which bond has the greatest degree of ionic character? H Cl Cl

More information

Welcome to the World of Chemistry

Welcome to the World of Chemistry Welcome to the World of Chemistry The Language of Chemistry CHEMICAL ELEMENTS - pure substances that cannot be decomposed by ordinary means to other substances. Aluminum Bromine Sodium The Language of

More information

Science and technology 404

Science and technology 404 Name Date STUDY GUIDE CHAPTER 1 ATOMS AND ELEMENTS 1) DESCRIBE THE RUTHERFORD-BOHR ATOMIC MODEL All matter is made of small particles called atoms. An atom is the smallest unit of matter that retains the

More information

Name Block Date Ch 17 Atomic Nature of Matter Notes Mrs. Peck. atoms- the smallest particle of an element that can be identified with that element

Name Block Date Ch 17 Atomic Nature of Matter Notes Mrs. Peck. atoms- the smallest particle of an element that can be identified with that element Name Block Date Ch 17 Atomic Nature of Matter Notes Mrs. Peck atoms- the smallest particle of an element that can be identified with that element are the building blocks of matter consists of protons and

More information

Structure of Metals 110

Structure of Metals 110 Structure of Metals 110 Welcome to the Tooling University. This course is designed to be used in conjunction with the online version of this class. The online version can be found at http://www.toolingu.com.

More information

3 Atomic Structure 15

3 Atomic Structure 15 3 Atomic Structure 15 3.1 Atoms You need to be familiar with the terms in italics The diameter of the nucleus is approximately 10-15 m and an atom 10-10 m. All matter consists of atoms. An atom can be

More information

ANSWER KEY Representing Bonding using Lewis Dot Structures

ANSWER KEY Representing Bonding using Lewis Dot Structures ANSWER KEY Representing Bonding using Lewis Dot Structures The diagram below shows the electrons for the first 20 elements as Bohr Models which show the electrons that are in each energy level of the elements.

More information

Molecular Models in Biology

Molecular Models in Biology Molecular Models in Biology Objectives: After this lab a student will be able to: 1) Understand the properties of atoms that give rise to bonds. 2) Understand how and why atoms form ions. 3) Model covalent,

More information

The Beginnings of Atomic Theory

The Beginnings of Atomic Theory Atoms Section 1 The Beginnings of Atomic Theory Who came up with the first theory of atoms? In the fourth century BCE, the Greek philosopher Democritus suggested that the universe was made of indivisible

More information

Science 20. Unit A: Chemical Change. Assignment Booklet A1

Science 20. Unit A: Chemical Change. Assignment Booklet A1 Science 20 Unit A: Chemical Change Assignment Booklet A FOR TEACHER S USE ONLY Summary Teacher s Comments Chapter Assignment Total Possible Marks 79 Your Mark Science 20 Unit A: Chemical Change Assignment

More information

2 The Structure of Atoms

2 The Structure of Atoms CHAPTER 4 2 The Structure of Atoms SECTION Atoms KEY IDEAS As you read this section, keep these questions in mind: What do atoms of the same element have in common? What are isotopes? How is an element

More information

GY 111 Lecture Note Series Elemental Chemistry

GY 111 Lecture Note Series Elemental Chemistry GY 111 Lab Notes D. Haywick (2007-08) 1 Lecture Goals: A) Basic Atomic structure (Chemistry 101) B) The Periodic Table GY 111 Lecture Note Series Elemental Chemistry Reference: Press et al. (2004), Chapter

More information

PERIODIC TABLE NOTES (from chapters 5 and 6)

PERIODIC TABLE NOTES (from chapters 5 and 6) PERIODIC TABLE NOTES (from chapters 5 and 6) I. History of the Periodic Table As the number of elements began to grow, chemists needed a way to all of these elements. [In the 1700 s there were known elements.

More information

THIRD GRADE CHEMISTRY 1 WEEK LESSON PLANS AND ACTIVITIES

THIRD GRADE CHEMISTRY 1 WEEK LESSON PLANS AND ACTIVITIES THIRD GRADE CHEMISTRY 1 WEEK LESSON PLANS AND ACTIVITIES ROCK CYCLE OVERVIEW OF THIRD GRADE CHEMISTRY WEEK 1. PRE: Comparing elements of the periodic table. LAB: Discovering properties of compounds. POST:

More information

Conductors and Insulators

Conductors and Insulators Chapter 4 Conductors and Insulators Introduction We have seen in earlier activities that electricity flows through a complete path called a circuit. Within a circuit, electricity flows through conductors.

More information

Short questions: Write the nuclear symbols for three isotopes of oxygen in which there are 8, 9, and 10 neutrons, respectively.

Short questions: Write the nuclear symbols for three isotopes of oxygen in which there are 8, 9, and 10 neutrons, respectively. Atom X A Z A mass number (= number of protons (electrons) + number of neutrons) Z atomic number (= number of protons = number of electrons) Almost all of the mass of an atom is in its nucleus; almost all

More information

Test 7: Periodic Table Review Questions

Test 7: Periodic Table Review Questions Name: Wednesday, January 16, 2008 Test 7: Periodic Table Review Questions 1. Which halogen is a solid at STP? 1. fluorine 3. bromine 2. chlorine 4. iodine 2. Element M is a metal and its chloride has the

More information

Unit 2 Periodic Behavior and Ionic Bonding

Unit 2 Periodic Behavior and Ionic Bonding Unit 2 Periodic Behavior and Ionic Bonding 6.1 Organizing the Elements I. The Periodic Law A. The physical and chemical properties of the elements are periodic functions of their atomic numbers B. Elements

More information

Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set

Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set Electrons in Atoms & Periodic Table Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Electrons in Atoms & Periodic Table 2 Study Guide: Things You

More information

Question Bank Periodic Table and Periodic Properties

Question Bank Periodic Table and Periodic Properties Question Bank Periodic Table and Periodic Properties 1. Name the following with reference to the elements of Modern Periodic Table. (1 26) (a) An alkali metal in period 2. Ans. Lithium (b) A halogen in

More information

APS Science Curriculum Unit Planner

APS Science Curriculum Unit Planner APS Science Curriculum Unit Planner Grade Level/Subject Chemistry Stage 1: Desired Results Enduring Understanding Topic 1: Elements and the Periodic Table: The placement of elements on the periodic table

More information

STUDY GUIDE: ELECTRICITY AND MAGNETISM

STUDY GUIDE: ELECTRICITY AND MAGNETISM 319 S. Naperville Road Wheaton, IL 60187 www.questionsgalore.net Phone: (630) 580-5735 E-Mail: info@questionsgalore.net Fax: (630) 580-5765 STUDY GUIDE: ELECTRICITY AND MAGNETISM An atom is made of three

More information

The Periodic Table. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question:

The Periodic Table. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question: Name: Class: Date:, ID: A The Periodic Table Multiple Choice Identify the choice that best completes the statement or answers the question: 1. What are the elements with atomic numbers from 58 to 71 called?

More information

CHAPTER 6: THE PERIODIC TABLE

CHAPTER 6: THE PERIODIC TABLE CHAPTER 6: THE PERIODIC TABLE Problems to try in the textbook. Answers in Appendix I: 5,9,13,15,17,19,21,25,27,29,31,33,35,41,43,45,47,49,55abcde,57,59,61,63,65,67,69,71,73,75,89,91 6.1 CLASSIFICATION

More information

Periodic Table. 1. In the modern Periodic Table, the elements are arranged in order of increasing. A. atomic number B. mass number

Periodic Table. 1. In the modern Periodic Table, the elements are arranged in order of increasing. A. atomic number B. mass number Name: ate: 1. In the modern, the elements are arranged in order of increasing. atomic number. mass number. oxidation number. valence number 5. s the elements in Group I are considered in order of increasing

More information