1.5 volt dual LED flasher (runs one year) Descrete Multistage Light Sequencer

Size: px
Start display at page:

Download "1.5 volt dual LED flasher (runs one year) Descrete Multistage Light Sequencer"

Transcription

1 1.5 volt dual LED flasher (runs one year) This 1.5 volt led fasher runs more than a year on a single 'd" cell and alternately flashes 2 LEDs at about a 1 second rate. The circuit employs a 74HC14 CMOS hex inverter that will operate at very low voltages (less than 1 volt). One section is used as a squarewave oscillator (pins 1 and 2), while the others are wired to produce a short 10mS pulse on alternate edges of the square wave so the LEDs will alternate back and forth. The output sections each use a capacitor charge pump to increase the voltage for the LEDs. The circuit draws an average current of 800uA from the 'D' battery and the LED peak current is about 40mA with a fresh battery and drops to about 10mA as the battery voltage falls to 1.1 volts. The capacity of a alkaline 'D' cell is about 12 amp hours with a cutoff voltage of 1.1 so the circuit should run about 12/.0008 = hours or maybe 625 days, but I haven't verified that yet. The idea for this circuit came from a single 1.5 volt LED flasher by Dave Johnson that can viewed at Descrete Multistage Light Sequencer The drawing below illustrates a multistage light sequencer using descrete parts and no integrated circuits. The idea is not new and I hear a similar circuit was developed about 40 years ago using germanium transistors. The idea is to connect the lights so that as one turns off it causes the next to turn on, and so forth. This is accomplished with a large capacitor between each stage that charges when a stage turns off and supplies base current to the next transistor, thus turning it on. Any number of stages can be used and the drawing below illustrates 3 small Christmas lights running at about 5 volts and 200mA. The circuit may need to be manually started when power is applied. To start it, connect a momentary short across any one of the capacitors and then remove the short. You could use a manual push button to do this. Detailed operation: Assume the circuit doesn't start when power is applied amd all lights are off and all three capacitors are charged to about 5 volts. We connect a jumper across the 220uF capacitor on the left which discharges the capacitor and turns on the 2nd stage transistor and corresponding light. When the jumper is removed, the capacitor will start charging through the base of the stage 2 transistor and stage 1 light. This causes the stage 2 transistor to remain on while the capacitor continues to charge. At the same time, the capacitor connecting stage 2 and 3 will discharge through the 100 ohm resistor and diode and stage 2 transistor. When the capacitor charging current falls below what is needed to keep stage 2 turned on, the transistor and light will turn off causing the voltage at the collector of the stage 2 transistor to rise to 5 volts. Since the capacitor connecting stage 2 and 3 has discharged and the voltage rises at the collector of stage 2, the capacitor from stage 2 and 3 will charge causing the 3rd stage to turn on and the cycle repeats for sucessive stages 4,5,6,7... and back to 1. The sequence rate is determined by the capacitor and resistor values (220uF and 100 ohms in this case), load current (200mA in this case), and current gain of the particular transistor used. This arrangement runs at

2 about 120 complete cycles per minute for 3 lights, or about 167mS per light. Faster or slower rates can be obtained with different capacitor values. 16 Stage Bi-Directional LED Sequencer The bi-directional sequencer uses a 4 bit binary up/down counter (CD4516) and two "1 of 8 line decoders" (74HC138 or 74HCT138) to generate the popular "Night Rider" display. A Schmitt Trigger oscillator provides the clock signal for the counter and the rate can be adjusted with the 500K pot. Two additional Schmitt Trigger inverters are used as a SET/RESET latch to control the counting direction (up or down). Be sure to use the 74HC14 and not the 74HCT14, the 74HCT14 may not work due to the low TTL input trigger level. When the highest count is reached (1111) the low output at pin 7 sets the latch so that the UP/DOWN input to the counter goes low and causes the counter to begin decrementing. When the lowest count is reached (0000) the latch is reset (high) so that the counter will begin incrementing on the next rising clock edge. The three lowest counter bits (Q0, Q1, Q2) are connected to both decoders in parallel and the highest bit Q3 is used to select the appropriate decoder. The circuit can be used to drive 12 volt/25 watt lamps with the addition of two transistors per lamp as shown below in the section below titled "Interfacing 5 volt CMOS to 12 volt loads" Interfacing 5 volt CMOS to 12 volt/ 25 Watt Loads The circuit below is designed to be used with the bi-directional lamp sequencer shown above on this same page. Two additional transistors are used to increase the current from the 74HCT138 decoder to control 12 volt 25 watt lamps. A 6.8 volt/1 watt zener diode is used in series with the ground connection of all the CMOS ICs (74HC14, CD4516 and 74HC138s) so that the total voltage across the CMOS devices will be about 5.2 volts and the outputs will move from +12 to about +7 when selected. The 2N2905/PNP transistor stage is connected as an emitter follower which provides a high impedance to the decoder output and supplies about 80 ma of current to the base of the 2N3055 NPN power transistor which then supplies 2 or more amps to the 12 volt lamp. The voltage across the PNP transistor will be about 7 volts when it is turned on and the heat

3 dissapation will be about 0.6 watts. That should't require a heat sink if several lamps are sequencing but it may get quite warm if the circuit is idle on a single output. The 2N3055 power transistor operates as a switch and drops very little voltage (less than 0.5) when conducting, and will not require a heat sink. Other transistors may be substituted such as the TIP29 or TIP31 for the 2N3055 and most any medium power (500mA) PNP for the 2N2905. Expandable 16 Stage LED Sequencer The circuit below uses a hex Schmitt Trigger inverter (74HC14) and two 8 bit Serial-In/Parallel-Out shift registers (74HCT164 or 74HC164) to sequence 16 LEDs. The circuit can be expanded to greater lengths by cascading additional shift registers and connecting the 8th output (pin 13) to the data input (pin 1) of the succeeding stage. A Schmitt trigger oscillator (74HC14 pin 1 and 2) produces the clock signal for the shift registers, the rate being approximately 1/RC. Two additional Schmitt Trigger stages are used to reset and load the registers when power is turned on. Timing is not critical, however the output at pin 8 of the Schmitt Trigger must remain high during the first LOW to HIGH clock transition at pin 8 of the registers, and must return low before the second rising edge to load a single bit. If the clock rate is increased, the length of the signal at pin 9 of the Schmitt Trigger should be reduced proportionally to avoid loading more than one bit. The HCT devices will normally provide about 4 ma (source or sink) from each output but can supply greater currents (possibly 25 ma) if only one output is loaded. The common 150 ohm resistor restricts the current below 25 ma using a 6 volt power source. If the circuit is operated with two or more LEDs on at the same time, resistors may be needed in series with each LED to avoid exceeding the maximum total output current for each IC of 25 ma. For greater brightness, individual buffer transistors can be used as shown in the 10 stage LED sequencer on this same page. 10 Channel LED Sequencer

4 18 Stage LED Sequencer The question sometimes comes up of how to cascade 4017 decade counters for more than 10 sequencial stages. The LED sequencer below shows a possible solution using a few extra parts. When power is applied, the 15K resistor and 10uF cap at pin 15 will reset the counters to the zero count where pin 3 is at +12 and all other outputs are at zero. The 2 diodes (1n914) and 15 resistor form a AND gate so the clock pulse will be passed to the right side counter when the sequence starts. When the right counter reaches the 10th count, pin 11 will move high enabling the AND gate on the right to pass the clock pulse to the left side counter. As the left side counter advances, pin 3 will be low so that clock pulses cannot advance the right counter. When the left counter turns over and pin 3 again moves high, the sequence will repeat. Thus we get 18 total counts, 9 from the first counter, and 9 from the second. Note that the 4017 counter will not deliver much current, and so the LED current is set to about 6mA using a 1.5K resistor in series. For more current, you could use transistors on each output as shown in the drawing above, (10 Channel LED Sequencer). But some of the newer bright LEDs are fairly bright at 6mA.

5 Two Transistor LED Flasher Fading Red Eyes Circuit description: This circuit is used to slowly illuminate and fade a pair of red LEDs (light emitting diodes). The fading LEDs could be installed as 'eyes' in a small pumpkin or skull as a Halloween attraction,

6 or mounted in a Christmas tree ornament. Or, they might be used as a fancy power indicator for your computer, microwave oven, stereo system, TV, or other appliance. In operation, a linear 3 volt (peak to peak) ramping waveform is generated at pin 1 of the LM1458 IC and buffered with an emitter follower transistor stage. The 22uF capacitor and 47K resistor connected to pin 2 establish the frequency which is about 0.5 Hz. You can make the rate adjustable by using a 100K potentiometer in place of the 47K resistor at pin 2. The circuit consists of two operational amplifiers (opamps), one producing a slow rising and falling voltage from about 3 volts to 6 volts, and the other (on the right) is used as a voltage comparator, the output of which supplies a alternating voltage switching between 2 and 7 volts to charge and discharge the capacitor with a constant current. Each of the op-amps has one of the inputs (pins 3 and 6) tied to a fixed voltage established by two 47K resistors so that the reference is half the supply voltage or 4.5 volts. The left opamp is connected as an inverting amplifier with a capacitor placed between the output (pin 1) and the inverting input (pin 2). The right opamp is connected as a voltage comparator so that the output on pin 7 will be low when the input is below the reference and high when the input is higher than the reference. A 100K resistor is connected between the comparator output and input to provide positive feedback and pulls the input above or below the switching point when the threshold is reached. When the comparator output changes at pin 7, the direction of the current changes through the capacitor which in turn causes the inverting opamp to move in the opposite direction. This yields a linear ramping waveform or triangle waveform at pin 1 of the inverting opamp. It is always moving slowly up or down, so that the voltage on the non-inverting input stays constant at 4.5 volts. Adjustments to the point where the LEDs extinguish can be made by altering the resistor value at pin 3 and 6 to ground. I found a 56K in place of the 47k shown worked a little better with the particular LEDs used. You can experiment with this value to get the desired effect. Parts List: Description Mfg Part# Allied Part# Quantity Cost Operational Amplifier LM K Resistor K Resistor Ohm Resistor Transistor 2N uF Capacitor Solderless Breadboard Red Light Emitting Diode (LED) Note: The LED listed has a narrow viewing angle of 30 degrees and appears brightest when looking directly at it. It's not a pure red color, and a little on the orange side, but should be brighter compared to other selections. For a wider viewing angle at reduced intensity, try part number which is viewable at 60 degrees and has a red diffused lens.

7 Construction details: Layout of the solderless breadboard: Refer to the drawing below the schematic diagram and note the solderless breadboard is arranged in rows labeled A-J, and columns numbered 1 to 65. Each group of 5 holes in the same column are the same connection, so that holes A1,B1,C1,D1 and E1 are all connected together. Likewise holes F1,G1,H1,I1 and J1 are all the same connection. The outer rows along the length of the board are also connected together and are normally used for power supply connections. However, there is a break in the mid section of the outer rows, so a short jumper wire connecting the mid section of the outer rows should be installed to connect the entire outer row together. If you have a DMM, use the low ohms range and probe the various holes to get familiar with the board layout. Installing the components: Orientate the LM1458 so the nook or punch mark on one edge is near column 30 and the opposite edge is near column 33. Install the LM1458 on the breadboard so the pins straddle the center section of the board and pin 1 of the IC is occupying hole F30 and pin 8 is in hole E30. The pins are numbered counter clockwise, so pin 4 will be occupying F33 and pin 5 will be in E33. Possible connections for the LM1458, 9 volt battery, and a couple other parts is illustrated in the lower drawing of the solderless breadboard, but it is not complete with all parts. Refer to the schematic diagram, and install the various other components so they connect to the appropriate pins of the LM1458. Use whatever connection holes are convenient. For example, the 22uF capacitor connects between pins 1 and 2 of the IC, which occupy holes (F30,F31) so it could be placed in the holes (H30, H31) or (J30,J31) or (I30,I31). But not all parts will conveniently fit, so you may have to use a short jumper wire (#22 preferred) to connect parts from one side of the chip to the other. The board I assembled was connected this way: LM1458 F30 to F33, and E30 to E33 22uF capacitor H30 to H31 47K resistor I30 to I35 47K resistor C27 to C31 47K resistor F25 to Positive battery row 47K resistor J25 to Negative Battery row 100K resistor B31 to B33 2N3904 Transistor G36, G37, G38 with emitter at G Ohm resistor D38 to F38 LED B43 to B44 (Cathode at B44) LED I43 to I44 (Cathode at I43) Jumper A30 to Positive battery row Jumper F36 to Positive battery row Jumper J33 to Negative battery row Jumper J43 to Negative battery row Jumper H25 to J32 Jumper J30 to J37 Jumper E27 to G31

8 Jumper D32 to G32 Jumper D33 to H35 Jumper C38 to C43 Jumper E44 to F44 9 Volt Battery Postive battery row to negative row. The circuit below illustrates two pairs of LEDs that operate out of phase so as one pair slowly illuminate, the other pair will fade. Automobile Interior Lights Fader This circuit is similar to the fading eyes circuit above and is used to slowly brighten and fade interior lights of older cars. The circuit is based around the LM324 low power opamp which draws around 3mA of current, so it won't bother the battery if left connected for extended periods. The top two opamps (pins 1,2,3 and 5,6,7) form a triangle wave oscillator running at about 700Hz while the lower opamp (pins 8,9,10) produces a linear, 5 second ramp, that moves up or down depending on the position of the door switch. The two transistors and associated resistors serve to limit the ramp voltage to slightly more and less than the upper and lower limits of the triangle waveform. These two signals (700 hz. triangle wave and 5 second ramp) are applied to the inputs of the 4th opamp (pins 12,13,14) that serves as a voltage comparator and generates a varying duty cycle square wave that controls the IRFZ44 MOSFET and lamp brightness. The 5 second fade time can be adjusted with the 75K resistor connected to the door switch. A larger value will increase the time and a smaller value will speed it up. When the door switch is closed (car door open) the voltage on pin 8 slowly rises above the negative peaks of the triangle wave producing a short duty cycle output and a dim light. As the ramp moves farther positive, a greater percentage of the triangle wave will be lower than the ramp voltage producing a wider pulse and brighter light. This process continues until the ramp is 100% above the positive peaks of the triangle wave and the output is maximum. When the door switch is open, the reverse action takes place and the lamps slowly fade out. The IRFZ44 shouldn't require a heat sink if the total load is 50 watts or less but the temperature of the MOSFET should be monitored to insure it doesn't overheat. The on-state resistance is only ohms so that 4 amps of current (48 watts) is only around 100mW. For larger loads, a small heat sink can be added to keep the MOSFET cool.

9 28 LED Clock Timer This is a programmable clock timer circuit that uses individual LEDs to indicate hours and minutes. 12 LEDs can be arranged in a circle to represent the 12 hours of a clock face and an additional 12 LEDs can be arranged in an outer circle to indicate 5 minute intervals within the hour. 4 additional LEDs are used to indicate 1 to 4 minutes of time within each 5 minute interval. The circuit is powered from a small 12.6 volt center tapped line transformer and the 60 cycle line frequency is used for the time base. The transformer is connected in a full wave, center tapped configuration which produces about 8.5 volts unregulated DC. A 47 ohm resistor and 5.1 volt, 1 watt zener regulate the supply for the 74HCT circuits. A 14 stage 74HCT4020 binary counter and two NAND gates are used to divide the line frequency by 3600 producing a one minute pulse which is used to reset the counter and advance the 4017 decade counter. The decade counter counts the minutes from 0 to 4 and resets on the fifth count or every 5 minutes which advances one section of a dual 4 bit binary counter (74HCT393). The 4 bits of this counter are then decoded into one of 12 outputs by two 74HCT138 (3 line to 8 line) decoder circuits. The most significant bit is used in conjunction with an inverter to select the appropriate decoder. During the first eight counts, the low state of the MSB is inverted to supply a high level to enable the decoder that drives the first 8 LEDs. During counts 9 to 12, the MSB will be high and will select the decoder that drives the remaining 4 LEDs while disabling the other decoder. The decoded outputs are low when selected and the 12 LEDs are connected common anode with a 330 ohm current limiting resistor to the +5 volt supply. The 5th output of the second decoder (pin 11) is used to reset the binary counter so that it counts to 11 and then resets to zero on the 12th count. A high reset level is required for the 393 counters, so the low output from the last decoder stage (pin 11) is inverted with one section of a 74HCT14 hex Schmitt trigger inverter circuit. A 10K resistor and 0.1uF cap are used to extend the reset time, ensuring the counter receives a reset signal which is much longer than the minimum time required. The reset signal is also connected to the clock input (pin 13) of the second 4 bit counter (1/2 74HCT393) which advances the hour LEDs and resets on the 12th hour in a similar manner. Setting the correct time is accomplished with two manual push buttons which feed the Q4 stage (pin 7) of the 4020 counter to the minute and hour reset circuits which advance the counters at 3.75 counts per second. A slower rate can be obtained by using the Q5 or Q6 stages. For test purposes, you can use Q1 (pin 9) which will advance the minutes at 30 per second. The time interval circuit (shown below the clock) consists of a SET/RESET flipflop made from the two remaining NAND gates (74HCT00). The desired time interval is programmed by connecting the anodes of the six diodes labeled start, stop and AM/PM to the appropriate decoder outputs. For example, to turn the relay on at 7:05AM and turn it off at 8:05AM, you would connect one of the diodes from the start section to the cathode of the LED that represents 7 hours, the second diode to the LED cathode that represents 5 minutes and the third diode to the AM line of the CD4013. The stop time is programmed in the same manner. Two additional push buttons are used to manually open and close the relay. The low start and stop signals at the common cathode connections are capacitively coupled to the NAND gates so that the manual push buttons can override the 5 minute time duration. That way, you can immediately reset the relay without waiting 5 minutes for the start signal to go away. The two power supply rectifier diodes are 1N400X variety and the switching diodes are 1N914 or 4148s but any general purpose diodes can be used. 0.1 uf caps (not shown on schematic) may be needed near the power pins of each IC. All parts should be available from Radio Shack with the exception of the 74HCT4017 decade counter which I didn't see listed. You can use either 74HC or 74HCT parts, the only difference

10 between the two is that the input switching levels of the HCT devices are compatible with worst case TTL logic outputs. The HC device inputs are set at 50% of Vcc, so they may not work when driven from marginal TTL logic outputs. You can use a regular 4017 in place of the 74HCT4017 but the output current will much lower (less than 1 ma) and 4 additional transistors will be required to drive the LEDs. Without the buffer transistors, you can use a 10K resistor in place of the 330 and the LEDs will be visible, but very dim. Using the 4017 to drive LEDs with transistor buffers is shown in the "10 Channel LED Sequencer" at the top of this page. Time Interval Relay Circuit for the clock circuit above 72 LED Clock

11 In the circuit below, 60 individual LEDs are used to indicate the minutes of a clock and 12 LEDs indicate hours. The power supply and time base circuitry is the same as described in the 28 LED clock circuit above. The minutes section of the clock is comprised of eight 74HCT164 shift registers cascaded so that a single bit can be recirculated through the 60 stages indicating the appropriate minute of the hour. Only two of the minutes shift registers are shown connected to 16 LEDs. Pin 13 of each register connects to pin 1 of the next for 7 registers. Pin 6 of the 8th register should connect back to pin 1 of the first register using the 47K resistor. Pins 2,9,8, 14 and 7 of all 8 minutes registers (74HC164) should be connected in parallel (pin 8 to pin 8, pin 9 to pin 9, etc.). The hours section contains two 8 bit shift registers and works the same way as the minutes to display 1 of 12 hours. Pin 9 of all 74HCT164s (hours and minutes) should be connected together. For 50 Hertz operation, the time base section of the circuit can be modified as shown in the lower drawing labeled "50 Hertz LED Clock Time Base". You will need an extra IC (74HC30) to do this since it requires decoding 7 bits of the counter instead of 4. The two dual input NAND gates (1/2 74HC00) that are not used in the 50 Hertz modification should have their inputs connected to ground. When power is applied, a single "1" bit is loaded into the first stage of both the minutes and hours registers. To accomplish this, a momentary low reset signal is sent to all the registers (at pin 9) and also a NAND gate to lock out any clock transitions at pin 8 of the minutes registers. At the same time, a high level is applied to the data input lines of both minutes and hours registers at pin 1. A single positive going clock pulse (at pin 8) is generated at the end of the reset signal which loads a high level into the first stage of the minutes register. The rising edge of first stage output at pin 3 advances the hours (at pin 8) and a single bit is also loaded into the hours register. Power should remain off for about 3 seconds or more before being re-applied to allow the filter and timing capacitors to discharge. A 1K bleeder resistor is used across the 1000uF filter capacitor to discharge it in about 3 seconds. The timing diagram illustrates the power-on sequence where T1 is the time power is applied and beginning of the reset signal, T2 is the end of the reset signal, T3 is the clock signal to move a high level at pin 1 into the first register, T4 is the end of the data signal. The time delay from T2 to T3 is exaggerated in the drawing and is actually a very short time of just the propagation delay through the inverter and gate. Two momentary push buttons can be used to set the correct time. The button labeled "M" will increment the minutes slowly and the one labled "H" much faster so that the hours increment slowly. The hours should be set first, followed by minutes.

12 50 Hertz LED Clock Timebase 60 Light Sequencer using a Matrix The circuit below illustrates using a 10x10 matrix to sequence up to 100 LEDs with just three ICs and 20 transistors. The two 4017 decade counters control the 10 rows and 10 columns so that one LED is selected depending on the output of the decade counters. The LED circuit is drawn showing 25 LEDs and 10 transistors but can be expanded up to a 100 by using sucessive stages of the 4017 counters. For example, to expand the circuit to 60 LEDs for displaying minutes or seconds of a clock, the rows counter could be reset from pin 12 (carry out) rather than pin 1 as shown, and the columns counter will be reset from pin 5 rather than pin 1 as shown. And then add transistors to pins 1,5,6,9,and 11 of the rows counter and pin 1 of the columns counter. Take a look at the "10 Stage LED Sequencer" for a listing of all the connections of the 4017 decade counter.

13 25 Light Sequencer using Xmas lamps This circuit is same as the above setup to drive 25 small Xmas lights. The lights operate at about 200mA and 3 volts. The supply voltage is set to 5 volts and the 4017 counter output will drop about a volt using the 2N3053 transistors. The voltage on the emitters of the rows transistors will be about 0.7 volts less than the base so the lamp voltage will be about 3 volts. You can adjust the supply voltage for the desired current if necessary. It works the same way as the LED version but you need diodes in series with each light. Most any small diode rated at 500mA or more should work. I used 1N4001 diodes. Various NPN transistors can be used, I tried 2N2219A and 2N3053. The 2N3053 worked out better with a higher gain than the 2N2219A, but either one should work.

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors. LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

More information

CHAPTER 11: Flip Flops

CHAPTER 11: Flip Flops CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach

More information

GLOLAB Two Wire Stepper Motor Positioner

GLOLAB Two Wire Stepper Motor Positioner Introduction A simple and inexpensive way to remotely rotate a display or object is with a positioner that uses a stepper motor to rotate it. The motor is driven by a circuit mounted near the motor and

More information

GLOLAB Universal Telephone Hold

GLOLAB Universal Telephone Hold GLOLAB Universal Telephone Hold 1 UNIVERSAL HOLD CIRCUIT If you have touch tone telephone service, you can now put a call on hold from any phone in the house, even from cordless phones and phones without

More information

Redesigned by Laurier Gendron (Aug 2006 ) Download this project in PDF. Horn circuit. Train Circuitry

Redesigned by Laurier Gendron (Aug 2006 ) Download this project in PDF. Horn circuit. Train Circuitry Redesigned by Laurier Gendron (Aug 2006 ) Download this project in PDF Train Circuitry Horn circuit New Design After many comments by interested hobbyists not being able to obtain parts like the LM566

More information

3-Digit Counter and Display

3-Digit Counter and Display ECE 2B Winter 2007 Lab #7 7 3-Digit Counter and Display This final lab brings together much of what we have done in our lab experiments this quarter to construct a simple tachometer circuit for measuring

More information

A Digital Timer Implementation using 7 Segment Displays

A Digital Timer Implementation using 7 Segment Displays A Digital Timer Implementation using 7 Segment Displays Group Members: Tiffany Sham u2548168 Michael Couchman u4111670 Simon Oseineks u2566139 Caitlyn Young u4233209 Subject: ENGN3227 - Analogue Electronics

More information

ECEN 1400, Introduction to Analog and Digital Electronics

ECEN 1400, Introduction to Analog and Digital Electronics ECEN 1400, Introduction to Analog and Digital Electronics Lab 4: Power supply 1 INTRODUCTION This lab will span two lab periods. In this lab, you will create the power supply that transforms the AC wall

More information

The components. E3: Digital electronics. Goals:

The components. E3: Digital electronics. Goals: E3: Digital electronics Goals: Basic understanding of logic circuits. Become familiar with the most common digital components and their use. Equipment: 1 st. LED bridge 1 st. 7-segment display. 2 st. IC

More information

Controlling a Dot Matrix LED Display with a Microcontroller

Controlling a Dot Matrix LED Display with a Microcontroller Controlling a Dot Matrix LED Display with a Microcontroller By Matt Stabile and programming will be explained in general terms as well to allow for adaptation to any comparable microcontroller or LED matrix.

More information

Content Map For Career & Technology

Content Map For Career & Technology Content Strand: Applied Academics CT-ET1-1 analysis of electronic A. Fractions and decimals B. Powers of 10 and engineering notation C. Formula based problem solutions D. Powers and roots E. Linear equations

More information

ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME

ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME The national association for AMATEUR RADIO ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME This supplement is intended for use with the ARRL Morse Code Oscillator kit, sold separately.

More information

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential

More information

A Practical Guide to Free Energy Devices

A Practical Guide to Free Energy Devices A Practical Guide to Free Energy Devices Device Patent No 29: Last updated: 7th October 2008 Author: Patrick J. Kelly This is a slightly reworded copy of this patent application which shows a method of

More information

Low Cost Pure Sine Wave Solar Inverter Circuit

Low Cost Pure Sine Wave Solar Inverter Circuit Low Cost Pure Sine Wave Solar Inverter Circuit Final Report Members: Cameron DeAngelis and Luv Rasania Professor: Yicheng Lu Advisor: Rui Li Background Information: Recent rises in electrical energy costs

More information

PLL frequency synthesizer

PLL frequency synthesizer ANALOG & TELECOMMUNICATION ELECTRONICS LABORATORY EXERCISE 4 Lab 4: PLL frequency synthesizer 1.1 Goal The goals of this lab exercise are: - Verify the behavior of a and of a complete PLL - Find capture

More information

Build A Video Switcher. Reprinted with permission from Electronics Now Magazine September 1997 issue

Build A Video Switcher. Reprinted with permission from Electronics Now Magazine September 1997 issue Build A Video Switcher Reprinted with permission from Electronics Now Magazine September 1997 issue Copyright Gernsback Publications, Inc.,1997 BUILD A VIDEO SWITCHER FRANK MONTEGARI Watch several cameras

More information

Lab 11 Digital Dice. Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation

Lab 11 Digital Dice. Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation Lab 11 Digital Dice Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation From the beginning of time, dice have been used for games of chance. Cubic dice similar to modern dice date back to before

More information

Chapter 19 Operational Amplifiers

Chapter 19 Operational Amplifiers Chapter 19 Operational Amplifiers The operational amplifier, or op-amp, is a basic building block of modern electronics. Op-amps date back to the early days of vacuum tubes, but they only became common

More information

Conversion Between Analog and Digital Signals

Conversion Between Analog and Digital Signals ELET 3156 DL - Laboratory #6 Conversion Between Analog and Digital Signals There is no pre-lab work required for this experiment. However, be sure to read through the assignment completely prior to starting

More information

A Lesson on Digital Clocks, One Shots and Counters

A Lesson on Digital Clocks, One Shots and Counters A Lesson on Digital Clocks, One Shots and Counters Topics Clocks & Oscillators LM 555 Timer IC Crystal Oscillators Selection of Variable Resistors Schmitt Gates Power-On Reset Circuits One Shots Counters

More information

SUPER SNOOPER BIG EAR

SUPER SNOOPER BIG EAR AA-1D Super Snooper Big Ear SPECIFICATIONS Operates on 5 to 9v DC Will drive a small speaker Provides up to 1 watt of audio power Distortion > 0.2% Voltage Gain up to 46 db Size: 1 x 1.95 Rainbowkits.com

More information

Digital Electronics Detailed Outline

Digital Electronics Detailed Outline Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept

More information

Transistor Amplifiers

Transistor Amplifiers Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input

More information

Neonixie 6 Digit Nixie Clock Controller Introduction and Assembly

Neonixie 6 Digit Nixie Clock Controller Introduction and Assembly Neonixie 6 Digit Nixie Clock Controller Introduction and Assembly Thank you for purchasing our 6 Digit Nixie Clock Controller. Our clock controller is user friendly and has many of the features most requested

More information

Cornerstone Electronics Technology and Robotics I Week 15 Voltage Comparators Tutorial

Cornerstone Electronics Technology and Robotics I Week 15 Voltage Comparators Tutorial Cornerstone Electronics Technology and Robotics I Week 15 Voltage Comparators Tutorial Administration: o Prayer Robot Building for Beginners, Chapter 15, Voltage Comparators: o Review of Sandwich s Circuit:

More information

AP-1 Application Note on Remote Control of UltraVolt HVPS

AP-1 Application Note on Remote Control of UltraVolt HVPS Basics Of UltraVolt HVPS Output Voltage Control Application Note on Remote Control of UltraVolt HVPS By varying the voltage at the Remote Adjust Input terminal (pin 6) between 0 and +5V, the UV highvoltage

More information

A Lesson on Digital Clocks, One Shots and Counters

A Lesson on Digital Clocks, One Shots and Counters A Lesson on Digital Clocks, One Shots and Counters Topics Clocks & Oscillators LM 555 Timer IC Crystal Oscillators Selection of Variable Resistors Schmitt Gates Power-On Reset Circuits One Shots Counters

More information

1. Learn about the 555 timer integrated circuit and applications 2. Apply the 555 timer to build an infrared (IR) transmitter and receiver

1. Learn about the 555 timer integrated circuit and applications 2. Apply the 555 timer to build an infrared (IR) transmitter and receiver Electronics Exercise 2: The 555 Timer and its Applications Mechatronics Instructional Laboratory Woodruff School of Mechanical Engineering Georgia Institute of Technology Lab Director: I. Charles Ume,

More information

Glolab Talking Phone Dial Monitor

Glolab Talking Phone Dial Monitor Introduction The detects the tones generated when numbers are dialed on your touch tone telephone and speaks the numbers that were dialed. This verifies that you dialed the correct number and is especially

More information

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012 1 Secondary Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding of proper

More information

Wires & Connections Component Circuit Symbol Function of Component. Power Supplies Component Circuit Symbol Function of Component

Wires & Connections Component Circuit Symbol Function of Component. Power Supplies Component Circuit Symbol Function of Component Lista Dei Simboli Dei Circuiti Per i Componenti Elettronici Wires & Connections Wire Wires joined Wires not joined To pass current very easily from one part of a circuit to another. A 'blob' should be

More information

Application Note AN-1068 reva

Application Note AN-1068 reva Application Note AN-1068 reva Considerations for Designs Using Radiation-Hardened Solid State Relays By Alan Tasker Table of Contents Introduction Page Overview...1 The Contact...1 Actuation...1 The IR

More information

TRANSISTOR/DIODE TESTER

TRANSISTOR/DIODE TESTER TRANSISTOR/DIODE TESTER MODEL DT-100 Lesson Manual ELENCO Copyright 2012, 1988 REV-G 753115 Elenco Electronics, Inc. Revised 2012 FEATURES Diode Mode: 1. Checks all types of diodes - germanium, silicon,

More information

Pulse Width Modulation (PWM) LED Dimmer Circuit. Using a 555 Timer Chip

Pulse Width Modulation (PWM) LED Dimmer Circuit. Using a 555 Timer Chip Pulse Width Modulation (PWM) LED Dimmer Circuit Using a 555 Timer Chip Goals of Experiment Demonstrate the operation of a simple PWM circuit that can be used to adjust the intensity of a green LED by varying

More information

Programmable Single-/Dual-/Triple- Tone Gong SAE 800

Programmable Single-/Dual-/Triple- Tone Gong SAE 800 Programmable Single-/Dual-/Triple- Tone Gong Preliminary Data SAE 800 Bipolar IC Features Supply voltage range 2.8 V to 18 V Few external components (no electrolytic capacitor) 1 tone, 2 tones, 3 tones

More information

AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2)

AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2) Features General Description Wide supply Voltage range: 2.0V to 36V Single or dual supplies: ±1.0V to ±18V Very low supply current drain (0.4mA) independent of supply voltage Low input biasing current:

More information

LM139/LM239/LM339 A Quad of Independently Functioning Comparators

LM139/LM239/LM339 A Quad of Independently Functioning Comparators LM139/LM239/LM339 A Quad of Independently Functioning Comparators INTRODUCTION The LM139/LM239/LM339 family of devices is a monolithic quad of independently functioning comparators designed to meet the

More information

6.101 Final Project Report Class G Audio Amplifier

6.101 Final Project Report Class G Audio Amplifier 6.101 Final Project Report Class G Audio Amplifier Mark Spatz 4/3/2014 1 1 Introduction For my final project, I designed and built a 150 Watt audio amplifier to replace the underpowered and unreliable

More information

Objectives: Part 1: Build a simple power supply. CS99S Laboratory 1

Objectives: Part 1: Build a simple power supply. CS99S Laboratory 1 CS99S Laboratory 1 Objectives: 1. Become familiar with the breadboard 2. Build a logic power supply 3. Use switches to make 1s and 0s 4. Use LEDs to observe 1s and 0s 5. Make a simple oscillator 6. Use

More information

ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies

ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies ETEC 2301 Programmable Logic Devices Chapter 10 Counters Shawnee State University Department of Industrial and Engineering Technologies Copyright 2007 by Janna B. Gallaher Asynchronous Counter Operation

More information

Bipolar Transistor Amplifiers

Bipolar Transistor Amplifiers Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must

More information

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

EET272 Worksheet Week 9

EET272 Worksheet Week 9 EET272 Worksheet Week 9 answer questions 1-5 in preparation for discussion for the quiz on Monday. Finish the rest of the questions for discussion in class on Wednesday. Question 1 Questions AC s are becoming

More information

Operational Amplifier - IC 741

Operational Amplifier - IC 741 Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset

More information

Pulse Width Modulated (PWM) Controller for 12 Volt Motors

Pulse Width Modulated (PWM) Controller for 12 Volt Motors Pulse Width Modulated (PWM) Controller for 12 Volt Motors This electronic controller is designed to allow a user to vary the speed and power output of a typical 12 volt motor such as a fuel pump, water

More information

Advanced LED Controller (LED Chaser)

Advanced LED Controller (LED Chaser) Advanced LED Controller (LED Chaser) Introduction. Advanced LED controller (also known as LED Chaser) is microcontroller based circuit designed to produce various visual LED light effects by controlling

More information

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Objectives: Analyze the operation of sequential logic circuits. Understand the operation of digital counters.

More information

GRADE 11A: Physics 5. UNIT 11AP.5 6 hours. Electronic devices. Resources. About this unit. Previous learning. Expectations

GRADE 11A: Physics 5. UNIT 11AP.5 6 hours. Electronic devices. Resources. About this unit. Previous learning. Expectations GRADE 11A: Physics 5 Electronic devices UNIT 11AP.5 6 hours About this unit This unit is the fifth of seven units on physics for Grade 11 advanced. The unit is designed to guide your planning and teaching

More information

Decimal Number (base 10) Binary Number (base 2)

Decimal Number (base 10) Binary Number (base 2) LECTURE 5. BINARY COUNTER Before starting with counters there is some vital information that needs to be understood. The most important is the fact that since the outputs of a digital chip can only be

More information

Digital Fundamentals. Lab 8 Asynchronous Counter Applications

Digital Fundamentals. Lab 8 Asynchronous Counter Applications Richland College Engineering Technology Rev. 0 B. Donham Rev. 1 (7/2003). Horne Rev. 2 (1/2008). Bradbury Digital Fundamentals CETT 1425 Lab 8 Asynchronous Counter Applications Name: Date: Objectives:

More information

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation

More information

Optical Sensor Interface for AFX Digital LED Timer/Counter by George Warner, Jan. 2003 warnergt@ptd.net

Optical Sensor Interface for AFX Digital LED Timer/Counter by George Warner, Jan. 2003 warnergt@ptd.net Optical Sensor Interface for AFX Digital LED Timer/Counter by George Warner, Jan. 200 warnergt@ptd.net Abstract This paper presents a design for an optical sensor interface to an AFX Digital LED Timer/Counter.

More information

Joule Thief 3.0 Kit. June 2012, Rev 1 1 http://www.easternvoltageresearch.com Joule Thief 3.0

Joule Thief 3.0 Kit. June 2012, Rev 1 1 http://www.easternvoltageresearch.com Joule Thief 3.0 Kit Instruction Manual Eastern Voltage Research, LLC June 2012, Rev 1 1 http://www.easternvoltageresearch.com HIGH BRIGHTNESS LED THIS KIT USES A 1W CREE, HIGH BRIGHTNESS LED. DO NOT STARE AT THIS (OR

More information

Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop.

Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. Objectives Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. describe how such a flip-flop can be SET and RESET. describe the disadvantage

More information

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1 Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment

More information

POWER SUPPLY MODEL XP-15. Instruction Manual ELENCO

POWER SUPPLY MODEL XP-15. Instruction Manual ELENCO POWER SUPPLY MODEL XP-15 Instruction Manual ELENCO Copyright 2013 by Elenco Electronics, Inc. REV-A 753020 All rights reserved. No part of this book shall be reproduced by any means; electronic, photocopying,

More information

MM74HC4538 Dual Retriggerable Monostable Multivibrator

MM74HC4538 Dual Retriggerable Monostable Multivibrator MM74HC4538 Dual Retriggerable Monostable Multivibrator General Description The MM74HC4538 high speed monostable multivibrator (one shots) is implemented in advanced silicon-gate CMOS technology. They feature

More information

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits

More information

Routinely DIYers opt to make themselves a passive preamp - just an input selector and a volume control.

Routinely DIYers opt to make themselves a passive preamp - just an input selector and a volume control. The First Watt B1 Buffer Preamp Nelson Pass, June 2008 Side A So here we are in the New Millennium, and thanks to Tom Holman and THX we ve got lots of gain in our electronics. More gain than some of us

More information

BUILD YOUR OWN RC SWITCH (Issue 3)

BUILD YOUR OWN RC SWITCH (Issue 3) PART ONE SINGLE ELECTRONIC RC SWITCH Fancy switching the lights using your radio, then here is a circuit you may consider building. It only uses one IC and seven other components for a single switch and

More information

Universidad Interamericana de Puerto Rico Recinto de Bayamón Escuela de Ingeniería Departamento de Ingeniería Eléctrica

Universidad Interamericana de Puerto Rico Recinto de Bayamón Escuela de Ingeniería Departamento de Ingeniería Eléctrica Universidad Interamericana de Puerto Rico Recinto de Bayamón Escuela de Ingeniería Departamento de Ingeniería Eléctrica Inventario de Materiales Edificio: Escuela de Ingeniería Oficina o Salón: G-221 Descripción(Circuitos

More information

Lab Unit 4: Oscillators, Timing and the Phase Locked Loop

Lab Unit 4: Oscillators, Timing and the Phase Locked Loop Chemistry 8 University of WisconsinMadison Lab Unit : Oscillators, Timing and the Phase Locked Loop Oscillators and timing circuits are very widely used in electronic measurement instrumentation. In this

More information

AUTOMATIC NIGHT LAMP WITH MORNING ALARM USING MICROPROCESSOR

AUTOMATIC NIGHT LAMP WITH MORNING ALARM USING MICROPROCESSOR AUTOMATIC NIGHT LAMP WITH MORNING ALARM USING MICROPROCESSOR INTRODUCTION This Project "Automatic Night Lamp with Morning Alarm" was developed using Microprocessor. It is the Heart of the system. The sensors

More information

Interfacing Analog to Digital Data Converters

Interfacing Analog to Digital Data Converters Converters In most of the cases, the PIO 8255 is used for interfacing the analog to digital converters with microprocessor. We have already studied 8255 interfacing with 8086 as an I/O port, in previous

More information

Zero voltage drop synthetic rectifier

Zero voltage drop synthetic rectifier Zero voltage drop synthetic rectifier Vratislav Michal Brno University of Technology, Dpt of Theoretical and Experimental Electrical Engineering Kolejní 4/2904, 612 00 Brno Czech Republic vratislav.michal@gmail.com,

More information

Panasonic Microwave Oven Inverter HV Power Supply

Panasonic Microwave Oven Inverter HV Power Supply Panasonic Microwave Oven Inverter HV Power Supply David Smith VK3HZ (vk3hz (*at*) wia.org.au) This particular power supply comes from a circa-2000 Panasonic Microwave model NN-S550WF. Nearly all Panasonic

More information

Features. Applications

Features. Applications LM555 Timer General Description The LM555 is a highly stable device for generating accurate time delays or oscillation. Additional terminals are provided for triggering or resetting if desired. In the

More information

Interfacing To Alphanumeric Displays

Interfacing To Alphanumeric Displays Interfacing To Alphanumeric Displays To give directions or data values to users, many microprocessor-controlled instruments and machines need to display letters of the alphabet and numbers. In systems

More information

Power Supplies. 1.0 Power Supply Basics. www.learnabout-electronics.org. Module

Power Supplies. 1.0 Power Supply Basics. www.learnabout-electronics.org. Module Module 1 www.learnabout-electronics.org Power Supplies 1.0 Power Supply Basics What you ll learn in Module 1 Section 1.0 Power Supply Basics. Basic functions of a power supply. Safety aspects of working

More information

Chapter 6: From Digital-to-Analog and Back Again

Chapter 6: From Digital-to-Analog and Back Again Chapter 6: From Digital-to-Analog and Back Again Overview Often the information you want to capture in an experiment originates in the laboratory as an analog voltage or a current. Sometimes you want to

More information

WORKING WITH STEPPER MOTORS

WORKING WITH STEPPER MOTORS 19 WORKING WITH STEPPER MOTORS In past chapters we ve looked at powering robots using everyday continuous DC motors. DC motors are cheap, deliver a lot of torque for their size, and are easily adaptable

More information

Digital Logic Elements, Clock, and Memory Elements

Digital Logic Elements, Clock, and Memory Elements Physics 333 Experiment #9 Fall 999 Digital Logic Elements, Clock, and Memory Elements Purpose This experiment introduces the fundamental circuit elements of digital electronics. These include a basic set

More information

Fundamentals of Signature Analysis

Fundamentals of Signature Analysis Fundamentals of Signature Analysis An In-depth Overview of Power-off Testing Using Analog Signature Analysis www.huntron.com 1 www.huntron.com 2 Table of Contents SECTION 1. INTRODUCTION... 7 PURPOSE...

More information

EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS

EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS 1 EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides

More information

Type SA-1 Generator Differential Relay

Type SA-1 Generator Differential Relay ABB Automation Inc. Substation Automation and Protection Division Coral Springs, FL 33065 Instruction Leaflet 41-348.11C Effective: November 1999 Supersedes I.L. 41-348.11B, Dated August 1986 ( ) Denotes

More information

Module 3: Floyd, Digital Fundamental

Module 3: Floyd, Digital Fundamental Module 3: Lecturer : Yongsheng Gao Room : Tech - 3.25 Email : yongsheng.gao@griffith.edu.au Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental

More information

Waveform Processing WP-20 Mini-Synth Sound Effects Synthesizer

Waveform Processing WP-20 Mini-Synth Sound Effects Synthesizer Waveform Processing WP-20 Mini-Synth Sound Effects Synthesizer INTRODUCTION The WP-20 Sound Effects Synthesizer does just what it's name implies. It creates sounds synthetically by means of electronics.

More information

APPLICATION NOTES: Dimming InGaN LED

APPLICATION NOTES: Dimming InGaN LED APPLICATION NOTES: Dimming InGaN LED Introduction: Indium gallium nitride (InGaN, In x Ga 1-x N) is a semiconductor material made of a mixture of gallium nitride (GaN) and indium nitride (InN). Indium

More information

Ignition Alert Anti-Theft Security System for Motorbikes with Remote Control Amit Yadav, Anushri Jha, Neelesh Gupta amitrinku007@yahoo.

Ignition Alert Anti-Theft Security System for Motorbikes with Remote Control Amit Yadav, Anushri Jha, Neelesh Gupta amitrinku007@yahoo. Ignition Alert Anti-Theft Security System for Motorbikes with Remote Control Amit Yadav, Anushri Jha, Neelesh Gupta amitrinku007@yahoo.com Abstract There are many vehicle security system are available

More information

Table 1 Comparison of DC, Uni-Polar and Bi-polar Stepper Motors

Table 1 Comparison of DC, Uni-Polar and Bi-polar Stepper Motors Electronics Exercise 3: Uni-Polar Stepper Motor Controller / Driver Mechatronics Instructional Laboratory Woodruff School of Mechanical Engineering Georgia Institute of Technology Lab Director: I. Charles

More information

Figure 8-1 Four Possible Results of Adding Two Bits

Figure 8-1 Four Possible Results of Adding Two Bits CHPTER EIGHT Combinational Logic pplications Thus far, our discussion has focused on the theoretical design issues of computer systems. We have not yet addressed any of the actual hardware you might find

More information

Design Project: Power inverter

Design Project: Power inverter Design Project: Power inverter This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Supply voltage Supervisor TL77xx Series. Author: Eilhard Haseloff

Supply voltage Supervisor TL77xx Series. Author: Eilhard Haseloff Supply voltage Supervisor TL77xx Series Author: Eilhard Haseloff Literature Number: SLVAE04 March 1997 i IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to

More information

Diode Applications. by Kenneth A. Kuhn Sept. 1, 2008. This note illustrates some common applications of diodes.

Diode Applications. by Kenneth A. Kuhn Sept. 1, 2008. This note illustrates some common applications of diodes. by Kenneth A. Kuhn Sept. 1, 2008 This note illustrates some common applications of diodes. Power supply applications A common application for diodes is converting AC to DC. Although half-wave rectification

More information

Contents COUNTER. Unit III- Counters

Contents COUNTER. Unit III- Counters COUNTER Contents COUNTER...1 Frequency Division...2 Divide-by-2 Counter... 3 Toggle Flip-Flop...3 Frequency Division using Toggle Flip-flops...5 Truth Table for a 3-bit Asynchronous Up Counter...6 Modulo

More information

css Custom Silicon Solutions, Inc.

css Custom Silicon Solutions, Inc. css Custom Silicon Solutions, Inc. CSS555(C) CSS555/ PART DESCRIPTION The CSS555 is a micro-power version of the popular 555 Timer IC. It is pin-for-pin compatible with the standard 555 timer and features

More information

Ameritron ATP-102 Tuning Pulser II

Ameritron ATP-102 Tuning Pulser II Ameritron ATP-102 The Ameritron ATP-102 relieves temperature related stress on amplifiers, tuners, and dummy loads while allowing proper system adjustments. It allows amplifiers to be properly adjusted

More information

Basic Op Amp Circuits

Basic Op Amp Circuits Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of

More information

LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators

LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators Low Power Low Offset Voltage Quad Comparators General Description The LM139 series consists of four independent precision voltage comparators with an offset voltage specification as low as 2 mv max for

More information

74F168*, 74F169 4-bit up/down binary synchronous counter

74F168*, 74F169 4-bit up/down binary synchronous counter INTEGRATED CIRCUITS 74F168*, * Discontinued part. Please see the Discontinued Product List in Section 1, page 21. 1996 Jan 5 IC15 Data Handbook FEATURES Synchronous counting and loading Up/Down counting

More information

Precision Diode Rectifiers

Precision Diode Rectifiers by Kenneth A. Kuhn March 21, 2013 Precision half-wave rectifiers An operational amplifier can be used to linearize a non-linear function such as the transfer function of a semiconductor diode. The classic

More information

Physics 120 Lab 6: Field Effect Transistors - Ohmic region

Physics 120 Lab 6: Field Effect Transistors - Ohmic region Physics 120 Lab 6: Field Effect Transistors - Ohmic region The FET can be used in two extreme ways. One is as a voltage controlled resistance, in the so called "Ohmic" region, for which V DS < V GS - V

More information

Part Number Description Packages available

Part Number Description Packages available Features 3 digital I/O Serial Data output Connects directly to RF Modules Easy Enc / Dec Pairing Function Minimal External Components Required Performs all encoding/decoding of data for Reliable Operation.

More information

Chapter 9 Latches, Flip-Flops, and Timers

Chapter 9 Latches, Flip-Flops, and Timers ETEC 23 Programmable Logic Devices Chapter 9 Latches, Flip-Flops, and Timers Shawnee State University Department of Industrial and Engineering Technologies Copyright 27 by Janna B. Gallaher Latches A temporary

More information

Lab 3 Rectifier Circuits

Lab 3 Rectifier Circuits ECET 242 Electronic Circuits Lab 3 Rectifier Circuits Page 1 of 5 Name: Objective: Students successfully completing this lab exercise will accomplish the following objectives: 1. Learn how to construct

More information

Lecture - 4 Diode Rectifier Circuits

Lecture - 4 Diode Rectifier Circuits Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits

More information

Lab 5 Operational Amplifiers

Lab 5 Operational Amplifiers Lab 5 Operational Amplifiers By: Gary A. Ybarra Christopher E. Cramer Duke University Department of Electrical and Computer Engineering Durham, NC. Purpose The purpose of this lab is to examine the properties

More information