Introduction. 1 P a g e

Size: px
Start display at page:

Download "Introduction. 1 P a g e"

Transcription

1 Integrated Renewable Power, Gas & Heat (DH) Systems & Markets Co-ordination and Cooptimization using PLEXOS Integrated Energy Model Mrs Peny Panagiotakopoulou, Senior Power Systems Consultant, Energy Exemplar Europe Dr Christos Papadopoulos, Regional Director Europe Abstract - The scope of this paper is to present the methodology and results of integrated modelling, simulation and co-optimization of Renewable Power, Gas & Heat Systems & Markets employing PLEXOS Integrated Energy Model and accounting for all characteristics unique to each subsystem. The trend towards a more interrelated energy industry calls for the need of multi-optimization models which will consider simultaneously all systems & markets components, in order to deliver better and more sophisticated Resource Planning capabilities combined with robust economic benefit and strategic development analysis. Keywords PLEXOS ; co- optimization; multi- optimization; power-gas-heat integrated model; integrated energy networks; Renewables Integration Introduction In the today s evolving energy world, there is an undeniable uncertainty and complexity in the energy markets. Market participants are forced to operate into extremely challenging environments characterized by increasingly uncertain and complex market conditions. Power and gas utilities strive to realize more value from their transmission and distribution businesses. At the same time the developments on the natural gas exploration lead to increased dependence of the power sector on the natural gas generation. This makes the gas-electric network coordination an emerging challenge for regulators and policy makers, and new strategies of co-optimization of gaselectric infrastructures are becoming of interest. Additionally there is an increased utilization of other distributed generation technologies such as co-generation and combined heat and power, which makes the coupling between electricity, natural gas and district heating energy systems even more common. This increasing utilization of gas-fired and other distributed generation, especially co- and trigeneration, is expected to affect both the technical and economical operation of energy systems. The conversion between different energy components (i.e. natural gas into electricity and heat) establishes a coupling of the corresponding power flows resulting in system interactions. Therefore, given this trend towards a more integrated energy industry, there is a prevailing need for a single multi-optimization model which will consider simultaneously the power, gas and district heat market components, in order to deliver better and more sophisticated Resource Planning capabilities combined with robust economic benefit and strategic development analysis. Inevitably, there is a need for advanced computational tools that will be able to capture and handle this complexity in the most efficient manner and to provide viable strategic long-term and operational short-term solutions. PLEXOS Integrated Energy Model software is such a sophisticated optimization tool that has been designed and developed to provide this kind of solutions in complex power, gas and heat systems and markets conditions. 1 P a g e

2 In this study we will develop an integrated electric- gas- heat network in PLEXOS. This PLEXOS model is capable of analysing the integrated system while accounting for characteristics unique to each subsystem, through a straight forward problem formulation. Aims The aim of this paper is to present an integrated electric- gas- heat network modelled in PLEXOS. This PLEXOS model is capable of analysing the integrated system while accounting for characteristics unique to each subsystem, through a straight forward problem formulation. For this case study a PLEXOS model using the Power and Gas Features was gradually developed, in order to finally account for all the different energy components. Theoretical Background A. CHP & District Heat Systems CHP technology is becoming even more popular nowadays, since it can provide a high energy supply performance, requires less fuel to be consumed and produces less CO 2 emissions per MWh. The CHP plants can nearly double the efficiency of steam power, whereas their total efficiency can be further improved by integration with gas- turbine plants and/ or the use of gas condensing units. District heating (DH) is a system for distributing heat generated from one or more sources via a network of insulated pipes carrying steam or hot water to heat buildings. The heat sources can be different types of power stations such as industrial processing power plants which generate heat as a by-product, energy from waste plant, heat-only boiler stations, geothermal or solar. By utilising low grade heat which otherwise might have been wasted and displacing localised boilers district heating systems can provide higher efficiencies and improve pollution control. The deployment of combined heat and power (CHP) plants burning fossil fuels or biomass can be facilitated by the use of District Heating Networks (DHNs). Such co-generation plants are designed to generate electricity whilst also capturing usable heat that is produced in this process. Their optimised design means that the overall efficiency of CHP plants can reach in excess of 80% at the point of use. The figure below shows a sketch of a CHP plant that supplies heat to a district heating system, chilled water by means of absorption chillers to a district cooling system as well as electricity to the grid. In CHP-DH systems there may be situations where there is demand for electricity but insufficient demand for heat. This can lead to possible alternatives of either closing down the CHP plants with a subsequent revenue loss from electricity sales or surplus heat rejected to the atmosphere. In order to avoid such situations, thermal storages are used together with the DHNs, with several examples existing of such large scale thermal storage systems that have been deployed across Europe (i.e. Denmark, UK). These systems follow an increasing trend and make heat storage a more and more widespread technology for performance optimization and increased revenue from electricity sales. 2 P a g e

3 Figure 1 Schematic figure of a CHP plant integrated with the district heating and cooling systems 3 The storage is charged when heat production is higher than the consumption, and discharged when heat production is below the consumption, allowing for CHP plants to operate with higher flexibility, especially when electricity prices are most favourable. A typical CHP plant s operation depends on the electricity network for certain periods, i.e. for purchasing power from the grid during high demand periods / off- peak prices, or for selling surplus power to the grid during peak hours with highest electricity prices, returning significant economic benefits. For that reason, and as the system loads (heat and electrical) fluctuate considerably with time of day/year, mathematical programming; and more specifically Economic Dispatch models, are used for optimization of the district heating and cooling networks with CHP. Figure 2 Thermal store integrated in a DH system 4 B. Gas Networks Given the recent technological advances allowing for access to unconventional sources in shale formations, coal beds, and sandstone formations, natural gas reserves have dramatically expanded. A subsequent increase in natural gas production is now a reality followed by supply surplus and lower prices, which are expected to continue resulting in relatively stable natural gas market conditions. As a result, natural gas is a new dominant player in the energy markets. Natural gas-fired turbines are characterized by higher efficiencies, lower capital costs, shorter installation times, faster start up capabilities and lower CO 2 emissions, which makes them an increasingly widespread option either as baseload, intermediate or peaking units. The electric power sector is using an increasing percentage of natural gas, and natural gas-fired electric power plants are expected to continue to increase in importance, projected to account for 60% of capacity additions between 2010 and P a g e

4 Natural gas electricity generation relies on three basic technologies: - Steam turbine plants, that operate like traditional coal-fuelled power plants where fossil fuel (in this case natural gas) combustion heats water to create steam. The steam turns a turbine, which runs a generator to create electricity. These typically have thermal efficiencies of 30 35%. - Combustion turbine plants, which are generally used to meet peak electricity demand. These operate similarly to jet engines: natural gas is combusted and used to turn the turbine blades and spin an electrical generator. The typical size is MW with a thermal efficiency around 35 40%. - Combined cycle plants, which are highly efficient because they combine combustion turbines and steam turbines; the hot exhaust from a gas-fired combustion turbine is used to create steam to power a steam turbine. High efficiency combined cycle plants emit less than half the CO2 per megawatt-hour as coal power plants, and operate with a 50 60% thermal efficiency range. A typical natural gas combined cycle power plant has a heat rate that is about one third lower than for a combustion turbine or gas-fired steam turbine plant. Figure 3 Combustion Turbine There is an increased recognition that environmental policy and public policy in combination to the vast shale gas developments will lead to increased reliance of the power sector on natural gas generation. Gas Electric coordination has emerged as a complex topic for regulators and the gas and electric sectors to confront along with the electrical system operators with concerns of present and future potential gas constraints that impact electric system operation and reliability. New strategies of co-optimization of electric and gas infrastructure are becoming of interest as much of the natural gas sector growth may likely be driven by resource change and dependency of electrical sector on pipeline network and gas network operational issue. The PLEXOS Model In this case study a PLEXOS Integrated power gas heat model has been developed (Figure 4). The Power feature of PLEXOS has been used in order to set up an electricity demand power node, ELECTRCITYDem, where all the power plants are located, as well as part of the electricity demand. The Generator Class of PLEXOS is generic enough so that all types of generation resources i.e. thermal, hydro, pump storage, wind, solar etc. are modelled under this class and the simulator infers the type of generator from the data and relationships that are defined on it. 4 P a g e

5 A RENEWABLES power node has been also set up, where all the renewable resources (wind and solar) are located. In the same node an Electric Boiler with heat storage facilities as well, can be connected. Figure 4 System Topology The electric boiler is a type of boiler where heat 2, i.e. in the form of steam, is generated using electricity rather than through the combustion of a fuel. Electric boilers can convert electrical energy to heat with almost 100% efficiency, but because boilers draw power from the grid their true efficiency is a function of the overall grid production efficiency. Hence electric boilers may be economic as heat sources at times of very low electricity price, especially if heat can be stored for later use. An electric boiler can be created in PLEXOS by defining an anti-generator, which is a generator whose generation acts as a load on the system rather than proving power. A heat load is directly defined on the electric boiler, which represents the waste heat that must be extracted for exogenous loads. The total demand for electricity has been defined on a regional level in PLEXOS and then split between the two nodes, using a load participation factor, as shown in figure 5. Figure 5 Electricity Demand (MW) by node 5 P a g e

6 The gas market is modelled using the dedicated Gas Feature of PLEXOS, which include the gas nodes, gas fields for the fuel production, gas storages where the gas can be injected and extracted, and the gas pipelines for gas transportation. In PLEXOS the gas and electric markets integrate at the gas nodes. A generator can be attached to a gas node through the Gas Node and the Fuel Gas Node memberships. Defining both these memberships instructs the simulator that the Generator is physically supplied with Fuel from the Gas Node and therefore the Gas Demand will be driven by the generator s Heat Rate and Generation values. Furthermore, there is the option to define additional external demand for gas, as it has been done in this model, where Industrial and Domestic gas demands have been added using external datafiles of hourly demand profiles. Figure 6 Gas Demand driven by GAS1 generator Heat Rate function The District Heating network is approximated using the Gas Features of PLEXOS in combination with the Constraints Class. The demand for heat is modelled using the Gas Demand objects defined with external hourly profiles, as shown in figure 8. Figure 7 External Domestic & Industrial Gas Demand (TJ) 6 P a g e

7 Figure 8 Hourly Heat Demand (line stacked) The District Heating network is modelled as a closed loop using the Gas Pipeline objects, and allowing the HEATdist1, HEATdist2 and HEATdist3 pipelines being one-direction only by defining the pipeline [Max Flow Back]= 0. The CHP type generators, named as HEAT1, HEAT2 and HEAT3 are associated with the heat network indirectly through the use of custom constraints. The heat production from the HEAT1 Field is set to be equal to 0.1% of the HEAT1 generator heat production, and a similar constraint is created for the other two CHP generators/ Fields. The CHP plants HEAT2 and HEAT3 are assumed to be a back-pressure and an extraction turbine accordingly. They are modelled in such a way so that the waste heat from the back-pressure turbine is passed to the extraction turbine, using the [Heat Input/ Output] collection of PLEXOS. However, instead of defining directly a [Heat Load] on the extraction turbine, the demand is driven by the external heat demands defined through the District Heating network. The amount of heat transferred from the back-pressure to the extraction turbine is equal to the fuel input of the back-pressure less the electric output of the back-pressure (at notional maximum efficiency). The waste heat can then be passed through a boiler before using the extraction turbine. In PLEXOS the boiler is modelled as a component of the extraction turbine. The extraction turbine will produce electric output from the steam output of the boiler according to its heat rate i.e. the steam input acts just like a free fuel source. The Storage Class of the Gas model is used in order to set up a HEAT storage where the excess heat can be stored in periods of higher heat production compared to consumption, and heat can be released when the production is below the required amounts of demand. This allows the CHP plants to generate in a more flexible manner and the system to benefit from favourable electricity prices. Figure 9 Heat recovery steam turbine in PLEXOS 7 P a g e

8 Problem Formulation When defining such a network in PLEXOS the primary optimization is to find the least cost solution given all the system constraints. When the mathematical problem formulated involves multiple mutually exclusive opportunities, the optimal solution reported should take into account all of these components and a co-optimization problem is solved. Co-optimization applies where optimal decisions need to be taken in the presence of trade-offs between two or more conflicting objectives. Once set-up, co-optimization is a natural outcome of the PLEXOS solution. In the current case study there are three different markets considered; power, gas and heat; and the problem will be automatically configured as a co-optimization problem where the optimal solution has to be found considering all the mutually exclusive opportunities. The Objective function is formulated as: Minimize{Total system cost} = Electric production cost + Electric Demand Shortage Cost + Gas Production cost + Natural Gas Demand Shortage Cost + Heat Production Cost + Heat Demand Shortage Cost + Transmission Wheeling Cost + Pipeline Gas Flow Cost + Pipeline Heat Flow Cost Subject To{System constraints}: [Electric Production] + [Electric Shortage] = [Electric Demand] + [Electric Losses] [Electricity Transmission Constraints] [Electric Production] feasible [Gas Production] + [Gas Demand Shortage] = [Gas Demand] + [Gas Generator Demand] [Gas Pipeline Constraints] [Gas Production] feasible [Heat Production] + [Heat Demand Shortage] = [Heat Demand] + [Heat Generator Demand] [Heat Pipeline Constraints] [Heat Production] feasible [Other Constraints] Scenarios Modelled & Results analysis We have looked at two different scenarios; a base case, where an electric boiler was not included in the problem (case A) and one with an electric boiler in place (case B). The efficiency of the electric boiler was assumed to be 100%. 8 P a g e

9 The unit commitment and economic dispatch of the plants is based on the marginal cost concept (nodal load settlement method). The renewables (WIND1, WIND2, SOLAR) are the least cost generators and that explains the fact that WIND2 is mostly used compared to the other generators in order to meet the whole electricity demand in the least cost effective way. The total generation as well as the dispatch of each plant changes, depending on whether the electric boiler is used or not (Figures 10 & 11). Figure 10 Generation Stack curve (Case A) Figure 11 Generation Stack curve (Case B) When the electric boiler is included in the system topology, the reported electricity demand on the RENEWABLES node changes compared to the base case, since the electric boiler is defined as an antigenerator (extra load). This subsequently affects the output of the wind and solar generators that have to account for the changing demand, whereas the total MW output from the conventional plants remains the same. 9 P a g e

10 Figure 12 Electricity Node RENEWABLES reported Load The Gas Field GASProd1, located at the gas node GASProd, has to produce in order to meet the gas demand from both the external sources (industrial & domestic) and the heat rate driven demand from the gas generator. Figure 11 Gas Field Production The total gas demands can be reported on each gas node separately as shown in figure 12. These demands remain unchanged whether the electric boiler is in place or not. Figure 12 Total Gas Demand The Heat demands on the other hand, should be covered by the Heat production as well as the Heat Storage facility (figure 13). The Heat Pipelines are also used in order to transfer the heat from the production/storage points to where it is required. 10 P a g e

11 Electric Boilers are usually economic as heat sources at times of very low electric price, especially if the heat can be stored for later use. In Case B the Electric Boiler [Heat Production] increases when electricity price decreases (Figure 14). Figure 13 Heat Production (Heat Fields Production & Heat Storage Net Withdrawal) Figure 14 Electric Boiler Heat Production in relation to Electricity Price Figure 15 Electricity Nodes Price (Case A & B) This integrated power-gas-heat model is a multi-optimization problem which considers all the different energy components and their constraints simultaneusly. PLEXOS will report one unique price for the Region modelled taking into account all the constraints, but it will also report the shadow price of each component individually. We can therefore obtain the Gas Nodes [Shadow Prices] as well as 11 P a g e

12 the Heat Nodes [Shadow Prices], in addition to the Electricity Nodes [Shadow Prices] (Figures 15 & 16). Conclusion Figure 16 Gas & Heat Nodes Shadow Price Creating integrated electric-gas-heat networks in PLEXOS is straight forward and can be easily done using the dedicated features for Power and Gas modelling. The link between the different energy type networks, can be defined using the proper type of memberships between key objects in PLEXOS interface. In this case study a short term multi-optimization problem was solved, taking into account the individual techno-economic characteristics of each energy subnetwork, and analysing the system as a whole integrated (NEXUS) network in terms of production costs. The interactions between the different energy components were captured, as for example the relation between heat production and storages charge /discharge periods, CHP plants operation during periods of more favourable electricity prices, gas demand driven by the power network, etc. The same network topology can be easily modelled for long term period studies, using the LT Plan capacity expansion phase of PLEXOS, in order to assess the type, time and location of new investments. The PLEXOS Forecasting tool can be used in order to create power, gas and heat demand profiles for i.e years ahead, whereas the power, gas and heat energy components can be modelled as expansion candidates using the appropriate expansion properties of PLEXOS (Max Units Built, Built Cost, Economic Life, WACC, etc.). Therefore PLEXOS can be a powerful and robust optimization tool for demand planning, strategic investment and operation decisions in the era of integrated energy systems. References [1] Article: Combined Heat and Power, PLEXOS Wiki [2] Article: Heat Storage, PLEXOS Wiki [3] The potential for thermal storage to reduce the overall carbon emissions from district heating systems, The Tyndall Centre, Tyndall Manchester [4] Economic and Environmental Benefits of CHP-based District Heating Systems in Sweden, Linköping Institute of Technology 12 P a g e

Integrating renewable energy sources and thermal storage

Integrating renewable energy sources and thermal storage Integrating renewable energy sources and thermal storage Sven Werner Halmstad University Sweden BRE, October 10, 2013 1 Outline Fundamental idea of district heating Heat supply to European district heating

More information

USBR PLEXOS Demo November 8, 2012

USBR PLEXOS Demo November 8, 2012 PLEXOS for Power Systems Electricity Market Simulation USBR PLEXOS Demo November 8, 2012 Who We Are PLEXOS Solutions is founded in 2005 Acquired by Energy Exemplar in 2011 Goal People To solve the challenge

More information

Fact Sheet on China s energy sector and Danish solutions

Fact Sheet on China s energy sector and Danish solutions Fact Sheet on China s energy sector and Danish solutions 1. EXPANSION WITH RENEWABLE ENERGY: China focuses on a massive expansion with non fossil energy that is renewable energy and nuclear energy. The

More information

ENERGY EFFICIENCY IN POWER PLANTS

ENERGY EFFICIENCY IN POWER PLANTS Plenary session Producing more with less: Efficiency in Power Generation ENERGY EFFICIENCY IN POWER PLANTS Frans van Aart, Wim Kok, Pierre Ploumen KEMA Power Generation & Sustainables ENERGY EFFICIENCY

More information

From today s systems to the future renewable energy systems. Iva Ridjan US-DK summer school AAU Copenhagen 17 August 2015

From today s systems to the future renewable energy systems. Iva Ridjan US-DK summer school AAU Copenhagen 17 August 2015 From today s systems to the future renewable energy systems Iva Ridjan US-DK summer school AAU Copenhagen 17 August 2015 STRUCTURE OF ENERGY SYSTEMS 8/17/2015 Copenhagen, Denmark 2 Components Demand Heat

More information

Wind Power and District Heating

Wind Power and District Heating 1 Wind Power and District Heating New business opportunity for CHP systems: sale of balancing services Executive summary - Both wind power and Combined Heat and Power (CHP) can reduce the consumption of

More information

DANISH DISTRICT ENERGY PLANNING EXPERIENCE

DANISH DISTRICT ENERGY PLANNING EXPERIENCE MOWAT ENERGY, A RESEARCH HUB AT THE MOWAT CENTRE, AT THE REQUEST OF THE ONTARIO MINISTRY OF ENERGY FUTURE INNOVATION IN ENERGY PLANNING: A SPECIAL SESSION TO ADVISE ON ONTARIO S LONG-TERM ENERGY FUTURE

More information

University of Melbourne Symposium on ICT Sustainability Dan Pointon 25 November 2008

University of Melbourne Symposium on ICT Sustainability Dan Pointon 25 November 2008 University of Melbourne Symposium on ICT Sustainability Dan Pointon 25 November 2008 Contents Welcome and Introduction Chapter 1: Data centre energy recap Chapter 2: Co-generation Chapter 3: CTC case study

More information

Value of storage in providing balancing services for electricity generation systems with high wind penetration

Value of storage in providing balancing services for electricity generation systems with high wind penetration Journal of Power Sources 162 (2006) 949 953 Short communication Value of storage in providing balancing services for electricity generation systems with high wind penetration Mary Black, Goran Strbac 1

More information

A vision of sustainable energy future: A multi-energy concept of smart energy systems Central European Student and Young Professionals Congress

A vision of sustainable energy future: A multi-energy concept of smart energy systems Central European Student and Young Professionals Congress A vision of sustainable energy future: A multi-energy concept of smart energy systems Central European Student and Young Professionals Congress Tomislav Capuder, PhD Faculty of Electrical Engineering and

More information

THE EUROPEAN GREEN BUILDING PROGRAMME. Technical Module on Combined Heat and Power

THE EUROPEAN GREEN BUILDING PROGRAMME. Technical Module on Combined Heat and Power THE EUROPEAN GREEN BUILDING PROGRAMME Technical Module on Combined Heat and Power Contents Foreword...1 1. Introduction...2 2. Inventory of the CHP system...3 3. Assessment of technical energy saving measures...5

More information

Boilers and cogeneration/trigeneration. Abhi Sawant Business Development Manager Simons Green Energy

Boilers and cogeneration/trigeneration. Abhi Sawant Business Development Manager Simons Green Energy Boilers and cogeneration/trigeneration Abhi Sawant Business Development Manager Simons Green Energy HEATING - COOLING - SUSTAINABLE ENERGY ENERGY EFFICIENCY IN BOILERS, COGENERATION & TRIGENERATION Presented

More information

Levelized Cost of New Electricity Generating Technologies

Levelized Cost of New Electricity Generating Technologies Levelized Cost of New Electricity Generating Technologies The Energy Information Administration (EIA) produces forecasts of energy supply and demand for the next 20 years using the National Energy Modeling

More information

Source: EIA Natural Gas Issues and Trends 1998

Source: EIA Natural Gas Issues and Trends 1998 7.0 System Redesign Analysis 7.1 Emissions Natural gas is a clean burning fossil fuel. It consists of a mixture of hydrocarbon gases, primarily Methane (CH 4 ). In analyzing the combustion process, it

More information

Combined Heat & Power. Discussion with Connecticut Energy Advisory Board. February 23, 2010

Combined Heat & Power. Discussion with Connecticut Energy Advisory Board. February 23, 2010 Combined Heat & Power Discussion with Connecticut Energy Advisory Board February 23, 2010 Discussion Topics Introduce NRG Thermal Representative NRG Thermal projects District Energy Combined Heat and Power

More information

Emissions Comparison for a 20 MW Flywheel-based Frequency Regulation Power Plant

Emissions Comparison for a 20 MW Flywheel-based Frequency Regulation Power Plant Emissions Comparison for a 20 MW Flywheel-based Frequency Regulation Power Plant Beacon Power Corporation KEMA Project: BPCC.0003.001 May 18, 2007 Final Report with Updated Data Emissions Comparison for

More information

Deliverable 3.a (Combining former deliverables 3.1; 3.2; 3.5)

Deliverable 3.a (Combining former deliverables 3.1; 3.2; 3.5) City Supporting partner LOMBARDY REGION (ITALY) A2A CALORE & SERVIZI SRL Map showing local heating and cooling demand and supply MILANO, STREET MAP: MILANO, ANNUAL HEAT DEMAND EXTRACT FROM PETA (STRATEGO

More information

ERCOT Analysis of the Impacts of the Clean Power Plan Final Rule Update

ERCOT Analysis of the Impacts of the Clean Power Plan Final Rule Update ERCOT Analysis of the Impacts of the Clean Power Plan Final Rule Update ERCOT Public October 16, 2015 ERCOT Analysis of the Impacts of the Clean Power Plan Final Rule Update In August 2015, the U.S. Environmental

More information

COFELY DISTRICT ENERGY DELIVERING LOW CARBON SUSTAINABLE ENERGY SOLUTIONS

COFELY DISTRICT ENERGY DELIVERING LOW CARBON SUSTAINABLE ENERGY SOLUTIONS COFELY DISTRICT ENERGY DELIVERING LOW CARBON SUSTAINABLE ENERGY SOLUTIONS UK s largest provider of Direct Energy schemes COFELY District Energy is the UK s largest district energy company serving users

More information

Business Policy of CEZ Group and ČEZ, a. s.

Business Policy of CEZ Group and ČEZ, a. s. Business Policy of CEZ Group and ČEZ, a. s. Contents: Introduction 1. CEZ Group mission and vision 2. Scope of business of CEZ Group 3. Business concept Guiding principles Trade Generation Electricity

More information

Applicability of Trigeneration Systems in the Hotel Buildings: The North Cyprus Case

Applicability of Trigeneration Systems in the Hotel Buildings: The North Cyprus Case Applicability of Trigeneration Systems in Hotel Buildings: The North Cyprus Case M. OZDENEFE, U. ATIKOL Department of Mechanical Engineering Eastern Mediterranean University Gazimagusa, North Cyprus, Mersin

More information

T@W Good Practice Form

T@W Good Practice Form T@W Good Practice Form Setting Title: Public-private Partnership Leading to a New CHP Plant Utilising Fibre Sludge and Biomass Country: Location: Sweden Mariestad in West Sweden Region Start date: 1999

More information

Fiscal Year 2011 Resource Plan

Fiscal Year 2011 Resource Plan Salt River Project Fiscal Year 2011 Resource Plan Page 1 Last summer SRP hosted three resource planning workshops for a diverse group of stakeholders and customers to explain the planning process, discuss

More information

Loviisa 3 unique possibility for large scale CHP generation and CO 2 reductions. Nici Bergroth, Fortum Oyj FORS-seminar 26.11.

Loviisa 3 unique possibility for large scale CHP generation and CO 2 reductions. Nici Bergroth, Fortum Oyj FORS-seminar 26.11. Loviisa 3 unique possibility for large scale CHP generation and CO 2 reductions Nici Bergroth, Fortum Oyj FORS-seminar 26.11.2009, Otaniemi Loviisa 3 CHP Basis for the Loviisa 3 CHP alternative Replacement

More information

Stationary Energy Storage Solutions 3. Stationary Energy Storage Solutions

Stationary Energy Storage Solutions 3. Stationary Energy Storage Solutions Stationary Energy Storage Solutions 3 Stationary Energy Storage Solutions 2 Stationary Energy Storage Solutions Stationary Storage: Key element of the future energy system Worldwide growing energy demand,

More information

How To Evaluate Cogeneration

How To Evaluate Cogeneration Power topic #7018 Technical information from Cummins Power Generation Inc. Evaluating cogeneration for your facility: A look at the potential energy-efficiency, economic and environmental benefits > White

More information

Techno-Economics of Distributed Generation and Storage of Solar Hydrogen

Techno-Economics of Distributed Generation and Storage of Solar Hydrogen Techno-Economics of Distributed Generation and Storage of Solar Hydrogen Philipp Grünewald, Tim Cockerill, Marcello Contestabile, Imperial College London, UK Abstract For hydrogen to become a truly sustainable

More information

Impacts of large-scale solar and wind power production on the balance of the Swedish power system

Impacts of large-scale solar and wind power production on the balance of the Swedish power system Impacts of large-scale solar and wind power production on the balance of the Swedish power system Joakim Widén 1,*, Magnus Åberg 1, Dag Henning 2 1 Department of Engineering Sciences, Uppsala University,

More information

Results Figure 1 Analyses the impact of three alternative methods considered for Emissions Trading EUETS Ref iii.

Results Figure 1 Analyses the impact of three alternative methods considered for Emissions Trading EUETS Ref iii. A review of methodologies analysing electricity and heat production from Combined Heat and Power, CHP, and their signals to heat and electricity sectors. Cross subsidy of electricity sector by heat sector.

More information

ANALYSIS OF THE ADMINISTRATION S PROPOSED TAX INCENTIVES FOR ENERGY EFFICIENCY AND THE ENVIRONMENT

ANALYSIS OF THE ADMINISTRATION S PROPOSED TAX INCENTIVES FOR ENERGY EFFICIENCY AND THE ENVIRONMENT June 28, 1999 ANALYSIS OF THE ADMINISTRATION S PROPOSED TAX INCENTIVES FOR ENERGY EFFICIENCY AND THE ENVIRONMENT INTRODUCTION A few months ago in the FY 2000 budget the President proposed a $3.6 billion

More information

Preparatory Paper on Focal Areas to Support a Sustainable Energy System in the Electricity Sector

Preparatory Paper on Focal Areas to Support a Sustainable Energy System in the Electricity Sector Preparatory Paper on Focal Areas to Support a Sustainable Energy System in the Electricity Sector C. Agert, Th. Vogt EWE Research Centre NEXT ENERGY, Oldenburg, Germany corresponding author: Carsten.Agert@next-energy.de

More information

Your partner of choice for integrated energy solutions

Your partner of choice for integrated energy solutions E.ON Connecting Energies Your partner of choice for integrated energy solutions Would you like to reduce your company s energy costs? Do you have ambitious environmental objectives? Are you concerned about

More information

Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2015

Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2015 June 2015 Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2015 This paper presents average values of levelized costs for generating technologies that

More information

EFFICIENT ENERGY SUPPLY (ELECTRICITY AND DISTRICT HEAT) FOR THE CITY OF LINZ

EFFICIENT ENERGY SUPPLY (ELECTRICITY AND DISTRICT HEAT) FOR THE CITY OF LINZ Parallel session Producing more with less: Efficiency in Power Generation EFFICIENT ENERGY SUPPLY (ELECTRICITY AND DISTRICT HEAT) FOR THE CITY OF LINZ Johann Gimmelsberger Linz Strom GmbH EFFICIENT ENERGY

More information

Summary of specified general model for CHP system

Summary of specified general model for CHP system Fakulteta za Elektrotehniko Eva Thorin, Heike Brand, Christoph Weber Summary of specified general model for CHP system OSCOGEN Deliverable D1.4 Contract No. ENK5-CT-2000-00094 Project co-funded by the

More information

Managing Risks and Optimising an Energy Portfolio with PLEXOS

Managing Risks and Optimising an Energy Portfolio with PLEXOS Managing Risks and Optimising an Energy Portfolio with PLEXOS Tom Forrest, B.Com. (Hons) Senior Power Market Consultant - Europe 1 Introduction Energy markets inherently exhibit far greater risk compared

More information

Multiple sources of energy will be available, giving the consumer choices. A Higher Percentage of Energy will come from renewable energy sources

Multiple sources of energy will be available, giving the consumer choices. A Higher Percentage of Energy will come from renewable energy sources Editor s comments: Numbers in parentheses indicate the number of duplicate or extremely similar comments made. The headings are editor s best attempt to draft vision statements reflecting the participants

More information

How To Power A Power Plant With Waste Heat

How To Power A Power Plant With Waste Heat Power Generation Siemens Organic Rankine Cycle Waste Heat Recovery with ORC Answers for energy. Table of Contents Requirements of the Future Power Supply without extra Fuel Siemens ORC-Module Typical Applications

More information

Abstract. emails: ronderby@earthlink.net, splazzara@aol.com, phone: 860-429-6508, fax: 860-429-4456

Abstract. emails: ronderby@earthlink.net, splazzara@aol.com, phone: 860-429-6508, fax: 860-429-4456 SOLAR THERMAL POWER PLANT WITH THERMAL STORAGE Ronald C. Derby, President Samuel P. Lazzara, Chief Technical Officer Cenicom Solar Energy LLC * Abstract TM employs 88 parabolic mirrors (concentrating dishes)

More information

Demand Response Management System ABB Smart Grid solution for demand response programs, distributed energy management and commercial operations

Demand Response Management System ABB Smart Grid solution for demand response programs, distributed energy management and commercial operations Demand Response Management System ABB Smart Grid solution for demand response programs, distributed energy management and commercial operations Utility Smart Grid programs seek to increase operational

More information

Efficiency Metrics for CHP Systems: Total System and Effective Electric Efficiencies

Efficiency Metrics for CHP Systems: Total System and Effective Electric Efficiencies Efficiency Metrics for CHP Systems: Total System and Effective Electric Efficiencies Combined heat and power (CHP) is an efficient and clean approach to generating power and thermal energy from a single

More information

Design Exercises and Projects in Energy Engineering Course

Design Exercises and Projects in Energy Engineering Course Session XXXX Design Exercises and Projects in Energy Engineering Course Kendrick Aung Department of Mechanical Engineering Lamar University, Beaumont, Texas 77710 Abstract Energy Engineering is a senior

More information

TEXAS A&M UNIVERSITY Utilities & Energy Services

TEXAS A&M UNIVERSITY Utilities & Energy Services TEXAS A&M UNIVERSITY Utilities & Energy Services (A Full Service Campus Utility in College Station, Texas, United States) Submission for the 3rd International District Energy Climate Award June 13, 2013

More information

Enhanced Heating and Cooling Plans to Quantify the Impact of Increased Energy Efficiency in EU Member States

Enhanced Heating and Cooling Plans to Quantify the Impact of Increased Energy Efficiency in EU Member States Project No: IEE/13/650 Enhanced Heating and Cooling Plans to Quantify the Impact of Increased Energy Efficiency in EU Member States Translating the Heat Roadmap Europe Methodology to Member State Level

More information

Implications of Abundant Natural Gas

Implications of Abundant Natural Gas Implications of Abundant Natural Gas JAE EDMONDS AND HAEWON MCJEON APRIL 2013 May 29, 2013 1 Background May 29, 2013 2 The natural gas revolution The application of technologies for accessing unconventional

More information

UNIT COMMITMENT AND ECONOMIC DISPATCH SOFTWARE TO OPTIMISE THE SHORT-TERM SCHEDULING OF ELECTRICAL POWER GENERATION

UNIT COMMITMENT AND ECONOMIC DISPATCH SOFTWARE TO OPTIMISE THE SHORT-TERM SCHEDULING OF ELECTRICAL POWER GENERATION UNIT COMMITMENT AND ECONOMIC DISPATCH SOFTWARE TO OPTIMISE THE SHORT-TERM SCHEDULING OF ELECTRICAL POWER GENERATION INTRODUCTION Electricity generating companies and power systems have the problem of deciding

More information

CHP Strategies and Options / Stored Energy. 2014 ENERGY SYMPOSIUM April8, 2014 Reading Country Club

CHP Strategies and Options / Stored Energy. 2014 ENERGY SYMPOSIUM April8, 2014 Reading Country Club CHP Strategies and Options / Stored Energy Jim Freihaut, Ph.D. Director, DOE Mid Atlantic CHP Technical Assistance Partnership Director, Indoor Aerosol Laboratory Professor, Architectural Engineering 104

More information

Work package 3 Comparison of member state approaches

Work package 3 Comparison of member state approaches Work package 3 Comparison of member state approaches Country overview: United Kingdom Report produced within the CODE project www.code-project.eu January 2011 The sole responsibility for the content of

More information

Power Generation. Lilian Macleod Power Supply Manager National Grid

Power Generation. Lilian Macleod Power Supply Manager National Grid Power Generation Place your chosen image here. The four corners must just cover the arrow tips. For covers, the three pictures should be the same size and in a straight line. This text box and image can

More information

Steam Turbine Concepts for the Future Volatile Power Market

Steam Turbine Concepts for the Future Volatile Power Market Steam Turbine Concepts for the Future Volatile Power Market Power-Gen Europe June 12 14, 2012 Michael Wechsung Thomas Loeper Radim Znajda Siemens AG - Energy Sector Fossil Power Generation Agenda Situation

More information

Integrating End-User and Grid Focused Batteries and Long-Term Power-to-Gas Storage for Reaching a 100 % Renewable Energy Supply

Integrating End-User and Grid Focused Batteries and Long-Term Power-to-Gas Storage for Reaching a 100 % Renewable Energy Supply Integrating End-User and Grid Focused Batteries and Long-Term Power-to-Gas Storage for Reaching a 100 % Renewable Energy Supply M. Hlusiak, Ch. Breyer 7 th International Renewable Energy Storage Conference

More information

Demand Response Market Overview. Glossary of Demand Response Services

Demand Response Market Overview. Glossary of Demand Response Services Demand Response Market Overview Glossary of Demand Response Services Open Energi has partnered with Tarmac to provide Demand Response What s inside... Market Overview Balancing Electricity Supply and Demand

More information

DISTRICT ENERGY ST. PAUL. Achieving Energy Independence

DISTRICT ENERGY ST. PAUL. Achieving Energy Independence Overview District Energy St. Paul Inc. (DESP) currently provides heating to 80 percent of St. Paul s central business district and adjacent urban areas. The system uses a 65-MWth municipal wood waste combined

More information

Report to AGEA. Comparative Costs of Electricity Generation Technologies. February 2009. Ref: J1721

Report to AGEA. Comparative Costs of Electricity Generation Technologies. February 2009. Ref: J1721 Report to AGEA Comparative Costs of Electricity Generation Technologies February 2009 Ref: J1721 Project Team Walter Gerardi Antoine Nsair Melbourne Office Brisbane Office 242 Ferrars Street GPO Box 2421

More information

Tax Credit Extension: Impact on Renewables Investment and Emissions Outcomes

Tax Credit Extension: Impact on Renewables Investment and Emissions Outcomes CONCORD, MA - WASHINGTON, DC 47 Junction Square Drive Concord, MA 01742 978-369-5533 www.mjbradley.com MJB&A Issue Brief March 7, 2016 Tax Credit Extension: Impact on Renewables Investment and Emissions

More information

CSP. Feranova Reflect Technology. klimaneutral natureoffice.com DE-296-558771 gedruckt

CSP. Feranova Reflect Technology. klimaneutral natureoffice.com DE-296-558771 gedruckt RENEWABLE SOURCES RENEWABLE SOURCES CSP Feranova Reflect Technology klimaneutral natureoffice.com DE-296-558771 gedruckt Gedruckt auf 100% Recyclingpapier Circlesilk Premium White 200/150 g/m 2 2012 Feranova

More information

Power System review W I L L I A M V. T O R R E A P R I L 1 0, 2 0 1 3

Power System review W I L L I A M V. T O R R E A P R I L 1 0, 2 0 1 3 Power System review W I L L I A M V. T O R R E A P R I L 1 0, 2 0 1 3 Basics of Power systems Network topology Transmission and Distribution Load and Resource Balance Economic Dispatch Steady State System

More information

CSP-gas hybrid plants: Cost effective and fully dispatchable integration of CSP into the electricity mix

CSP-gas hybrid plants: Cost effective and fully dispatchable integration of CSP into the electricity mix CSP-gas hybrid plants: Cost effective and fully dispatchable integration of CSP into the electricity mix Erik Zindel Director Marketing CSP (Power Block) Siemens AG PowerGen Europe 2012 Köln Messe, 12-14

More information

Renewable Choice Energy

Renewable Choice Energy Catawba College Table of Contents About Renewable Choice The Problem: Electricity Production Today The Solutions: Renewable Energy Sources Renewable Energy Credits (RECs) Who can participate in Renewable

More information

English version. Manual for Determination of Combined Heat and Power (CHP)

English version. Manual for Determination of Combined Heat and Power (CHP) CEN/CENELEC WORKSHOP CWA 45547 September 2004 AGREEMENT ICS 27.100 English version Manual for Determination of Combined Heat and Power (CHP) This CEN/CENELEC Workshop Agreement has been drafted and approved

More information

Levelised Unit Electricity Cost Comparison of Alternate Technologies for Baseload Generation in Ontario

Levelised Unit Electricity Cost Comparison of Alternate Technologies for Baseload Generation in Ontario Canadian Energy Research Institute Levelised Unit Electricity Cost Comparison of Alternate Technologies for Baseload Generation in Ontario Matt Ayres Senior Director, Research Electricity Morgan MacRae

More information

Is Germany in the slow lane for low carbon heat?

Is Germany in the slow lane for low carbon heat? Is Germany in the slow lane for low carbon heat? Our latest research challenges the conventional wisdom that the best growth opportunities for low carbon heat in Europe are in Germany Delta-ee Whitepaper

More information

Danish Energy Model RE Policy Tools MAIN Asian Dialog, Bali January 20-22 2014. Mr. Henrik Breum Special Advisor

Danish Energy Model RE Policy Tools MAIN Asian Dialog, Bali January 20-22 2014. Mr. Henrik Breum Special Advisor Danish Energy Model RE Policy Tools MAIN Asian Dialog, Bali January 20-22 2014 Mr. Henrik Breum Special Advisor Agenda Danish Energy Model RE Policy Tools Introduction The Danish Energy Model Past, now

More information

Smart Energy Systems Energy Efficient Buildings and the Design of future Sustainable Energy Systems

Smart Energy Systems Energy Efficient Buildings and the Design of future Sustainable Energy Systems Smart Energy Systems Energy Efficient Buildings and the Design of future Sustainable Energy Systems Henrik Lund Professor in Energy Planning Aalborg University Renewable Energy Systems A Smart Energy Systems

More information

University of Maryland College Park District Energy System. IDEA Campus Energy Conference February 9, 2012

University of Maryland College Park District Energy System. IDEA Campus Energy Conference February 9, 2012 University of Maryland College Park District Energy System IDEA Campus Energy Conference February 9, 2012 UMCP District Energy System The University of Maryland district energy system consists of a well

More information

Offshore Wind: some of the Engineering Challenges Ahead

Offshore Wind: some of the Engineering Challenges Ahead Offshore Wind: some of the Engineering Challenges Ahead David Infield CDT in Wind Energy Systems Institute of Energy and Environment University of Strathclyde International context (from IPCC report) Greenhouse

More information

EVALUATION OF GEOTHERMAL ENERGY AS HEAT SOURCE OF DISTRICT HEATING SYSTEMS IN TIANJIN, CHINA

EVALUATION OF GEOTHERMAL ENERGY AS HEAT SOURCE OF DISTRICT HEATING SYSTEMS IN TIANJIN, CHINA EVALUATION OF GEOTHERMAL ENERGY AS HEAT SOURCE OF DISTRICT HEATING SYSTEMS IN TIANJIN, CHINA Jingyu Zhang, Xiaoti Jiang, Jun Zhou, and Jiangxiong Song Tianjin University, North China Municipal Engineering

More information

Sustainable Schools 2009. Renewable Energy Technologies. Andrew Lyle RD Energy Solutions

Sustainable Schools 2009. Renewable Energy Technologies. Andrew Lyle RD Energy Solutions Sustainable Schools 2009 Renewable Energy Technologies Andrew Lyle RD Energy Solutions RD Energy Solutions Energy efficiency and renewable energy consultancy Project management of installations Maintenance

More information

Micro CHP (Combined Heat & Power) and its relevance to the gas industry

Micro CHP (Combined Heat & Power) and its relevance to the gas industry Micro CHP (Combined Heat & Power) and its relevance to the gas industry Potential for micro CHP Given the dire current market conditions for CHP in the liberalised European energy markets, the optimistic

More information

Nomura Conference. Biomass: the 4 th Energy Source. June 2011. 22 February 2011

Nomura Conference. Biomass: the 4 th Energy Source. June 2011. 22 February 2011 Nomura Conference Biomass: the 4 th Energy Source 22 February 2011 June 2011 Agenda Drax Introduction and Investment Case Biomass Overview Biomass Fuel and Supply Chain Biomass Sustainability Biomass at

More information

Reasons for the drop of Swedish electricity prices

Reasons for the drop of Swedish electricity prices Reasons for the drop of Swedish electricity prices Project for Svensk Energi Dr. Lion Hirth Neon Neue Energieökonomik GmbH Karl-Marx-Platz 12, 12043 Berlin, Germany hirth@neon-energie.de Summary report

More information

310 Exam Questions. 1) Discuss the energy efficiency, and why increasing efficiency does not lower the amount of total energy consumed.

310 Exam Questions. 1) Discuss the energy efficiency, and why increasing efficiency does not lower the amount of total energy consumed. 310 Exam Questions 1) Discuss the energy efficiency, and why increasing efficiency does not lower the amount of total energy consumed. 2) What are the three main aspects that make an energy source sustainable?

More information

Passive & Active Design

Passive & Active Design Passive & Active Design CIBSE Building Simulations Group Peter A. Brown CEng, MBA October 2010 Introduction Passive & Active Design Introduction What are the interactions between passive and active design?

More information

Gas Absorption Heat Pumps. Future proofing your heating and hot water

Gas Absorption Heat Pumps. Future proofing your heating and hot water Gas Absorption Heat Pumps Future proofing your heating and hot water Gas Absorption Heat Pumps 1 Contents Gas Absorption Heat Pumps (GAHPs) The heating solution What is a Gas Absorption Heat Pump? How

More information

Energy Saving by ESCO (Energy Service Company) Project in Hospital

Energy Saving by ESCO (Energy Service Company) Project in Hospital 7th International Energy Conversion Engineering Conference 2-5 August 2009, Denver, Colorado AIAA 2009-4568 Tracking Number: 171427 Energy Saving by ESCO (Energy Service Company) Project in Hospital Satoru

More information

Bioenergy. A sustainable energy source.

Bioenergy. A sustainable energy source. Bioenergy. A sustainable energy source. The natural energy cycle Skellefteå Kraft strongly believes that bioenergy will play an important role in future Swedish energy production. Its raw material consists

More information

Cost Analysis of District Heating Compared to its Competing Technologies

Cost Analysis of District Heating Compared to its Competing Technologies Cost Analysis of District Heating Compared to its Competing Technologies Jan Eric Thorsen Director Danfoss Application Centre Danfoss District Energy - Application Centre DK-Nordborg Oddgeir Gudmundsson

More information

Developments and trends shaping the future for Waste-to- Energy technology suppliers

Developments and trends shaping the future for Waste-to- Energy technology suppliers Developments and trends shaping the future for Waste-to- Energy technology suppliers 21 st October 2015 Copenhagen, Denmark Edmund Fleck ESWET President 2 Contents 1. About ESWET 2. Introduction 3. Modern

More information

Issue. September 2012

Issue. September 2012 September 2012 Issue In a future world of 8.5 billion people in 2035, the Energy Information Administration s (EIA) projected 50% increase in energy consumption will require true all of the above energy

More information

Founded 1900, 8 Nobel Prize Winners Premiere Centre for Science & Engineering

Founded 1900, 8 Nobel Prize Winners Premiere Centre for Science & Engineering Founded 1900, 8 Nobel Prize Winners Premiere Centre for Science & Engineering Liquid Air Energy Storage a new energy vector and means of large-scale energy storage? Professor Richard A Williams OBE FREng

More information

Gas-Fired Power HIGHLIGHTS

Gas-Fired Power HIGHLIGHTS Gas-Fired Power HIGHLIGHTS PROCESS AND TECHNOLOGY STATUS Approximately 21% of the world s electricity production is based on natural gas. The global gas-fired generation capacity amounts to 1168 GW e (2007).

More information

Roche Basel/Kaiseraugst

Roche Basel/Kaiseraugst 2020 Roche Basel/Kaiseraugst 1 Contents 5 Introduction 6 Energy Vision 7 Energy Objectives 10 Implementing our Energy Objectives 11 Reduce energy consumption 14 Sustainable energy sources 16 Innovative

More information

CCS in the Oil refining Industry System Solutions and Assessment of Capture Potential

CCS in the Oil refining Industry System Solutions and Assessment of Capture Potential CCS in the Oil refining Industry System Solutions and Assessment of Capture Potential Daniella Johansson (PhD student) Supervisors: Prof. Thore Berntsson & Dr. Per-Åke Franck Division of Heat and Power

More information

Some micro- and macro-economics of offshore wind*

Some micro- and macro-economics of offshore wind* Some micro- and macro-economics of offshore wind* EPSRC SUPERGEN Wind Energy Hub University of Strathclyde May 2016 Fraser of Allander Institute Energy Modelling Team Fraser of Allander Institute Department

More information

Rainwater Harvesting

Rainwater Harvesting Rainwater Harvesting With climate change now a reality rather than a speculated possibility, the demand on water resources has gone up, whilst the amount of water available for supply has gone down. Forth

More information

Grid requirements with scattered load balancing and an open electricity market Poul Alberg Østergaard * Aalborg University

Grid requirements with scattered load balancing and an open electricity market Poul Alberg Østergaard * Aalborg University Grid requirements with scattered load balancing and an open electricity market Poul Alberg Østergaard * Aalborg University Abstract Denmark is in a situation with many scattered sources of electricity,

More information

Introduction to Ontario's Physical Markets

Introduction to Ontario's Physical Markets Introduction to Ontario's Physical Markets Introduction to Ontario s Physical Markets AN IESO MARKETPLACE TRAINING PUBLICATION This document has been prepared to assist in the IESO training of market

More information

GLOBAL RENEWABLE ENERGY MARKET OUTLOOK 2013

GLOBAL RENEWABLE ENERGY MARKET OUTLOOK 2013 GLOBAL RENEWABLE ENERGY MARKET OUTLOOK 213 FACT PACK GUY TURNER HEAD OF ECONOMICS AND COMMODITIES APRIL 26, 213 GLOBAL RENEWABLE ENERGY MARKET OUTLOOK, 26 APRIL 213 1 INTRODUCTION This year s Global Renewable

More information

Adapting Gas-Power Generation to New Role in Low-Carbon Energy Systems

Adapting Gas-Power Generation to New Role in Low-Carbon Energy Systems Adapting Gas-Power Generation to New Role in Low-Carbon Energy Systems Sandra Scalari Enel Ingegneria e Ricerca SpA Copenhagen, May 27-28 th 2014 Enel Presentation Generation Shift & Market in Europe Enel

More information

Heating technology mix in a future German energy system dominated by renewables

Heating technology mix in a future German energy system dominated by renewables Heating technology mix in a future German energy system dominated by renewables Prof. Dr. Hans-Martin Henning Fraunhofer Institute for Solar Energy Systems ISE 4 th Congress of Polish Organization of Heat

More information

NUCLEAR FUEL CYCLE ROYAL COMMISSION. Advantages and disadvantages of different technologies and fuel sources; risks and opportunities

NUCLEAR FUEL CYCLE ROYAL COMMISSION. Advantages and disadvantages of different technologies and fuel sources; risks and opportunities NUCLEAR FUEL CYCLE ROYAL COMMISSION Submission on Issues Paper 3: Advantages and disadvantages of different technologies and fuel sources; risks and opportunities 3.8 What issues should be considered in

More information

A Discussion of PEM Fuel Cell Systems and Distributed Generation

A Discussion of PEM Fuel Cell Systems and Distributed Generation A Discussion of PEM Fuel Cell Systems and Distributed Generation Jeffrey D. Glandt, M. Eng. Principal Engineer, Solutions Engineering May 2011 The information contained in this document is derived from

More information

Annual Electricity and Heat Questionnaire

Annual Electricity and Heat Questionnaire Annual Electricity and Heat Questionnaire IEA Statistics Course Pierre Boileau International Energy Agency OVERVIEW Global trends in electricity production 1973-2009 IEA Annual Electricity and Heat Questionnaire

More information

Study of hybrid wind-hydro power plants operation and performance in the autonomous electricity system of Crete Island

Study of hybrid wind-hydro power plants operation and performance in the autonomous electricity system of Crete Island Study of hybrid wind-hydro power plants operation and performance in the autonomous electricity system of Crete Island J. S. ANAGNOSTOPOULOS and D. E. PAPANTONIS School of Mechanical Engineering National

More information

Making Coal Use Compatible with Measures to Counter Global Warming

Making Coal Use Compatible with Measures to Counter Global Warming Making Use Compatible with Measures to Counter Global Warming The J-POWER Group is one of the biggest coal users in Japan, consuming approximately 2 million tons of coal per year at eight coal-fired power

More information

Busting Myths about Renewable Energy

Busting Myths about Renewable Energy Symposium on Renewable Energy: the Future for Australia, UNSW 15 April 2014 Busting Myths about Renewable Energy Dr Mark Diesendorf Institute of Environmental Studies University of New South Wales Sydney,

More information

Green Development of Infrastructure and Campus: Modern Practice and Approach in District Heating and Cooling System

Green Development of Infrastructure and Campus: Modern Practice and Approach in District Heating and Cooling System Green Development of Infrastructure and Campus: Modern Practice and Approach in District Heating and Cooling System Hongxi Yin, Ph.D. School of Civil Engineering January 22, 2009 Page 1 The Impacts of

More information

SEATTLE STEAM COMPANY FREQUENTLY ASKED QUESTIONS

SEATTLE STEAM COMPANY FREQUENTLY ASKED QUESTIONS SEATTLE STEAM COMPANY FREQUENTLY ASKED QUESTIONS What products/services does Seattle Steam provide? The company provides thermal energy (heat) produced at two central heating plants in downtown Seattle.

More information

Displacement of Coal with Natural Gas to Generate Electricity

Displacement of Coal with Natural Gas to Generate Electricity Displacement of Coal with Natural Gas to Generate Electricity The American Coalition for Clean Coal Electricity (ACCCE) supports a balanced energy strategy that will ensure affordable and reliable energy,

More information

12.5: Generating Current Electricity pg. 518

12.5: Generating Current Electricity pg. 518 12.5: Generating Current Electricity pg. 518 Key Concepts: 1. Electrical energy is produced by energy transformations. 2. Electrical energy is produced from renewable and non-renewable resources. 4. Electrical

More information