Magnetism and Electromagnetic Induction Generators and Transformers


 Aubrey Payne
 1 years ago
 Views:
Transcription
1 PHSC 101 Lab Magnetism and Electromagnetic Induction Generators and Transformers Objectives:  Explore a magnetic field.  Demonstrate electromagnetic induction with a magnet and a coil of wire.  Demonstrate mutual inductance between two coils of wire.  Demonstrate energy transformation with a generator.  Measure voltage stepup and stepdown with a simple transformer. Section A: Magnetism Using a magnetic compass, plot the magnetic field around your magnet using north pointing arrows on the diagrams below.
2 Section B: Electromagnetic Induction A changing magnetic field from a permanent magnet or an electromagnet can induce a potential difference and current in a coil of wire. Take the 200 turn coil and connect it with wires to the galvanometer (the galvanometer is a very sensitive ammeter take care to keep the battery connections away from it.). Move the magnet toward the coil of wire. What does the galvanometer do (which way does it move and by how much)? Move the magnet away from the coil of wire. What does the galvanometer do? Move the magnet toward the coil of wire rapidly. What does the galvanometer do? Move the magnet away from the coil of wire rapidly. What does the galvanometer do? Exchange the 400 turn coil for the 200 and repeat the above motions. In general, what does the galvanometer do differently with the 400 turn coil? Let s summarize the electromagnetic induction effect so far: More / less (pick one) current is induced with greater magnet motion. More / less (pick one) current is induced with more coils of wire.
3 Now, let s see if an electromagnet can induce current in another coil of wire. Leave the 400 turn coil connected to the galvanometer and connect the 200 turn coil in series with the telegraph key switch to the battery (don t let the battery connections come close to the galvanometer connections). Place the 200 turn coil on top of the 400 turn coil with their holes aligned and hit the switch momentarily. What does the galvanometer do? Now place an iron bar through the holes of the two coils and momentarily hit the switch. What does the galvanometer do now? So the changing magnetic field of the coil connected to the battery can induce a current in a second coil of wire. The iron bar minimizes / enhances (pick one) the electromagnetic induction. Section C: The Electric Generator A moving coil of wire in a magnetic field will have a current induced in it and can produce electrical power. Complete the following exercise on generators. Locate the plastic handheld generator and leads that go with it. Connect it to a DC voltmeter set to measure up to 20 V. Caution! Cranking on the generator too vigorously can ruin it; it has relatively fragile plastic gears. Turn the crank until you hold a voltage of about 2.0 volts (it will be jumping around, a bit). It will take 10 or 15 seconds to stabilize. Count the number of revolutions that you must turn the handle in 30 seconds to maintain this voltage. Multiply by two and record the rpm required to produce a voltage of 2.0 volts.. Repeat for a voltage of 4 volts. (again wait until you are pretty steady). Make sure that each of your partners gets a chance. What do you conclude regarding the relationship in voltage output to handle speed?
4 Connect the generator to the light bulb. Turn the crank until the light burns with moderate brightness. Disconnect the bulb while you are cranking. Make a mental note on the difference in effort required between the light and no light. Let your partners each experience this effort. Disconnect the bulb and turn the handle at about the same speed. Let your partners do it also. You might try connecting and disconnecting the light while you turn the crank. Explain in terms of work  energy what's going on between you, the generator and the bulb. What's producing the energy, what's using the energy and what's converting one type on energy (what type?), into another (what type?). Disconnect the generator from the light bulb and connect it to the 1.0 farad capacitor. Turn the handle on the generator at about the rate you were using on the light bulb. Notice the effort on the handle. Does it increase with time (as you are charging the capacitor) or decrease? After charging the capacitor in this way disconnect the generator (before you stop turning the crank if you can) and connect the capacitor to the light bulb. What do you observe regarding the bulb? What happens as time goes on? Make a statement following the energy transfers and storage starting with the chemical energy in your body and ending with the light and heat energy from the bulb.
5 Disconnect the bulb again, and charge the capacitor with the generator. After a few seconds of charging let go of the handle while the generator is still connected. What do you observe? Did you make a note regarding the direction of the handle? If not observe again. Repeat with the generator connected to the light bulb instead of the capacitor. Does the handle continue to move as it did with the capacitor connected? Repeat with the generator connected a 47 Ω resistor. Does the handle continue to move as it did with the capacitor connected? Based on your observations, fill in the answer to the following questions. (more than one may be correct) Which of the following stores electric energy? a. generators c. capacitors b. resistors d. light bulbs Which of the following transforms mechanical energy into electric energy? a. generators c. capacitors b. resistors d. light bulbs Which two of the following primarily consumes electric energy? a. generators c. capacitors b. resistors d. light bulbs
6 Section E: The Electric Transformer Consider a coil of wire connected to an ac voltage source. This primary coil can transmit energy to a secondary coil coupled to it with an iron core through electromagnetic induction via the changing magnetic field in the core. If the ratio of turns of wire of one coil to the other is varied, the voltage can be stepped up or stepped down in proportion to the ratio of coil turns. In a perfect transformer (transformers can have efficiencies as high as 99%) the rate of energy flow from the primary coil (power) is equal to the power into the secondary coil. Since P = IV, if voltage is stepped up, current must be proportionally stepped down. If voltage is stepped down, current must be proportionally stepped up. Transformer equation: V s / V p = N s / N p = I p / I s where N = number of turns Go to transformer demonstration station #1. A 400 turn coil (primary) is coupled with an 800 turn coil (secondary) via an iron yoke. The 400 turn coil is connected to an ac voltage source generating a bit more than four volts ac. Without changing any settings or connections, turn on the power supply and turn on the two voltmeters measuring voltage across the primary and secondary coils of the transformer. Caution: if you change any settings or connections, you may destroy something. Check with a physics instructor if you re not sure about the setup, before you turn on the electricity. Note the readings on the voltmeters: V p V s Turn off the power supply and voltmeters. Given the primary voltage, in theory what should the secondary voltage be? Show work: What is the percent difference between calculated V s and measured V s? Show work: Why might the secondary voltage be different than predicted?
7 Go to transformer demonstration station #2. This demonstration is the same as #1 except the coils have been switched (800 turn coil is the primary and 400 turn coil is the secondary). Without changing any settings or connections, turn on the power supply and turn on the two voltmeters measuring voltage across the primary and secondary coils of the transformer. Caution: if you change any settings or connections, you may destroy something. Check with a physics instructor if you re not sure about the setup, before you turn on the electricity. Note the readings on the voltmeters: V p V s Turn off the power supply and voltmeters. Given the primary voltage, in theory, what should the secondary voltage be? Show work: What is the percent difference between calculated V s and measured V s? Show work: Why might the secondary voltage be different than predicted? Homework on next page!
8 Homework Electromagnetism A magnet is inducing a voltage and current in a coil of wire by moving toward it. If you double the magnet s strength the induced voltage and current. If you double the magnet s speed the induced voltage and current. If you double the coils number of turns, the induced voltage and current. Transformer Equation V s / V p = N s / N p = I p / I s where V = voltage, N = number of turns, I = current, s = secondary coil, p = primary coil V s = V p (N s / N p ) I s = I p (N p / N s ) So, voltage is proportional to the ratio of turns (double number of turns doubles voltage), and, current is inversely proportional to the turns ratio (double turns ratio halves current) A primary transformer coil of 100 turns is powered by 120 volts at 2.0 amps. The secondary coil has 2000 turns. What is the voltage across and current through the secondary coil? Remember to show work. (2400 V, 0.10 A)
Magnetic Induction Name: 1. Magnetic field of a coil of current 2. Comparison with the field of a bar magnet
Magnetic Induction ame: 1. Magnetic field of a coil of current Connect the large coil of wire to a 5 Volt DC power source. The diagram below represents the coil current crosssection. Use a compass to
More informationChapter 14. Transformers ISU EE. C.Y. Lee
Chapter 14 Transformers Objectives Explain mutual inductance Describe how a transformer is constructed and how it works Explain how a stepup and down transformer works Discuss the effect of a resistive
More informationElectrical Circuits. Ammeter Light Bulb Ohmmeter. Power Supply Resistor Voltmeter. Symbols for Electrical Components.
PHSC 101 Electrical Circuits Name Purpose To learn how to measure resistance, voltage, and current using a multimeter. To become familiar with the basic components of simple electrical circuits and Ohm's
More information1. E&M induction requires change, of the intensity of a magnetic field or of motion in a magnetic field.
Chapter 25 EXERCISE key 1. E&M induction requires change, of the intensity of a magnetic field or of motion in a magnetic field. 2. Magnetic induction will not occur in nylon, since it has no magnetic
More information1. The diagram below represents magnetic lines of force within a region of space.
1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest
More informationIn order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook.
In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook. When summarising notes, use different colours and draw diagrams/pictures. If you
More informationLevel 2 Physics: Demonstrate understanding of electricity and electromagnetism
Level 2 Physics: Demonstrate understanding of electricity and electromagnetism Static Electricity: Uniform electric field, electric field strength, force on a charge in an electric field, electric potential
More informationScience 10F: Nature of Electricity. Cells and Circuits
Science 10F: Nature of Electricity Investigation #7: Cells and Circuits Background: Suppose you have two dry cells. There are two different ways to connect the dry cells together. One of the ways to connect
More informationphysics 112N electromagnetic induction
physics 112N electromagnetic induction experimental basis of induction! seems we can induce a current in a loop with a changing magnetic field physics 112N 2 magnetic flux! useful to define a quantity
More informationChapter 14 Magnets and
Chapter 14 Magnets and Electromagnetism How do magnets work? What is the Earth s magnetic field? Is the magnetic force similar to the electrostatic force? Magnets and the Magnetic Force! We are generally
More information3_given a graph of current_voltage for a resistor, determine the resistance. Three resistance R1 = 1.0 kω, R2 = 1.5 kω, R3 = 2.
Ohm s Law Objectives: 1_measure the current_voltage curve for a resistor 2_construct a graph of the data from objective 1 3_given a graph of current_voltage for a resistor, determine the resistance Equipment:
More informationThe current that flows is determined by the potential difference across the conductor and the resistance of the conductor (Ohm s law): V = IR P = VI
PHYS1000 DC electric circuits 1 Electric circuits Electric current Charge can move freely in a conductor if an electric field is present; the moving charge is an electric current (SI unit is the ampere
More informationNational 4 Summary Notes
North Berwick High School Department of Physics National 4 Summary Notes Unit 3 Electricity and Energy Physics N4 Unit 1: Pupil Notes Page 1 of 22 Section 1: Generation of Electricity What is electricity?
More informationTHE TRANSFORMER. REFERENCES: PASCO Transformer Notes Physics for Scientists and Engineers, Tipler, 4 th Ed., Vol. 2 INTRODUCTION.
THE TRANSFORMER LAB ELEC 7 REFERENCES: PASCO Transformer Notes Physics for Scientists and Engineers, Tipler, 4 th Ed., Vol. 2 NTRODUCTON Nearly all of today s electrical energy is produced as alternating
More informationQuestion Bank. 1. Electromagnetism 2. Magnetic Effects of an Electric Current 3. Electromagnetic Induction
1. Electromagnetism 2. Magnetic Effects of an Electric Current 3. Electromagnetic Induction 1. Diagram below shows a freely suspended magnetic needle. A copper wire is held parallel to the axis of magnetic
More informationGoals. Introduction R = DV I (7.1)
Lab 7. Ohm s Law Goals To understand Ohm s law, used to describe the behavior of electrical conduction in many materials and circuits. To calculate the electrical power dissipated as heat in electrical
More informationWhat is the direction of a compass needle placed at point A?
SAMPLE QUIZ: COVERAGE OHM S LAW CIRCUIT ANALYSIS RESISTANCE ELECTRICAL POWER MAGNETISM AND ELECTROMAGNETISM MAGNETISM: 1. In order to produce a magnetic field, an electric charge must be 1. stationary
More information12. Transformers, Impedance Matching and Maximum Power Transfer
1 1. Transformers, Impedance Matching and Maximum Power Transfer Introduction The transformer is a device that takes AC at one voltage and transforms it into another voltage either higher or lower than
More informationElectric Currents & DC Circuits
Slide 1 / 70 Slide 2 / 70 1 The length of an aluminum wire is quadrupled and the radius is doubled. y which factor does the resistance change? lectric urrents & ircuits 2 4 1/2 1/4 1 Slide 3 / 70 2 copper
More informationCircuitsCircuit Analysis
Base your answers to questions 1 through 3 on the information and diagram below. 4. A 9volt battery is connected to a 4ohm resistor and a 5ohm resistor as shown in the diagram below. A 3.0ohm resistor,
More informationElectromagnetic Induction  A
Electromagnetic Induction  A APPARATUS 1. Two 225turn coils 2. Table Galvanometer 3. Rheostat 4. Iron and aluminum rods 5. Large circular loop mounted on board 6. AC ammeter 7. Variac 8. Search coil
More informationMagnetic Fields and Their Effects
Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some handson experience with the effects of, and in some cases
More informationMaking a Shaker (or Forever) Flashlight. Grade 9 Activity Plan
Making a Shaker (or Forever) Flashlight Grade 9 Activity Plan 1 Making a Shaker (or Forever) Flashlight Objectives: 1. To apply knowledge of electromagnetic induction to generate power for the flashlight.
More informationHow do you measure voltage and current in electric circuits? Materials
20A Electricity How do you measure voltage and current in electric circuits? Electricity Investigation 20A We use electricity every day, nearly every minute! In this Investigation you will build circuits
More informationChapter 22: Electric motors and electromagnetic induction
Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on
More informationThe purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.
260 171 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this
More informationELECTRICITY & ELECTROMAGNETISM TRANSFORMERS + ETC
Circuitry, Formulas & Electricity Ch5 Bushong RT 244 12 Lect # 3 1 RT 244 WEEK 10 rev 2012 2 LECTURE # 3 ELECTRICITY & ELECTROMAGNETISM TRANSFORMERS + ETC BUSHONG CH. 4 & 5 REF: CARLTONS CH 3, 4 & 5 &
More informationMagnetic Flux (primary) = Magnetic Flux (secondary) Eq 2
Transformers Electrical transformers are used to transform voltage or current. The basic arrangement is shown in Figure 1 and 2 below. The best a transformer can do is to transfer all of the electrical
More informationDraw a ring around the correct answer to complete the following sentences. power supply. (1)
Q. The diagram shows a transformer made by a student. The student has designed the transformer to make a 6 V light bulb work using a 2 V power supply. (a) Draw a ring around the correct answer to complete
More informationSeries & Parallel Circuits Challenge
Name: Part One: Series & Parallel Circuits Challenge 1. Build a circuit using two batteries and two light bulbs in a way to illuminate the two light bulbs so that if either light bulb is disconnected,
More informationSTUDY GUIDE: ELECTRICITY AND MAGNETISM
319 S. Naperville Road Wheaton, IL 60187 www.questionsgalore.net Phone: (630) 5805735 EMail: info@questionsgalore.net Fax: (630) 5805765 STUDY GUIDE: ELECTRICITY AND MAGNETISM An atom is made of three
More informationChapter 21 Electromagnetic Induction and Faraday s Law
Lecture PowerPoint Chapter 21 Physics: Principles with Applications, 6 th edition Giancoli Chapter 21 Electromagnetic Induction and Faraday s Law 2005 Pearson Prentice Hall This work is protected by United
More informationUNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering
UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 6 Precision Resistance Measurements Introduction: It is sometimes necessary to make resistance
More informationInduced voltages and Inductance Faraday s Law
Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic
More informationCircuits Review KEY Interpreting Diagrams Use the diagram below to answer the following questions.
Circuits Review KEY Interpreting Diagrams Use the diagram below to answer the following questions. 1. Look at the arrows which indicate the direction of the flow of electrons. Label the negative and the
More informationElectric Circuits. Concepts and Principles. Electric Circuits as Applied Physics. The Resistor
. Electric ircuits oncepts and Principles Electric ircuits as Applied Physics Electric circuits are one of the most practical applications of our understanding of electric and magnetic fields. In general,
More informationCh.20 Induced voltages and Inductance Faraday s Law
Ch.20 Induced voltages and Inductance Faraday s Law Last chapter we saw that a current produces a magnetic field. In 1831 experiments by Michael Faraday and Joseph Henry showed that a changing magnetic
More informationThe Synchronous Machine
Experiment No. 5 The Synchronous Machine Synchronous ac machines find application as motors in constant speed applications and, when interfaced to the power source with a variablefrequency converter system,
More informationElectricity. Voltage and current transformation with a transformer. LD Physics Leaflets P Electromagnetic induction Transformer
Electricity Electromagnetic induction Transformer LD Physics Leaflets Voltage and current transformation with a transformer P3.4.5. Objects of the experiment g Measuring the secondary voltage of an unloaded
More informationSINGLE PHASE TRANSFORMER MAGNETIC CIRCUIT AND ELECTRIC TRANSFORMER PART1: FAMILIARIZATION
Islamic University of Gaza Faculty of Engineering Electrical Engineering department Electric Machine Lab Eng. Omar A. Qarmout Eng. Amani S. Abu Reyala Experiment 3 SINGLE PHASE TRANSFORMER MAGNETIC CIRCUIT
More informationCAPACITIVE REACTANCE. We have already discussed the operation of a capacitor in a DC circuit, however let's just go over the main principles again.
Reading 13 Ron Bertrand VK2DQ http://www.radioelectronicschool.com CAPACITOR IN A DC CIRCUIT CAPACITIVE REACTANCE We have already discussed the operation of a capacitor in a DC circuit, however let's just
More informationCopper and Electricity: Generation
PHYSICS Copper and Electricity: Generation (Electromagnetic Induction) 1618 YEARS Below are different sections of this esource, for quick navigation. Electricity from Movement What is Induction? Flux
More informationElectrical Circuits. Ammeter Light Bulb Ohmmeter. Power Supply Resistor Voltmeter. Symbols for Electrical Components.
Physical Science 101 Electrical Circuits Name Partner s Name Purpose To learn how to measure resistance, voltage, and current using a multimeter. To become familiar with the basic components of simple
More informationHow Does it Flow? Electricity, Circuits, and Motors
How Does it Flow? Electricity, Circuits, and Motors Introduction In this lab, we will investigate the behavior of some direct current (DC) electrical circuits. These circuits are the same ones that move
More informationCapacitors. Goal: To study the behavior of capacitors in different types of circuits.
Capacitors Goal: To study the behavior of capacitors in different types of circuits. Lab Preparation A capacitor stores electric charge. A simple configuration for a capacitor is two parallel metal plates.
More informationComponents. Transformers
Components Transformers How does a transformer work? A transformer is based on a simple fact about electricity: when a fluctuating electric current flows through a wire, it generates a magnetic field (an
More informationQuestions. Question 1
Question 1 Questions Explain why transformers are used extensively in longdistance power distribution systems. What advantage do they lend to a power system? file 02213 Question 2 Are the transformers
More informationObjectives. Capacitors 262 CHAPTER 5 ENERGY
Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.
More informationHenry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 3 (Electric Circuits) July 16 th, 2013
Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 3 (Electric Circuits) July 16 th, 2013 1 What is an electrical circuit? An electrical network
More informationENGR 1181 Lab 3: Circuits
ENGR 1181 Lab 3: Circuits Lab Procedure Report Guidelines 2 Goal of the Circuits: The Circuits Lab introduces series and parallel circuit which are used by engineers. Students will review this document
More informationAnd in unmagnetized state, the molecular magnets are arranged randomly.
MAGNETISM A magnet is a piece of metal that attracts other metals. It has two poles i.e. North Pole and South Pole A pole This is a point or an area in a magnet where the attractive power seems to be concentrated.
More informationKirchhoff s Laws. Kirchhoff's Law #1  The sum of the currents entering a node must equal the sum of the currents exiting a node.
Kirchhoff s Laws There are two laws necessary for solving circuit problems. For simple circuits, you have been applying these equations almost instinctively. Kirchhoff's Law #1  The sum of the currents
More informationChapter 28. DirectCurrent Circuits
Chapter 28. DirectCurrent Circuits esistors in Series and Parallel (gnore internal resistances for batteries in this section.) 281. A 5 resistor is connected in series with a 3 resistor and a 16V
More informationMAGNETISM MAGNETISM. Principles of Imaging Science II (120)
Principles of Imaging Science II (120) Magnetism & Electromagnetism MAGNETISM Magnetism is a property in nature that is present when charged particles are in motion. Any charged particle in motion creates
More informationLab 6: Transformers in parallel and 3phase transformers.
Lab 6: Transformers in parallel and 3phase transformers. Objective: to learn how to connect transformers in parallel; to determine the efficiency of parallel connected transformers; to connect transformers
More information= V peak 2 = 0.707V peak
BASIC ELECTRONICS  RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard
More informationTuesday, 9 August 2016
Tuesday, 9 August 2016 Conceptual Problem 34.10 a When the switch on the left is closed, which direction does current flow in the meter on the right: 1. Right to left 2. Left to right 3. There is no induced
More informationChapter 13 Electric Circuits
Chapter 13 Electric Circuits What is Electric Current? How does it resemble the flow of water in a pipe? Can you get a flashlight bulb to light, with a battery and a single wire? Electric Circuits and
More informationCircuits. Page The diagram below represents a series circuit containing three resistors.
Name: Circuits Date: 1. Which circuit segment has an equivalent resistance of 6 ohms? 4. The diagram below represents a series circuit containing three resistors. 2. Base your answer to the following question
More informationLecture PowerPoints. Chapter 19 Physics: Principles with Applications, 7th edition Giancoli
Lecture PowerPoints Chapter 19 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching
More informationMutual inductance. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
Mutual inductance This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
More information1. 1. Right Hand Rule Practice. Using the the right hand rule, find find the the direction of of the the missing information in in the the diagram.
1. 1. Right Hand Rule Practice Using the the right hand rule, find find the the direction of of the the missing information in in the the diagram. (A) (A) up up (C) (C) left left (B) (B) down (D) (D) right
More informationGENERATORS AND MOTORS
GENERATORS AND MOTORS A device that converts mechanical energy (energy of motion windmills, turbines, nuclear power, falling water, or tides) into electrical energy is called an electric generator. The
More informationWires & Connections Component Circuit Symbol Function of Component. Power Supplies Component Circuit Symbol Function of Component
Lista Dei Simboli Dei Circuiti Per i Componenti Elettronici Wires & Connections Wire Wires joined Wires not joined To pass current very easily from one part of a circuit to another. A 'blob' should be
More informationPHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits
PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series
More informationCapacitors and a Galvanometer
Capacitors and a Galvanometer Object To investigate, understand and verify how capacitances are added together both in series and parallel and to consider the leakage of a capacitor. Also to employ a galvanometer
More informationElectrostatics. Electrostatics Version 2
1. A 150watt lightbulb is brighter than a 60.watt lightbulb when both are operating at a potential difference of 110 volts. Compared to the resistance of and the current drawn by the 150watt lightbulb,
More informationChapter 23 Magnetic Flux and Faraday s Law of Induction
Chapter 23 Magnetic Flux and Faraday s Law of Induction 23.1 Induced EMF 23.2 Magnetic Flux 23.3 Faraday s Law of Induction 23.4 Lenz s Law 23.5 Mechanical Work and Electrical Energy 23.6 Generators and
More informationSection 4. Ohm s Law: Putting up a Resistance. What Do You See? What Do You Think? Investigate. Learning Outcomes
Section 4: Ohm s Law: Putting up a Resistance Section 4 Ohm s Law: Putting up a Resistance What Do You See? Learning Outcomes In this section, you will Calculate the resistance of an unknown resistor given
More informationTransformer circuit calculations
Transformer circuit calculations This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
More informationMagnetism. What causes magnetism? Magnetic Force
1 2 Magnetism Top view of iron filings sprinkled around a magnet. The filings trace out a pattern of magnetic field lines in the space surrounding the magnet. Interestingly, the magnetic field lines continue
More informationOHM S LAW 05 AUGUST 2014
OHM S LAW 05 AUGUST 2014 In this lesson, we: Current Lesson Description Revise the definitions of current, potential difference and emf Explore Ohm s law Identify the characteristics of ohmic and nonohmic
More informationField Lines Domains. Horseshoe Ring/Disc
Magnets Info Lab (25 pts) 1. nickel, cobalt, iron 2.Iron, Nickel,and Cobalt have an unmatched electron spinning either UP or DOWN. The result is an atom with a net spin and thus a magnetic field. 3, Field
More informationPHY 212 LAB Magnetic Field As a Function of Current
PHY 212 LAB Magnetic Field As a Function of Current Apparatus DC Power Supply two D batteries one round bulb and socket a long wire 10Ω resistor set of alligator clilps coil Scotch tape function generator
More informationSaturday Xtra XSheet: 19. Electric circuits
Saturday Xtra XSheet: 9 Key Concepts Electric circuits This lesson focuses on the following: Potential Difference Current The resistance of a conductor Ohm s Law and circuit calculations Terminology
More informationAmpere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0
1 Ampere's Law Purpose: To investigate Ampere's Law by measuring how magnetic field varies over a closed path; to examine how magnetic field depends upon current. Apparatus: Solenoid and path integral
More informationAP Physics C Chapter 23 Notes Yockers Faraday s Law, Inductance, and Maxwell s Equations
AP Physics C Chapter 3 Notes Yockers Faraday s aw, Inductance, and Maxwell s Equations Faraday s aw of Induction  induced current a metal wire moved in a uniform magnetic field  the charges (electrons)
More informationCircuits and Resistivity
Circuits and Resistivity Look for knowledge not in books but in things themselves. W. Gilbert OBJECTIVES To learn the use of several types of electrical measuring instruments in DC circuits. To observe
More informationA Practical Guide to Free Energy Devices
A Practical Guide to Free Energy Devices Part 60: Last updated: 3rd February 2006 Author: Patrick J. Kelly Electrical power is frequently generated by spinning the shaft of a generator which has some arrangement
More informationCoupled Inductors. Introducing Coupled Inductors
Coupled Inductors From power distribution across large distances to radio transmissions, coupled inductors are used extensively in electrical applications. Their properties allow for increasing or decreasing
More informationElectromagnetic Laboratory Stations
Electromagnetic Laboratory Stations The following laboratory exercises are designed to help you study magnetic fields produced by magnets and current carrying wires, and study other wellknown electromagnetic
More informationBuilding an Electric Motor
Activity 5 Building an Electric Motor Activity 5 Building an Electric Motor GOALS In this activity you will: Construct, operate, and explain a DC motor. Appreciate accidental discovery in physics. Measure
More information1) 10. V 2) 20. V 3) 110 V 4) 220 V
1. The diagram below represents an electric circuit consisting of a 12volt battery, a 3.0ohm resistor, R 1, and a variable resistor, R 2. 3. What is the total resistance of the circuit 1) 6.6 Ω 2) 10
More informationElectromagnetic Induction
Electromagnetic Induction "Concepts without factual content are empty; sense data without concepts are blind... The understanding cannot see. The senses cannot think. By their union only can knowledge
More informationReading 15 METERS. Ron Bertrand VK2DQ Figure 1. Page 1
Reading 15 Ron Bertrand VK2DQ http://www.radioelectronicschool.com METERS Though you will not be asked in the exam to describe the operation of a moving coil meter, I do believe it is a good idea to study
More informationvery small Ohm s Law and DC Circuits Purpose: Students will become familiar with DC potentiometers circuits and Ohm s Law. Introduction: P31220 Lab
Ohm s Law and DC Circuits Purpose: Students will become familiar with DC potentiometers circuits and Ohm s Law. Introduction: Ohm s Law for electrical resistance, V = IR, states the relationship between
More informationCopyright 2014 Edmentum  All rights reserved.
Copyright 2014 Edmentum  All rights reserved. Science Physics Electromagnetic Blizzard Bag 20142015 1. Two coils of insulated wire are placed side by side, as shown in the illustration. The blue lines
More informationFaraday s and Lenz s Law: Induction
Lab #18 Induction page 1 Faraday s and Lenz s Law: Induction Reading: Giambatista, Richardson, and Richardson Chapter 20 (20.120.9). Summary: In order for power stations to provide electrical current
More informationSeries and Parallel Circuits
Series and Parallel Circuits Components in a circuit can be connected in series or parallel. A series arrangement of components is where they are inline with each other, i.e. connected endtoend. A parallel
More informationPHYS245 Lab: Light bulb and resistor ΙΙ: Current voltage (IV) curves
Purpose: PHYS245 Lab: Light bulb and resistor ΙΙ: Current voltage (IV) curves Measure the current voltage curve of a light bulb and a resistor using a variable d.c. power supply. Understanding of Ohm
More informationExperiment 9 ~ RC Circuits
Experiment 9 ~ RC Circuits Objective: This experiment will introduce you to the properties of circuits that contain both resistors AND capacitors. Equipment: 18 volt power supply, two capacitors (8 µf
More informationLab 5 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge.
Print Your Name Lab 5 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge. Print Your Partners' Names Instructions October 15, 2015October 13, 2015 Read
More informationResistors in Series and Parallel
Resistors in Series and Parallel INTRODUCTION Direct current (DC) circuits are characterized by the quantities current, voltage and resistance. Current is the rate of flow of charge. The SI unit is the
More informationPHY 101 Lab 7 on Electric circuits: Direct current circuits Your name: Other team members:
PHY 101 Lab 7 on Electric circuits: Direct current circuits Your name: Other team members: Goals: To explore the basic principles of electric circuits, and how to measure them. Materials: Electrical resistors
More informationFaculty of Engineering and Information Technology. Lab 3 Transformers
Faculty of Engineering and Information Technology Subject: 485 Fundamentals of Electrical Engineering Assessment umber: 3 Assessment Title: Lab 3 Transformers Tutorial Group: Students ame(s) and umber(s)
More informationChapter 5 TRANSFORMERS
Chapter 5 TRANSFORMERS Objective Understand the transformer nameplate Describe the basic construction features of a transformer. Explain the relationship between voltage, current, impedance, and power
More informationPart 1: AC MEASUREMENTS
Part 1: AC MEASUREMENTS OBJECTIVES: The objectives of this experiment are to become familiar with the electrical engineering machinery laboratory and making electrical measurements. MEASUREMENT TECHNIQUES:
More informationUsing a Multimeter to Analyze a Circuit: Measuring Current and Voltage Calculating Power and Resistance
Name: Date: Using a Multimeter to Analyze a Circuit: Measuring Current and Voltage Calculating Power and Resistance Background Information and PreLab Activity Materials: One solar module One small DC
More informationDiodes have an arrow showing the direction of the flow.
The Big Idea Modern circuitry depends on much more than just resistors and capacitors. The circuits in your computer, cell phone, Ipod depend on circuit elements called diodes, inductors, transistors,
More informationEnergy, electricity and magnetism page The diagram below shows an object made from a battery, a nail, and some wire.
Energy, electricity and magnetism page 3 Name: ate: 1. The diagram below shows an object made from a battery, a nail, and some wire. What will happen if you touch a metal paperclip to the nail? A. The
More information