Chapter 8 and 9 Energy Balances

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Chapter 8 and 9 Energy Balances"

Transcription

1 Chapter 8 and 9 Energy Balances Reference States. Recall that enthalpy and internal energy are always defined relative to a reference state (Chapter 7). When solving energy balance problems, it is therefore necessary to define a reference state for each chemical species in the energy balance (the reference state may be predefined if a tabulated set of data is used such as the steam tables). Example. Suppose water vapor at 300 o C and 5 bar is chosen as a reference state at which Ĥ is defined to be zero. Relative to this state, what is the specific enthalpy of liquid water at 75 o C and 1 bar? What is the specific internal energy of liquid water at 75 o C and 1 bar? (Use Table B. 7). Calculating changes in enthalpy and internal energy. Ĥ and Uˆ are state functions, meaning that their values only depend on the state of the system, and not on the path taken to arrive at that state. IMPORTANT: Given a state A (as characterized by a set of variables such as pressure, temperature, composition) and a state B, the change in enthalpy of the system as it passes from A to B can be calculated along any path that leads from A to B, whether or not the path is the one actually followed. Example. 18 g of liquid water freezes to 18 g of ice while the temperature is held constant at 0 o C and the pressure is held constant at 1 atm. The enthalpy change for the process is measured to be Ĥ = kj. What would the Ĥ for the process be if, instead, the 18 g of water is first heated from 0 o C to 100 o C and entirely vaporized to steam at 100 o C and 1 atm, then liquified by compression from 1 atm to 10 atm at 100 o C, than cooled to o C 1

2 (during which step it freezes to ice) while being decompressed to a pressure of 1 atm, and finally thus formed 18 g of ice is heated from -200 o C and 1 atm to ice at 0 o C and 1 atm? Types of Paths. There are five types of paths for which we will learn to calculate enthalpy changes Ĥ : 1). Changes in pressure (p) at constant temperature (T) and state of aggregation (i.e. no phase changes). 2). Changes in T at constant p and state of aggregation. 3). Phase changes (i.e. melting, condensation, evaporation, solidification, sublimation) at constant T and p. 4). Mixing steps (two liquids, gas in a liquid, solid in a liquid) at constant T and p. 5). Chemical reactions taking place at constant T and p. The overall path from a state A to a state B will be able to be expressed as a combination of the above five types of steps. Because enthalpy is a state function, the total change Ĥ for passing from state A to state B can be calculated as the sum of the enthalpy changes Ĥ j for the individual steps, Ĥ = Ĥ 1 + Ĥ 2 + Ĥ 3 + Ĥ 4 j = 1, 2, k (1) where k is the total number of steps used, for purposes of the calculation, to take the system from the initial state A to the final state B. Note that the steps used for the calculation do not need to correspond to the actual path taken by the system from A to B. Example. Construct a process path, consisting of the types of steps listed above, that could be used to calculate the enthalpy change for the following processes. (i) Cyclohexane vapor at 180 o C and 5 atm is cooled and condensed to liquid cyclohexane at 25 o C and 5 atm. The enthalpy change for the condensation of cyclohexane at 80.7 o C and 1 atm is known. 2

3 (ii) O 2 at 170 o C and 1 atm and CH 4 at 25 o C and 1 atm are mixed and react completely to form CO 2 and H 2 O at 300 o C and 1 atm. The enthalpy change for the reaction occurring at 25 o C and 1 atm is known. Paths of type 1 changes in pressure (p) at constant temperature (T) and state of aggregation Liquids and solids: Uˆ and Vˆ are only weak functions of p for liquids and solids. Thus, for a path of type 1 performed on a system that is a liquid or a solid, Uˆ 0 and Vˆ 0. This in turn implies that Ĥ = Uˆ + (pvˆ ) Vˆ p (solids or liquids, change in p only) (2) Gases: for gases that can be modeled as ideal, internal energy and enthalpy only depend on T. Thus, for a type 1 path, for an ideal gas Uˆ and Ĥ are both zero since T is not changing. Note that Ĥ = Uˆ + pvˆ = Uˆ + RT/M for an ideal gas, where M is the mass of 1 mole of the gas. This expression assumed that specific quantities are expressed per unit mass of substance. If specific quantities are expressed per mole of substance, then, for an ideal gas, Ĥ = Uˆ + pvˆ = Uˆ + RT. For gases behaving non-ideally, either tables of Uˆ and Ĥ (e.g. like the steam tables) 3

4 must be used or more complex calculations (not covered in this course) are required. Example. Given the process C 2 H 6 (g, 25 o C, 1 atm) C 2 H 6 (g, 25 o C, 30 atm) How would you use the compressibility charts to determine whether it is reasonable to assume Ĥ = 0? Paths of type 2 changes in T at constant p and state of aggregation Sensible heat: Sensible heat is heat added to a system that results in a change in temperature (as opposed to latent heat, see below). Internal energy changes. The rate of change of specific internal energy of a substance with T, while its volume V is kept fixed (i.e. no PV work), is called the heat capacity at constant volume and is given the symbol C V, C V Uˆ ( T ) = T (3) V Note that C V is in general a function of T. Given the function C V (T), the change in specific internal energy as the system temperature is raised from T 1 to T 2 at constant volume is T 2 U ˆ = CV ( T ) dt (constant V) (4) T 1 However, a type 2 path is in general not a constant volume process. Rather, as T changes, in order to maintain V strictly constant one would have to adjust p as well, 4

5 violating the requirement p = constant for a type 2 path. How can we resolve this difficulty? Fortunately, the volume of liquids and solids in general does not change very much with T. Therefore, it is usually a very good approximation to assume that, for a type 2 path, one can still use T 2 U ˆ CV ( T ) dt (solids and liquids, type 2 path) (5) T 1 Moreover, for ideal gases, since Uˆ is a function of temperature only, equation (4) is exact even though the volume will change for a type 2 path, T 2 U ˆ = CV ( T ) dt (ideal gases, type 2 path) (4) T 1 For gases behaving nonideally, equation (4) is exact only if V is maintained constant during the temperature change, what in general will not be true for a type 2 path. Since V will in general change during the performance of a type 2 path with a nonideal gas, one has to resort to more complex calculations (not covered in this course) or use tabulated information (e.g. steam tables). Enthalpy changes. The rate of change of specific enthalpy Ĥ of a substance with T, while the pressure p on the substance is kept fixed (a type 2 process), is called the heat capacity at constant pressure and is given the symbol C p, C p Hˆ ( T ) = T (6) p C p is in general a function of T. Given the function C p (T), the change in enthalpy of a substance as its temperature is raised from T 1 to T 2 at constant pressure is T 2 H ˆ = C p ( T ) dt (type 2 process) (7) T 1 5

6 Evaluation of heat capacities (also known as "specific heats"). C p and C V have units of energy per amount per temperature interval, where the amount of material may be measured in molar or mass units (e.g. units of heat capacity could be J/(kg o C), J/(mol o C), etc). Table B.2 provides polynomial expressions for heat capacities C p C p = a + bt + ct 2 + dt 3 (8) where a, b, c and d are constants. Most often we will use these expressions. NOTE: in some cases C p may be available at equally spaced T intervals (e.g. from a table), rather than in the form of equation 8. In those instances, equation 7 can be numerically integrated with respect to T to obtain Ĥ, for example using Simpson's Rule (see Appendix A.3). Kopp's Rule. Kopp's rule is used to roughly estimate C p values for materials based on their atomic composition. See text for discussion. C p values for mixtures. When dealing with heat capacities of mixtures, the most accurate method is to look up C p values from tables or other experimental information, if available. Lacking such data, if one is willing to neglect corrections to C p that derive from mixing of the different components of the mixture, the overall heat capacity of the mixture C p,mix can be approximated as the sum of heat capacity contributions from the separate components of the mixture, C p,mix (T) = i all mixture components x C ( T ) p i, (9) In equation 9, the index i ranges over all of the components of the mixture. x i is the mass fraction (if using heat capacities expressed per mass of material) or mole fraction (if using heat capacities expressed per mole of material) of component i in the mixture, and C p,i is the heat capacity of species i in its pure form. The enthalpy change Ĥ for a type 2 path performed on a mixture is then calculated by inserting the expression for C p,mix from equation 9 into equation 7. Example. For ideal gases, C p = C V + R. How can one prove this expression? 6

7 Example. For liquids and solids, C p C V. How can we justify this approximation? Example Assuming ideal gas behavior, calculate the heat transferred in the following situations: 1). A stream of nitrogen flowing at 100 mol/min is heated from 20 o C to 100 o C. 2). Nitrogen in a 5 L flask, at an initial pressure of 3 bar, is cooled from 90 o C to 30 o C. For nitrogen at a constant pressure of 1 atm, the heat capacity C p is C p (kj/(mol o C)) = T T T 3 7

8 8

9 9

10 Example A stream containing 10 % CH 4 and 90 % air by volume is to be heated from 20 o C to 300 o C. Calculate the required rate of heat input in kilowatts if the flow rate of the gas is liters (STP)/min. Assume ideal gas behavior. Table B.8 provides specific enthalpy of air, yielding Ĥ air,in = kj/mol and Ĥ air,out = 8.17 kj/mol. The heat capacity of methane is given by C p (kj/(mol o C)) = T T T 3 Also, in solving this problem, do you think we can neglect the enthalpy of mixing of methane and air? Why yes or why not? 10

11 11

12 Example A gas stream containing 8.0 mole % CO and 92.0 mole% CO 2 at 500 o C is fed to a waste heat boiler. In the boiler, heat is transferred from this gas stream to a water stream, which is fed to the boiler at 25 o C in a ratio of mole feed water per mole of hot gas. The water is heated by the gas so that it forms saturated steam at 5.0 bar. The boiler operates adiabatically, with all heat lost by the gas stream going to heat the water stream. What is the temperature of the exiting gas? The heat capacities for CO and CO 2 are: C p,co = T T T 3 C p,co2 = T T T 3 Outline the solution to this problem by setting up all the necessary equations, including equations from which values of needed enthalpies are evaluated. 12

13 13

14 Paths of type 3 phase changes at constant T and p Latent heat: Latent heat is the enthalpy change that accompanies a change in phase of a substance at a constant T and p. Latent heat of vaporization Ĥ v (which is the negative of the latent heat of condensation) refers to the enthalpy change per unit amount of liquid when that liquid is vaporized (units: energy/amount, where amount could be given in a mass or a molar basis). Similarly, latent heat of melting Ĥ m (equivalently, heat of fusion, which is also the negative of the heat of solidification) refers to the amount of heat (change in enthalpy) that must be added to a unit amount of material to cause it to melt. Contributions to latent heats include changes in molecular level interactions as well as changes in specific volume that accompany the phase change. Latent heats are, in general, functions of p and T. However, they depend much more strongly on T than on p. Therefore, when calculating heat associated with a change of phase, it is important to ensure that the latent heat value used for the calculation is that for the actual T at which the phase transformation occurs (e.g. don't assume that Ĥ at 30 o C is the same as at 100 o C). v Example. Imagine that a liquid is to be vaporized at 130 o C, but that Ĥ v is only known at 90 o C. How could you calculate Ĥ v (130 o C) from Ĥ v (90 o C)? What additional information would you need to perform this calculation? Obtaining values of latent heats. Latent heats are often available from a table (e.g. Table B.1 and the steam tables). However, they can also be estimated or calculated in various ways (one was already outlined above). 14

15 Estimation of Ĥ v. For a very rough approximation of Ĥ v at the boiling point of a liquid at 1 atm (i.e. at the normal boiling point), one can use Trouton's Rule, Ĥ v (kj/mol) T b (K) (nonpolar liquids) (10) Ĥ (kj/mol) T b (K) (water, low molar weight alcohols) (11) v where T b is the boiling point of the liquid in degrees Kelvin at 1 atm. A more accurate estimate of Ĥ v at the normal boiling point is provided by Chen's equation, Ĥ (kj/mol) v Tb [ ( Tb / Tc ) log ( T / T ) b c P ] c (12) where T c and P c are the critical temperature (in o K) and pressure (in atm) of the liquid. Also, as discussed in Chapter 6, Ĥ v values can be obtained from vapor pressure-temperature data of the liquid, i.e. from p*(t). If Ĥ v does not vary appreciably with T and the gas behaves ideally, then one can use the Clausius- Clapeyron equation for this purpose. When Ĥ v depends on T (the usual case), the Clapeyron equation needs to be used instead. If ideal gas behavior applies, the Clapeyron equation can be expressed as (see Chapter 6 notes for a full derivation) d ln p * d(1/ T ) Hˆ R v = (13) Finally, Watson's correlation can be used to estimate Ĥ v at one temperature from its known value at another temperature, Ĥ (T 2 ) = Ĥ (T 1 ) v v T T c c T2 T (14) Estimation of Ĥ m. Ĥ m can be roughly estimated from Ĥ (kj/mol) T m (K) (metallic elements) (15) m 15

16 Ĥ m (kj/mol) T m (K) (inorganic compounds) (16) Ĥ (kj/mol) 0.050T m (K) (organic compounds) (17) m Psychrometric charts. These charts provide values of many properties of humid air (i.e. air containing water vapor), a system that is very common in humidification and other processes. The properties include specific enthalpy, specific volume, absolute humidity, dry-bulb and wet-bulb temperatures, and dew point data. For the present purposes, we are most interested in values of specific enthalpy. For a temperature of interest, the psychrometric chart allows one to look up the enthalpy Ĥ sat of air saturated with water vapor (in units of energy per amount of dry air). Moreover, lines of "enthalpy deviation" Ĥ dev, plotted on the chart, can be used to calculate enthalpy of air that is not fully saturated with water vapor. The enthalpy Ĥ of air that is not saturated with water vapor is obtained by summing the saturation enthalpy and the enthalpy deviation, Ĥ = Ĥ sat + Ĥ dev. Enthalpies obtained from psychrometric charts can be used in energy balance calculations that involve condensation or evaporation of water from air; for example, in humidification processes. Example. Given the accompanying psychrometric chart, what is the enthalpy of air at 25 o C and 10 % relative humidity (kj per kg dry air)? Example An equimolar mixture of benzene (B) and toluene (T) is fed to a heater in which the temperature is raised from 10 o C to 50 o C. The liquid product is 40 mole % B, and the vapor product is 68.4 mole % B. How much heat is needed per g-mole of feed? In choosing reference states for this problem, do we need to specify states of aggregation (phase)? How do we handle the fact that no pressure information is given? 16

17 Outline the solution to this problem by setting up all the necessary equations, including equations from which values of the enthalpies needed in the energy balance can be found. 17

18 18

19 Paths of type 4 mixing operations at constant T and p Ideal mixtures. For an ideal mixture, the enthalpy of mixing is zero. In this case, if the mixing itself does not contribute to a change in enthalpy, the specific enthalpy of the mixture Ĥ mix is simply equal to the sum of the enthalpies of the mixture components, Ĥ mix = i H i all mixture components x ˆ (ideal mixtures) (18) where x i is the fraction of component i in the mixture, and Ĥ i is the specific enthalpy of pure component i. If the specific enthalpy is expressed per unit mass, then x i is the mass fraction; if instead Ĥ i is expressed per mole, then x i is the mole fraction. The assumption that a mixture behaves ideally nearly always works well for mixtures of gases, and it also works well for liquid mixtures when the species being mixed are chemically similar (such as two aromatic species, or two linear hydrocarbons). Nonideal mixtures. Generally, mixtures are not ideal. This is because the mixing of two, or more, species alters the molecular interactions experienced by the molecules being mixed; thus, the internal energy and hence enthalpy will change. There may also be a change in volume when two species are mixed. In this case, the final volume of the mixture V does not equal the sum of the volumes of the components that were mixed together. Therefore, in general, the enthalpy of mixing for a type 4 process (mixing at constant T and p) for a nonideal system can be expressed as Ĥ mix = Uˆ mix+ (pvˆ ) mix = Uˆ mix+ p Vˆ mix (19) where Uˆ mix and Vˆ mix are the changes in specific internal energy and specific volume associated with the mixing process. Uˆ mix is the internal energy (per amount of the mixture) minus the internal energy of the species that were mixed, Uˆ mix = Uˆ mixture - all mixture components x ˆ (20) iu i 19

20 where Uˆ i is the specific internal energy for pure species i, whose fraction (mass or mole fraction, depending on units being used) in the mixture is x i. Similarly, Vˆ mix = Vˆ mixture - all mixture components where Vˆ i is the specific volume of pure species i. x ˆ (21) iv i Hˆ s. Enthalpies of mixing are often expressed in terms of heat of solution ( T, r) ˆ ( T, r) H s is the change in enthalpy that results from dissolving one mole of solute in r moles of liquid solvent at constant T. In the limit when 1 mole of solute is dissolved in an infinitely large amount of solvent, Hˆ s ( T, r) approaches a limiting value known as the heat of solution at infinite dilution. Values of H s ( T, r) are usually found from tables, such as Table B.11 in our text. Note that the values of Hˆ s ( T, r) are expressed per mole of solute, not per mole of solution. Enthalpy-Concentration ( Ĥ -x) Charts. These charts plot the specific enthalpy of a binary solution (i.e. a single solute in a solvent) as a function of the solute concentration. Several curves, corresponding to enthalpy of mixing for different temperatures, can be drawn on the same chart. The enthalpy values are measured relative to reference states that typically are the pure solute and the pure solvent; i.e. the plotted enthalpies of mixing are for a process that starts with the pure solvent and the pure solute species at the mixing temperature T, and makes them into a solution of the given solute concentration. ˆ Example. What is H s ( T, r) for a solution of HCl in water at 25 o C and for r = 10, if the reference state for HCl is pure HCl gas at 25 o C and if the reference state for water is pure water liquid at 25 o C? Use Table B.11 to come up with the answer. ˆ ˆ What is H s ( T, r) for a solution of HCl in water at 25 o C and for r = 10, if the reference state for HCl is highly dilute HCl in water at 25 o C and if the reference state for water is pure water liquid at 25 o C? Use Table B.11 to come up with the answer. 20

21 Example Hydrochloric acid is produced by absorbing gaseous HCl in water. Calculate the heat that must be transferred to or from an absorption process unit if HCl gas at 100 o C and water liquid at 25 o C are mixed to produce 1000 kg/h of 20.0 wt % HCl solution in water at 40 o C. The heat capacity C p of the aqueous HCl solution product can be taken to be constant at kj/(mol HCl o C). Outline the solution to this problem by setting up all the necessary equations, including equations from which values of the enthalpies needed in the energy balance can be found. 21

22 22

23 Paths of type 5 chemical reactions at constant T and p Heat of reaction (Enthalpy of reaction). The heat of reaction, H r ( T, p), is the enthalpy change for a process in which stoichiometric ratios of reactants at a given T and p are completely consumed and converted to products at the same T and p. Note that this process starts with reactants and no products, and ends with all products (as all reactants are consumed). An exothermic reaction is one for which Hˆ r ( T, p) < 0; that is, exothermic reactions carried out at constant T and p release heat. An endothermic reaction is one for which Hˆ r ( T, p) > 0; thus, heat must be input into the system in order to sustain an endothermic reaction at constant T and p. The heat of reaction is always reported per stoichiometric quantity of a reactant consumed or product formed. For example, for the reaction in which species A and B react to form C according to ˆ ( T, p) 2A + 3B C H r is the heat released per 2 moles of A consumed, which is the same as the heat released per 3 moles of B consumed, which is the same as the heat released per one mole of C produced. If we write the reaction instead as 4A + 6B 2C ˆ then H r ( T, p) is the heat released per 4 moles of A consumed, which is the same as the heat released per 6 moles of B consumed, which is the same as the heat released per 2 moles of C produced. In this case, Hˆ r ( T, p) would be twice as large in magnitude than when we wrote the reaction as 2A + 3B C. If the reaction has proceeded to a point when the extent of reaction is ξ, the total amount of heat released or consumed so far, i.e. the total enthalpy change H realized due to the reaction, is calculated from ˆ H = ξ H r ( T, p) (22) Note that, as always, units must be consistent. Thus if units of H r ( T, p) are energy/mole, ξ must be in units of moles; if instead Hˆ r ( T, p) is given in units of energy/mass, then ξ must be in units of mass. ˆ ˆ 23

24 Comments: 1). The heat of reaction Hˆ r ( T, p) often does not depend strongly on pressure, if pressures are not too high. Why is this so? Recall the definition Ĥ r = Uˆ r+ (pvˆ ) r = Uˆ r+ p Vˆ r (23) where the last equality on the right follows because p is kept constant for a type 5 path. Here, Uˆ r and Vˆ r are the changes in specific internal energy and specific volume of the system when stoichiometric amounts of reactants are fully converted to the products, at same T and p. How do these quantities approximately depend on the system pressure p? ˆ 2). The value of H r ( T, p) depends on the states of aggregation of the reactants and products. For example, for the two reactions and A(g) + B(g) C(g); Ĥ r,1 A(l) + B(g) C(g) Ĥ r,2 the value of Ĥ r for the second expression would be increased by Ĥ v,a, the latent heat of vaporization of A; that is, Ĥ r,2 = Ĥ r,1 + Ĥ v,a. 3). The standard heat of reaction, written 0 ˆ r H, is the value of the heat of reaction when both the reactants and the products are in their reference states. The textbook uses reference temperature and pressure of 25 o C and 1 atm. 24

25 Example The standard heat of the combustion reaction of n-butane vapor is C 4 H 10 (g) + 13/2 O 2 (g) 4 CO 2 (g) + 5 H 2 O(l); H ˆ 0 r = kj/mol a). Calculate the rate of enthalpy change, H & (kj/s), if 2400 mol/s of CO 2 is produced, and the reaction is carried out at 25 o C. b). Calculate the standard heat of the reaction 2C 4 H 10 (g) + 13 O 2 (g) 8 CO 2 (g) + 10 H 2 O(l) Calculate the rate of enthalpy change, H & (kj/s), if 2400 mol/s of CO 2 is produced in this reaction, and the reaction is carried out at 25 o C. c). The heats of vaporization of n-butane and water at 25 o C are 19.2 kj/mol and 44.0 kj/mol, respectively. What is the standard heat of the reaction C 4 H 10 (l) + 13/2 O 2 (g) 4 CO 2 (g) + 5 H 2 O(v) Calculate the rate of enthalpy change, H & (kj/s), if 2400 mol/s of CO 2 is produced in this reaction, and the reaction is carried out at 25 o C. 25

26 26

27 Calculation of heats of reaction from Hess's Law. Hess's Law states: If the stoichiometric equation of reaction #1 can be expressed through a set of summation (or difference) operations on the stoichiometric equations of independent reactions #2..k, then the enthalpy change for reaction #1 can be calculated by applying the same set of operations to the enthalpy changes of the #2..k reactions. Note that all reactions are understood to be carried out at the same T and p. Hess's Law is just another manifestation of the state function nature of enthalpy. Example. Given C + O 2 CO 2 ; H ˆ 0 r = kj/mol CO + 1/2O 2 CO 2 ; H 0 = kj/mol what is the heat of reaction for C + 1/2O 2 CO? ˆ r Calculation of heats of reaction from standard heats of formation. The standard heat of formation H ˆ 0 f of a chemical species is the enthalpy change associated with the reaction in which 1 mole of the species is formed from its elemental constituents as they are normally found in nature (C(s), O 2 (g), N 2 (g), H 2 (g) are the most important elemental constituents). The standard conditions for the formation reaction are most often taken to be 25 o C and 1 atm. For example, the formation reaction for ammonium nitrate would be written N 2 (g) + 2H 2 (g) + 3/2 O 2 (g) NH 4 NO 3 (s) H ˆ 0 f = kj/mol The standard heat of formation of elemental species, in their naturally occurring state, is zero (can you see why?). Important: If H 0 is known for all reactants and ˆ f 27

28 products that participate in a reaction, then the standard heat for that reaction can be calculated from the known standard heats of formation using Hess's Law. Example Determine the standard heat of reaction for C 5 H 12 (l) + 8O 2 (g) 5CO 2 (g) + 6H 2 O(l) given the standard heats of formation (Table B.1) H ˆ 0 f (C 5 H 12 (l)) = kj/mol H ˆ 0 f (CO 2 (g)) = kj/mol H ˆ 0 f (H 2 O(l)) = kj/mol Heats of combustion. The standard heat of combustion H ˆ 0 c of a substance is the heat of reaction when 1 mole of the substance is fully reacted with O 2 (g) to yield the products CO 2 (g) and H 2 O(l), with the combustion reaction carried out at 25 o C and 1 atm. Standard heats of combustion can be used to calculate H ˆ 0 r for reactions involving only combustible substances and combustion products. This is another application of Hess's Law. The above concludes discussion of how to calculate enthalpy changes associated with the five types of subprocesses considered in this course. The remaining pages consider energy balances on reactive processes. 28

29 Energy Balances on Reactive Processes Our text covers two methods that may be used to account for the occurrence of a chemical reaction in a process: (i) heat of reaction method and (ii) heat of formation method. The heat of reaction approach is more straightforward if there is only a single reaction whose H ˆ 0 r is known. Problems that have multiple reactions occurring simultaneously, and for which the H ˆ 0 r may not be known, are better treated with the heat of formation method. Below we outline the main differences between the two methods. Selection of Reference Conditions. Heat of reaction method. For all reactive species, reactants and products, the most convenient choice of reference conditions is that at which the reaction is imagined to be carried out; i.e. usually that T and p at which the heat of reaction is known. Typically, this would be standard conditions (25 o C, 1 atm) and a state of aggregation for each reactive species as specified by the reaction equation. Heat of formation method. The reference conditions refer to the elemental species found in the reactants and products, at standard conditions (25 o C, 1 atm) and as naturally occurring at these conditions. Reference conditions for nonreactive species. Nonreactive species are those that do not participate in chemical reactions. The best reference conditions for nonreactive species, regardless of how the reactive species are treated, are usually the conditions for one of the process streams (enthalpy of the species in that stream then becomes zero) or, if a table is used to look up enthalpy, the reference state conditions used by the table. Example (text section 9.5). The below "propane" problem will be used to illustrate the heat of reaction and heat of formation methods. Propane is combusted to CO 2 (g) and H 2 O(v) as shown in the diagram. Also given is the standard enthalpy change for the reaction 29

30 C 3 H 8 (g) + 5 O 2 (g) 3 CO 2 (g) + 4 H 2 O(l) H ˆ 0 r = kj/mol Question: What reference conditions would one choose for (i) the heat of reaction method and (ii) the heat of formation method? Enthalpy change associated with a reaction. For the usual case of a continuous process, the quantity of interest is H & reactor, the rate of enthalpy change due to the occurrence of the reaction. This rate is the difference between the enthalpy outflow in the product stream at the outlet conditions from the reactor and the enthalpy inflow with the reactants at the inlet conditions. The approach to calculation of H & reactor uses different paths for the heat of reaction and the heat of formation methods. Heat of reaction method. The path used to calculate the total enthalpy change associated with the reaction is to (1) bring all reactants from inlet stream conditions to the given (standard) conditions for the heat of reaction H ˆ 0 r, (2) carry out the reaction under the conditions given for H ˆ 0 r, and (3) bring the products from the standard conditions to the actual conditions in the outlet stream; i.e. the conditions at which they leave the reactor. Therefore, the equation for H & reactor is 30

31 H & reactor = reactants n j H ˆ j + j H ˆ 0 & & ξ r j + n& j H ˆ, j (24) reactions products What do the terms in equation 24 represent? H & reactor is the rate of enthalpy change associated with the chemical reaction, in units of energy/time. Equation 24 states that this rate can be thought to consist of three contributions, one for each of the three subpaths mentioned above. The first term on the right is the part contributed by the subpath in which the reactants are taken from their inlet conditions to the conditions for which Hˆ 0 r is given. In this term, Ĥ j is the enthalpy change associated with bringing one mole of reactant j from the inlet conditions to the conditions for which the heat of reaction is given. n& is the molar flowrate of reactant j, so the product n& j Ĥ j is the rate of enthalpy change that results from taking species j from the inlet conditions to the reaction conditions at a rate of n& j moles/time. How would we calculate Ĥ j for each of the reactants in the propane example? j The second term on the right of equation 24 is the rate of enthalpy change due to carrying out the chemical reactions at the standard conditions for which the Hˆ 0 r, j are given. It corresponds to the second subpath mentioned above. The summation allows for the possibility of multiple reactions taking place in the reactor simultaneously. Here, Hˆ 0 r, j is the standard enthalpy of reaction j in units of energy/mole. & ξ j is the rate of progress being experienced by reaction j, in units of 31

32 moles/time (refer to Chapter 4 for an introduction to & ξ j ). How would we calculate the & ξ j H ˆ 0 r, j term for the example problem? reactions The third term on the right of equation 24 is analogous to the first term, except now the summation extends over the product species and the enthalpy changes correspond to taking product species from the standard conditions of the reaction to the actual conditions of the outlet stream. This term corresponds to the 3rd subpath above. How would we calculate Ĥ j for each of the products in the example problem? Heat of formation method. This method is usually followed when 0 ˆ r H is not given or when multiple reactions occur simultaneously. The main goal, to calculate H &, does not change; that is, we again need to calculate the difference between the enthalpy outflow in the product stream at the reactor outlet conditions and the enthalpy inflow with the reactants at the inlet conditions. In the heat of formation method, this difference is found by using a path that consists of the following steps: (1) bringing of the reactants from the inlet stream conditions to 25 o C and 1 atm, (2) decomposition of the reactants into elemental species at 25 o C and 1 atm 32

33 (note that these conditions of T and p are those used to define standard heats of formation, H ˆ 0 f ), (3) formation of the products from the elemental species at 25 o C and 1 atm, and (4) bringing of the products from 25 o C and 1 atm to the outlet stream conditions. The sum of these enthalpy changes gives the rate of enthalpy change H & reactor, H & reactor = reactants n j Hˆ j Hˆ 0 f j + n j Hˆ 0 & ( ) & ( f j + Hˆ,, j ) (25) products In equation 25, the Ĥ j term in the first summation on the right corresponds to the change in specific enthalpy of reactant j when it is brought from the inlet (process) conditions to 25 o C and 1 atm; in other words, this term corresponds to step 1 of the path specified above. The - H ˆ 0 f, j in the first summation corresponds to decomposition of reactant j into elemental species at 25 o C and 1 atm; this is step 2 of the path. The negative sign is present because we are decomposing the reactant, not forming it. The H ˆ 0 f, j term in the second summation on the right corresponds to formation of product j from the elemental species at 25 o C and 1 atm, which is the third step of the path. Finally, the Ĥ j term in the second summation represents bringing of product j from 25 o C and 1 atm to the outlet (process) stream conditions; this is the 4th step of the overall path. Each specific enthalpy term is multiplied by the molar flowrate of that species j in the inlet (reactants) or outlet (products) streams to yield the corresponding rate of enthalpy change. The Ĥ j terms for the products and reactants are calculated in the same manner as in the heat of reaction method. For each reactant and product, they may include changes in T, changes in p, and changes in the state of aggregation. The heat of formation terms are obtained from Table B.1. In the propane example, how 0 would we calculate Hˆ ˆ for the propane reactant? j H f, j 0 How would we calculate Hˆ ˆ for the O 2 reactant? j H f, j 33

34 How would we calculate Hˆ + ˆ 0 j H f, j for the H 2 O product? Example mol/s of ammonia, NH 3, and 200 mol/s of O 2 at 25 o C are fed into a reactor. In the reactor, the ammonia is completely consumed according to 4 NH 3 (g) + 5 O 2 (g) 4 NO(g) + 6 H 2 O(v); H ˆ 0 r = kj/mol The product gas leaves at 300 o C. What is the rate at which heat must be transferred to/from the reactor, assuming the operation is at approximately 1 atm? Use the heat of reaction method to outline the solution to the problem by setting up all the necessary equations. 34

35 35

36 Example Ethanol can be dehydrogenated to acetaldehyde according to the reaction C 2 H 5 OH(v) CH 3 CHO(v) + H 2 (g) The above reaction is carried out with a feed that consists of 90.0 mole % ethanol and 10.0 mole % acetaldehyde. The feed enters the reactor at a flowrate of 150 mol/s and at a temperature of 300 o C. To maintain the reaction at the desired rate of progress heat is added to the reactor at a rate of 2440 kw. Under these conditions, the temperature of the outlet product stream is determined to be 253 o C. What is the fractional conversion of ethanol achieved? Outline the solution to this problem by setting up all the necessary equations. Use the heat of formation method to calculate the standard enthalpy change of the dehydrogenation reaction. 36

37 37

k is change in kinetic energy and E

k is change in kinetic energy and E Energy Balances on Closed Systems A system is closed if mass does not cross the system boundary during the period of time covered by energy balance. Energy balance for a closed system written between two

More information

Name: Thermochemistry. Practice Test B. General Chemistry Honors Chemistry

Name: Thermochemistry. Practice Test B. General Chemistry Honors Chemistry Name: Thermochemistry B Practice Test B General Chemistry Honors Chemistry 1 Objective 1: Use the relationship between mass, specific heat, and temperature change to calculate the heat flow during a chemical

More information

Vapor-Liquid Equilibria

Vapor-Liquid Equilibria 31 Introduction to Chemical Engineering Calculations Lecture 7. Vapor-Liquid Equilibria Vapor and Gas Vapor A substance that is below its critical temperature. Gas A substance that is above its critical

More information

Name: Thermochemistry. Practice Test A. General Chemistry Honors Chemistry

Name: Thermochemistry. Practice Test A. General Chemistry Honors Chemistry Name: Thermochemistry Practice Test A General Chemistry Honors Chemistry 1 Objective 1: Use the relationship between mass, specific heat, and temperature change to calculate the heat flow during a chemical

More information

Sample Exercise 15.1 Writing Equilibrium-Constant Expressions

Sample Exercise 15.1 Writing Equilibrium-Constant Expressions Sample Exercise 15.1 Writing Equilibrium-Constant Expressions Write the equilibrium expression for K c for the following reactions: Solution Analyze: We are given three equations and are asked to write

More information

Name Date Class THERMOCHEMISTRY. SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510)

Name Date Class THERMOCHEMISTRY. SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510) 17 THERMOCHEMISTRY SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510) This section explains the relationship between energy and heat, and distinguishes between heat capacity and specific heat.

More information

Chapter 5 Energy Relationships in Chemistry: Thermochemistry

Chapter 5 Energy Relationships in Chemistry: Thermochemistry Chapter 5 Energy Relationships in Chemistry: Thermochemistry In order to study thermochemical changes, we first have to define (a) system that specify part of the universe of interest to us. (b) surrounding

More information

Chapter 5. Thermochemistry

Chapter 5. Thermochemistry Chapter 5. Thermochemistry THERMODYNAMICS - study of energy and its transformations Thermochemistry - study of energy changes associated with chemical reactions Energy - capacity to do work or to transfer

More information

H 2 (g) + ½ O 2 (g) H 2 O(l) H o f [NO(g)] = 90.2 kj/mol; H o f [H 2 O(g)] = kj/mol H o f [NH 3 (g)] = kj/mol; H o f [O 2 (g)] =?

H 2 (g) + ½ O 2 (g) H 2 O(l) H o f [NO(g)] = 90.2 kj/mol; H o f [H 2 O(g)] = kj/mol H o f [NH 3 (g)] = kj/mol; H o f [O 2 (g)] =? Chapter 16 Thermodynamics GCC CHM152 Thermodynamics You are responsible for Thermo concepts from CHM 151. You may want to review Chapter 8, specifically sections 2, 5, 6, 7, 9, and 10 (except work ). Thermodynamics:

More information

Example: orange juice from frozen concentrate.

Example: orange juice from frozen concentrate. Dilution: a process in which the concentration (molarity) of a solution is lowered. The amount of solute (atoms, moles, grams, etc.) remains the same, but the volume is increased by adding more solvent.

More information

Heats of Transition, Heats of Reaction, Specific Heats, and Hess s Law

Heats of Transition, Heats of Reaction, Specific Heats, and Hess s Law Heats of Transition, Heats of Reaction, Specific Heats, and Hess s Law GOAL AND OVERVIEW A simple calorimeter will be made and calibrated. It will be used to determine the heat of fusion of ice, the specific

More information

3-1 Copyright Richard M. Felder, Lisa G. Bullard, and Michael D. Dickey (2014)

3-1 Copyright Richard M. Felder, Lisa G. Bullard, and Michael D. Dickey (2014) EQUATIONS OF STATE FOR GASES Questions A gas enters a reactor at a rate of 255 SCMH. What does that mean? An orifice meter mounted in a process gas line indicates a flow rate of 24 ft 3 /min. The gas temperature

More information

Chapter 14. CHEMICAL EQUILIBRIUM

Chapter 14. CHEMICAL EQUILIBRIUM Chapter 14. CHEMICAL EQUILIBRIUM 14.1 THE CONCEPT OF EQUILIBRIUM AND THE EQUILIBRIUM CONSTANT Many chemical reactions do not go to completion but instead attain a state of chemical equilibrium. Chemical

More information

Chapter Six. Energy Relationships in Chemical Reactions

Chapter Six. Energy Relationships in Chemical Reactions Chapter Six Energy Relationships in Chemical Reactions 1 Energy (U): Capacity to Do Work Radiant energy Energy from the sun Nuclear energy Energy stored in the nucleus of an atom Thermal energy Energy

More information

PROPERTIES OF PURE SUBSTANCES

PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 3 PROPERTIES OF PURE SUBSTANCES Mehmet Kanoglu University of Gaziantep Copyright

More information

The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work.

The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work. The first law: transformation of energy into heat and work Chemical reactions can be used to provide heat and for doing work. Compare fuel value of different compounds. What drives these reactions to proceed

More information

3. Of energy, work, enthalpy, and heat, how many are state functions? a) 0 b) 1 c) 2 d) 3 e) 4 ANS: c) 2 PAGE: 6.1, 6.2

3. Of energy, work, enthalpy, and heat, how many are state functions? a) 0 b) 1 c) 2 d) 3 e) 4 ANS: c) 2 PAGE: 6.1, 6.2 1. A gas absorbs 0.0 J of heat and then performs 15.2 J of work. The change in internal energy of the gas is a) 24.8 J b) 14.8 J c) 55.2 J d) 15.2 J ANS: d) 15.2 J PAGE: 6.1 2. Calculate the work for the

More information

Chem. 1A Final Exam Review Problems From ch. 11, 12 & 13

Chem. 1A Final Exam Review Problems From ch. 11, 12 & 13 Chem. A Final Exam Review Problems From ch., 2 & 3 f Multiple Choice Identify the choice that best completes the statement or answers the question.. Place the following cations in order from lowest to

More information

Energy Changes in Chemical Reactions. System loses heat (negative); gains heat (positive) Describe the difference between the two.

Energy Changes in Chemical Reactions. System loses heat (negative); gains heat (positive) Describe the difference between the two. Energy Changes in Chemical Reactions Most reactions give off or absorb energy Energy is the capacity to do work or supply heat. Heat: transfer of thermal (kinetic) energy between two systems at different

More information

THERMOCHEMISTRY & DEFINITIONS

THERMOCHEMISTRY & DEFINITIONS THERMOCHEMISTRY & DEFINITIONS Thermochemistry is the study of the study of relationships between chemistry and energy. All chemical changes and many physical changes involve exchange of energy with the

More information

Thermodynamics. Energy can be used * to provide heat * for mechanical work * to produce electric work * to sustain life

Thermodynamics. Energy can be used * to provide heat * for mechanical work * to produce electric work * to sustain life Thermodynamics Energy can be used * to provide heat * for mechanical work * to produce electric work * to sustain life Thermodynamics is the study of the transformation of energy into heat and for doing

More information

Chemistry 102 Chapter 17 THERMODYNAMICS

Chemistry 102 Chapter 17 THERMODYNAMICS THERMODYNAMICS Thermodynamics is concerned with the energy changes that accompany chemical and physical processes. Two conditions must be fulfilled in order to observe a chemical or physical change: The

More information

CHAPTER 6 THERMOCHEMISTRY

CHAPTER 6 THERMOCHEMISTRY Chapter 6 Thermochemistry Page 1 CHAPTER 6 THERMOCHEMISTRY 6-1. The standard state of an element or compound is determined at a pressure of and a temperature of. (a) 760 atm, 0 o C (b) 1 mmhg, 273 o C

More information

Chemical Process calculation III

Chemical Process calculation III Chapter 7 Ideal and Real Gases Gas, Liquid, and Solid Chemical Process calculation III Gas: a substance in a form like air, relatively low in density and viscosity Liquid: a substance that flows freely

More information

System. System, Boundary and surroundings: Nature of heat and work: Sign convention of heat: Unit-7 Thermodynamics

System. System, Boundary and surroundings: Nature of heat and work: Sign convention of heat: Unit-7 Thermodynamics Unit-7 Thermodynamics Introduction: The term Thermo means heat and dynamics means flow or movement.. So thermodynamics is concerned with the flow of heat. The different forms of the energy are interconvertible

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry I. Nature of Energy Energy units SI unit is joule, J From E = 1/2 mv 2, 1J = 1kg. m 2 /s 2 Traditionally, we use the calorie as a unit of energy. 1 cal = 4.184J (exactly) The

More information

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels 1 P age Module 5: Combustion Technology Lecture 34: Calculation of calorific value of fuels 2 P age Keywords : Gross calorific value, Net calorific value, enthalpy change, bomb calorimeter 5.3 Calculation

More information

The Relationships Between. Internal Energy, Heat, Enthalpy, and Calorimetry

The Relationships Between. Internal Energy, Heat, Enthalpy, and Calorimetry The Relationships Between Internal Energy, Heat, Enthalpy, and Calorimetry Recap of Last Class Last class, we began our discussion about energy changes that accompany chemical reactions Chapter 5 discusses:

More information

Chapter 3 Properties of A Pure Substance

Chapter 3 Properties of A Pure Substance Chapter 3 Properties of A Pure Substance Pure substance: A pure substance is one that has a homogeneous and invariable chemical composition. Air is a mixture of several gases, but it is considered to be

More information

( )( L L)

( )( L L) Chemistry 360 Dr. Jean M. Standard Problem Set 5 Solutions 1. Determine the amount of pressure-volume work performed by 1 mole of water freezing to ice at 0 C and 1 atm pressure. The density of liquid

More information

Bomb Calorimetry. Example 4. Energy and Enthalpy

Bomb Calorimetry. Example 4. Energy and Enthalpy Bomb Calorimetry constant volume often used for combustion reactions heat released by reaction is absorbed by calorimeter contents need heat capacity of calorimeter q cal = q rxn = q bomb + q water Example

More information

Thermochemistry. Thermochemistry 1/25/2010. Reading: Chapter 5 (omit 5.8) As you read ask yourself

Thermochemistry. Thermochemistry 1/25/2010. Reading: Chapter 5 (omit 5.8) As you read ask yourself Thermochemistry Reading: Chapter 5 (omit 5.8) As you read ask yourself What is meant by the terms system and surroundings? How are they related to each other? How does energy get transferred between them?

More information

vap H = RT 1T 2 = 30.850 kj mol 1 100 kpa = 341 K

vap H = RT 1T 2 = 30.850 kj mol 1 100 kpa = 341 K Thermodynamics: Examples for chapter 6. 1. The boiling point of hexane at 1 atm is 68.7 C. What is the boiling point at 1 bar? The vapor pressure of hexane at 49.6 C is 53.32 kpa. Assume that the vapor

More information

Lecture 6: Thermochemistry

Lecture 6: Thermochemistry Lecture 6: Thermochemistry Contents Preamble First law of thermodynamics Various heat effects Conclusions References Key words: thermo chemistry, Heat of formation, Heat of reaction, Kirchoff s law Preamble

More information

Thermodynamics: First Law, Calorimetry, Enthalpy. Calorimetry. Calorimetry: constant volume. Monday, January 23 CHEM 102H T.

Thermodynamics: First Law, Calorimetry, Enthalpy. Calorimetry. Calorimetry: constant volume. Monday, January 23 CHEM 102H T. Thermodynamics: First Law, Calorimetry, Enthalpy Monday, January 23 CHEM 102H T. Hughbanks Calorimetry Reactions are usually done at either constant V (in a closed container) or constant P (open to the

More information

IB Chemistry. DP Chemistry Review

IB Chemistry. DP Chemistry Review DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount

More information

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C 1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )

More information

Thermochemistry. Chapter 6. Concept Check 6.1. Concept Check 6.2. Solution

Thermochemistry. Chapter 6. Concept Check 6.1. Concept Check 6.2. Solution Chapter 6 Thermochemistry Concept Check 6.1 A solar-powered water pump has photovoltaic cells on protruding top panels. These cells collect energy from sunlight, storing it momentarily in a battery, which

More information

CH1010 Exam #3 Study Guide For reference see Chemistry: An Atoms-focused Approach by Gilbert, Kirss, and Foster

CH1010 Exam #3 Study Guide For reference see Chemistry: An Atoms-focused Approach by Gilbert, Kirss, and Foster Fall 2016_CH1010_Dr. Kreider-Mueller CH1010 Exam #3 Study Guide For reference see Chemistry: An Atoms-focused Approach by Gilbert, Kirss, and Foster (In addition to this study guide you need to review

More information

Chapter 18 Homework Answers

Chapter 18 Homework Answers Chapter 18 Homework Answers 18.22. 18.24. 18.26. a. Since G RT lnk, as long as the temperature remains constant, the value of G also remains constant. b. In this case, G G + RT lnq. Since the reaction

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

Chapter 16 Review Packet

Chapter 16 Review Packet Chapter 16 Review Packet AP Chemistry Chapter 16 Practice Multiple Choice Portion 1. For which process is ΔS negative? Note: ΔS = S final S initial therefore, if ΔS is positive, S final > S initial if

More information

CHEM 36 General Chemistry EXAM #1 February 13, 2002

CHEM 36 General Chemistry EXAM #1 February 13, 2002 CHEM 36 General Chemistry EXAM #1 February 13, 2002 Name: Serkey, Anne INSTRUCTIONS: Read through the entire exam before you begin. Answer all of the questions. For questions involving calculations, show

More information

Problem # 2 Determine the kinds of intermolecular forces present in each element or compound:

Problem # 2 Determine the kinds of intermolecular forces present in each element or compound: Chapter 11 Homework solutions Problem # 2 Determine the kinds of intermolecular forces present in each element or compound: A. Kr B. NCl 3 C. SiH 4 D. HF SOLUTION: Kr is a single atom, hence it can have

More information

CHAPTER 3 PROPERTIES OF NATURAL GASES

CHAPTER 3 PROPERTIES OF NATURAL GASES CHAPTER 3 PROPERTIES OF NATURAL GASES The behavior of natural gas, whether pure methane or a mixture of volatile hydrocarbons and the nonhydrocarbons nitrogen, carbon dioxide, and hydrogen sulfide, must

More information

STOICHIOMETRY. - the study of the quantitative aspects of chemical

STOICHIOMETRY. - the study of the quantitative aspects of chemical STOICHIOMETRY - the study of the quantitative aspects of chemical GENERAL PLAN FOR STOICHIOMETRY Mass reactant Mass product Moles reactant Stoichiometric factor Moles product STOICHIOMETRY It rests on

More information

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 1980 - #7 (a) State the physical significance of entropy. Entropy (S) is a measure of randomness or disorder in a system. (b) From each of

More information

Chapter 5 Thermo. Energy & Chemistry. Energy & Chemistry. Units of Energy. Energy & Chemistry. Potential & Kinetic Energy. Some Basic Principles

Chapter 5 Thermo. Energy & Chemistry. Energy & Chemistry. Units of Energy. Energy & Chemistry. Potential & Kinetic Energy. Some Basic Principles 1 Energy & Chemistry effrey Mack California State University, Sacramento Chapter 5 Principles of Chemical Reactivity: Energy and Chemical Reactions Questions that need to be addressed: How do we measure

More information

Chapter 6 Multiphase Systems

Chapter 6 Multiphase Systems Chapter 6 Multiphase Systems Single-Component Systems Phase Diagram: a plot that shows conditions under which a pure substance exists in a particular phase e.g. a liquid, a solid, or a gas. Often, the

More information

Chapter 4 Material Balances

Chapter 4 Material Balances Chapter 4 Material Balances Note: Be sure to read carefully through all the examples in this chapter. The key concepts are best learned by problem solving. Material balances: material balances express

More information

Physical pharmacy. dr basam al zayady

Physical pharmacy. dr basam al zayady Physical pharmacy Lec 7 dr basam al zayady Ideal Solutions and Raoult's Law In an ideal solution of two volatile liquids, the partial vapor pressure of each volatile constituent is equal to the vapor pressure

More information

CHEMICAL EQUILIBRIUM

CHEMICAL EQUILIBRIUM Chemistry 10 Chapter 14 CHEMICAL EQUILIBRIUM Reactions that can go in both directions are called reversible reactions. These reactions seem to stop before they go to completion. When the rate of the forward

More information

3A Energy. What is chemical energy?

3A Energy. What is chemical energy? 3A Energy What is chemical energy? Chemical energy is a form of potential energy which is stored in chemical bonds. Chemical bonds are the attractive forces that bind atoms together. As a reaction takes

More information

ENERGY. Thermochemistry. Heat. Temperature & Heat. Thermometers & Temperature. Temperature & Heat. Energy is the capacity to do work.

ENERGY. Thermochemistry. Heat. Temperature & Heat. Thermometers & Temperature. Temperature & Heat. Energy is the capacity to do work. ENERGY Thermochemistry Energy is the capacity to do work. Chapter 6 Kinetic Energy thermal, mechanical, electrical, sound Potential Energy chemical, gravitational, electrostatic Heat Heat, or thermal energy,

More information

CHAPTER 17: THERMOCHEMISTRY. Heat vs. Temperature. Heat vs. Temperature. q = mc T. Heat Capacity vs. Specific Heat

CHAPTER 17: THERMOCHEMISTRY. Heat vs. Temperature. Heat vs. Temperature. q = mc T. Heat Capacity vs. Specific Heat CHAPTER 17: THERMOCHEMISTRY Page 504 539 Heat vs. Temperature ATOM Heat energy= Kinetic energy SUBSTANCE Heat energy = TOTAL Kinetic energy of all atoms in a substance Temperature = AVERAGE Kinetic energy

More information

Chemistry Distributed Practice Assessment

Chemistry Distributed Practice Assessment Name Hour Chemistry Distributed Practice Assessment Practice 2011 Practice Exam A **This END OF COURSE Practice Exam is a qualifier for all Exam Takers 1 Objective 1 Answer questions relating to atomic

More information

Chapter 5. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 5. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Class: Date: Chapter 5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What is the pressure of the sample of gas trapped in the open-tube mercury manometer

More information

Enthalpy changes and calorimetry. Enthalpy changes in reactions Calorimetry and heat measurement Hess s Law Heats of formation

Enthalpy changes and calorimetry. Enthalpy changes in reactions Calorimetry and heat measurement Hess s Law Heats of formation Enthalpy changes and calorimetry Enthalpy changes in reactions Calorimetry and heat measurement Hess s Law Heats of formation Learning objectives Describe the standard state for thermodynamic functions

More information

Chapter 2 Chemical and Physical Properties of Sulphur Dioxide and Sulphur Trioxide

Chapter 2 Chemical and Physical Properties of Sulphur Dioxide and Sulphur Trioxide Chapter 2 Chemical and Physical Properties of Sulphur Dioxide and Sulphur Trioxide 2.1 Introduction In order to appreciate the impact of the properties of liquid sulphur dioxide and liquid sulphur trioxide

More information

CHEM 1411, chapter 6. Thermochemistry Exercises

CHEM 1411, chapter 6. Thermochemistry Exercises CHEM 1411, chapter 6. Thermochemistry Exercises 1. The heat capacity of 20.0 g of water is 83.7 J/ C. A) True B) False 2. Find the heat absorbed from the surroundings when 15 g of O 2 reacts according

More information

1. solid, vapor, critical point correct. 2. solid, liquid, critical point. 3. liquid, vapor, critical point. 4. solid, liquid, triple point

1. solid, vapor, critical point correct. 2. solid, liquid, critical point. 3. liquid, vapor, critical point. 4. solid, liquid, triple point mcdonald (pam78654) HW 7B: Equilibria laude (89560) 1 This print-out should have 18 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. 001 10.0

More information

Chapter 15: Chemical Equilibrium: How Much Product Does a Reaction Really Make?

Chapter 15: Chemical Equilibrium: How Much Product Does a Reaction Really Make? Chapter 15: Chemical Equilibrium: How Much Product Does a Reaction Really Make? End-of-Chapter Problems: 15.1-15.10, 15.13-15.14, 15.17-15.99, 15.102-15.104 Example: Ice melting is a dynamic process: H

More information

Energy and Chemical Reactions. Characterizing Energy:

Energy and Chemical Reactions. Characterizing Energy: Energy and Chemical Reactions Energy: Critical for virtually all aspects of chemistry Defined as: We focus on energy transfer. We observe energy changes in: Heat Transfer: How much energy can a material

More information

Chapter 6: Thermochemistry (Chemical Energy) (Ch6 in Chang, Ch6 in Jespersen)

Chapter 6: Thermochemistry (Chemical Energy) (Ch6 in Chang, Ch6 in Jespersen) Chapter 6: Thermochemistry (Chemical Energy) (Ch6 in Chang, Ch6 in Jespersen) Energy is defined as the capacity to do work, or transfer heat. Work (w) - force (F) applied through a distance. Force - any

More information

Standard States. Standard Enthalpy of formation

Standard States. Standard Enthalpy of formation Standard States In any thermochemical equation, the states of all reactants and products must be specified; otherwise it becomes difficult for scientists to understand the experimental results of other

More information

HEATS OF REACTION. Name: Chemistry 117 Laboratory University of Massachusetts Boston LEARNING GOALS

HEATS OF REACTION. Name: Chemistry 117 Laboratory University of Massachusetts Boston LEARNING GOALS Name: Chemistry 117 Laboratory University of Massachusetts Boston HEATS OF REACTION LEARNING GOALS 1. Become familiar the technique of calorimetry to measure heats of reaction 2. Become familiar with the

More information

Final Exam CHM 3410, Dr. Mebel, Fall 2005

Final Exam CHM 3410, Dr. Mebel, Fall 2005 Final Exam CHM 3410, Dr. Mebel, Fall 2005 1. At -31.2 C, pure propane and n-butane have vapor pressures of 1200 and 200 Torr, respectively. (a) Calculate the mole fraction of propane in the liquid mixture

More information

Assigned questions for Lecture 14 are listed below. The questions occur in the following editions of Physical Chemistry by P.W.

Assigned questions for Lecture 14 are listed below. The questions occur in the following editions of Physical Chemistry by P.W. Assigned questions for Lecture 14 are listed below. The questions occur in the following editions of Physical Chemistry by P.W. Atkins: 10th edition 9th edition 8th edition Note: The letter P in front

More information

Chemistry Guide

Chemistry Guide 551534 - Chemistry Guide 1- Contents Question Item Objective Type Skill 1 0102 M03.02.04 Multiple-choice answer Mastery of Problem Solving 2 0099 M03.03.02 Multiple-choice answer Mastery of Concepts 3

More information

Enthalpy, Entropy, and Free Energy Calculations

Enthalpy, Entropy, and Free Energy Calculations Adapted from PLTL The energies of our system will decay, the glory of the sun will be dimmed, and the earth, tideless and inert, will no longer tolerate the race which has for a moment disturbed its solitude.

More information

Practice Test Questions:

Practice Test Questions: Practice Test Questions: There are a lot of questions. Please feel free to do a problem, skip around and make sure you are doing all types of problems heat exchange, Hess Law problems, specific heat problems,

More information

Vapor Pressure Lowering

Vapor Pressure Lowering Colligative Properties A colligative property is a property of a solution that depends on the concentration of solute particles, but not on their chemical identity. We will study 4 colligative properties

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry 1. The ΔE of a system that releases 14.4 J of heat and does 4.8 J of work on the surroundings is J. (a). 19.2 J (b). 14.4 J (c). 4.8 J (d). - 19.2 J Explanation: The ΔE can be

More information

CHAPTER 14 (MOORE) CHEMICAL EQUILIBRIUM

CHAPTER 14 (MOORE) CHEMICAL EQUILIBRIUM CHAPTER 14 (MOORE) CHEMICAL EQUILIBRIUM This chapter deals with chemical equilibrium, or how far chemical reactions proceed. Some reactions convert reactants to products with near 100% efficiency but others

More information

Chapter 20. Thermodynamics p. 811 842. Spontaneity. What have we learned about spontaneity during this course?

Chapter 20. Thermodynamics p. 811 842. Spontaneity. What have we learned about spontaneity during this course? Chapter 20 p. 811 842 Spontaneous process: Ex. Nonspontaneous process: Ex. Spontaneity What have we learned about spontaneity during this course? 1) Q vs. K? 2) So.. Spontaneous process occurs when a system

More information

Chapter 19. Chemical Thermodynamics. The reverse reaction (two eggs leaping into your hand with their shells back intact) is not spontaneous.

Chapter 19. Chemical Thermodynamics. The reverse reaction (two eggs leaping into your hand with their shells back intact) is not spontaneous. Chapter 19. Chemical Thermodynamics SOURCE: Chemistry the Central Science: Prentice hall I. Spontaneous Processes Thermodynamics is concerned with the question: will a reaction occur? First Law of Thermodynamics:

More information

Lesson 5 Review of fundamental principles Thermodynamics : Part II

Lesson 5 Review of fundamental principles Thermodynamics : Part II Lesson 5 Review of fundamental principles Thermodynamics : Part II Version ME, IIT Kharagpur .The specific objectives are to:. State principles of evaluating thermodynamic properties of pure substances

More information

CHM1045 Practice Test 3 v.1 - Answers Name Fall 2013 & 2011 (Ch. 5, 6, 7, & part 11) Revised April 10, 2014

CHM1045 Practice Test 3 v.1 - Answers Name Fall 2013 & 2011 (Ch. 5, 6, 7, & part 11) Revised April 10, 2014 CHM1045 Practice Test 3 v.1 - Answers Name Fall 013 & 011 (Ch. 5, 6, 7, & part 11) Revised April 10, 014 Given: Speed of light in a vacuum = 3.00 x 10 8 m/s Planck s constant = 6.66 x 10 34 J s E (-.18x10

More information

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

More information

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided. CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas

More information

Assignment 6 Solutions. Chapter 6, #6.4, 6.12, 6.32, 6.36, 6.43, 6.60, 6.70, 6.80, 6.88, 6.90, 6.100, 6.104,

Assignment 6 Solutions. Chapter 6, #6.4, 6.12, 6.32, 6.36, 6.43, 6.60, 6.70, 6.80, 6.88, 6.90, 6.100, 6.104, Assignment 6 Solutions Chapter 6, #6.4, 6.12, 6.32, 6.36, 6.43, 6.60, 6.70, 6.80, 6.88, 6.90, 6.100, 6.104, 6.108. 6.4. Collect and Organize When the temperature of the balloon Figure P6.3 increases, does

More information

Standard Free Energies of Formation at 298 K. Average Bond Dissociation Energies at 298 K

Standard Free Energies of Formation at 298 K. Average Bond Dissociation Energies at 298 K 1 Thermodynamics There always seems to be at least one free response question that involves thermodynamics. These types of question also show up in the multiple choice questions. G, S, and H. Know what

More information

F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7.

F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7. Moles 1 MOLES The mole the standard unit of amount of a substance (mol) the number of particles in a mole is known as Avogadro s constant (N A ) Avogadro s constant has a value of 6.02 x 10 23 mol -1.

More information

Section 7.1 Describing Reactions (pages )

Section 7.1 Describing Reactions (pages ) Section 7.1 Describing Reactions (pages 192 198) This section discusses the use of chemical equations and how to balance them. It also demonstrates the use of calculations in chemistry. Reading Strategy

More information

Answers: Given: No. [COCl 2 ] = K c [CO][Cl 2 ], but there are many possible values for [CO]=[Cl 2 ]

Answers: Given: No. [COCl 2 ] = K c [CO][Cl 2 ], but there are many possible values for [CO]=[Cl 2 ] Chemical Equilibrium What are the concentrations of reactants and products at equilibrium? How do changes in pressure, volume, temperature, concentration and the use of catalysts affect the equilibrium

More information

Thermodynamics of Steam

Thermodynamics of Steam Thermodynamics of Steam Learning Outcome When you complete this module you will be able to: Describe the principles of the thermodynamics of steam and the associated terms. Learning Objectives Here is

More information

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008 Name: Review - After School Matter Tuesday, April 29, 2008 1. Figure 1 The graph represents the relationship between temperature and time as heat was added uniformly to a substance starting at a solid

More information

Chemical Equilibrium

Chemical Equilibrium Chapter 13 Chemical Equilibrium Equilibrium Physical Equilibrium refers to the equilibrium between two or more states of matter (solid, liquid and gas) A great example of physical equilibrium is shown

More information

Test Review # 9. Chemistry R: Form TR9.13A

Test Review # 9. Chemistry R: Form TR9.13A Chemistry R: Form TR9.13A TEST 9 REVIEW Name Date Period Test Review # 9 Collision theory. In order for a reaction to occur, particles of the reactant must collide. Not all collisions cause reactions.

More information

Absorption of Heat. Internal energy is the appropriate energy variable to use at constant volume

Absorption of Heat. Internal energy is the appropriate energy variable to use at constant volume 6 Absorption of Heat According to the First Law, E = q + w = q - P V, assuming P-V work is the only kind that can occur. Therefore, E = q V. The subscript means that the process occurs at constant volume.

More information

Calorimetry and Enthalpy. Chapter 5.2

Calorimetry and Enthalpy. Chapter 5.2 Calorimetry and Enthalpy Chapter 5.2 Heat Capacity Specific heat capacity (c) is the quantity of thermal energy required to raise the temperature of 1g of a substance by 1⁰C The units for specific heat

More information

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 7 Ideal Gas Laws, Different Processes Let us continue

More information

1. Thermite reaction 2. Enthalpy of reaction, H 3. Heating/cooling curves and changes in state 4. More thermite thermodynamics

1. Thermite reaction 2. Enthalpy of reaction, H 3. Heating/cooling curves and changes in state 4. More thermite thermodynamics Chem 105 Fri 10-23-09 1. Thermite reaction 2. Enthalpy of reaction, H 3. Heating/cooling curves and changes in state 4. More thermite thermodynamics 10/23/2009 1 Please PICK UP your graded EXAM in front.

More information

Some H o f values are tabulated in Table 8.2 (above)

Some H o f values are tabulated in Table 8.2 (above) 8.10 Standard Heats of Formation We cannot have a table for the H values for every reaction there is, because there are too many of them. However, as we saw with Hess s Law, we can express any reaction

More information

CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g)

CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g) CHEM 15 HOUR EXAM III 28-OCT-99 NAME (please print) 1. a. given: Ni (s) + 4 CO (g) = Ni(CO) 4 (g) H Rxn = -163 k/mole determine H f for Ni(CO) 4 (g) b. given: Cr (s) + 6 CO (g) = Cr(CO) 6 (g) H Rxn = -26

More information

AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1

AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1 Moles 1 MOLES The mole the standard unit of amount of a substance the number of particles in a mole is known as Avogadro s constant (L) Avogadro s constant has a value of 6.023 x 10 23 mol -1. Example

More information

R = J/mol K R = L atm/mol K

R = J/mol K R = L atm/mol K version: master Exam 1 - VDB/LaB/Spk This MC portion of the exam should have 19 questions. The point values are given with each question. Bubble in your answer choices on the bubblehseet provided. Your

More information

STOICHIOMETRY II UNIT

STOICHIOMETRY II UNIT STOICHIOMETRY II UNIT Assignment #1 (Conversions with compounds) 1. Convert 1.806 x 10 23 molecules of Cl2 to moles. 2. Convert 1000 molecules of P4O10 to moles. 3. Convert 360 grams of NH3 (ammonia gas)

More information

EXERCISES. 16. What is the ionic strength in a solution containing NaCl in c=0.14 mol/dm 3 concentration and Na 3 PO 4 in 0.21 mol/dm 3 concentration?

EXERCISES. 16. What is the ionic strength in a solution containing NaCl in c=0.14 mol/dm 3 concentration and Na 3 PO 4 in 0.21 mol/dm 3 concentration? EXERISES 1. The standard enthalpy of reaction is 512 kj/mol and the standard entropy of reaction is 1.60 kj/(k mol) for the denaturalization of a certain protein. Determine the temperature range where

More information

2 Stoichiometry: Chemical Arithmetic Formula Conventions (1 of 24) 2 Stoichiometry: Chemical Arithmetic Stoichiometry Terms (2 of 24)

2 Stoichiometry: Chemical Arithmetic Formula Conventions (1 of 24) 2 Stoichiometry: Chemical Arithmetic Stoichiometry Terms (2 of 24) Formula Conventions (1 of 24) Superscripts used to show the charges on ions Mg 2+ the 2 means a 2+ charge (lost 2 electrons) Subscripts used to show numbers of atoms in a formula unit H 2 SO 4 two H s,

More information