Biology Chapter 7 Beyond Mendel Notes

Size: px
Start display at page:

Download "Biology Chapter 7 Beyond Mendel Notes"

Transcription

1 Biology Chapter 7 Beyond Mendel Notes Phenotype: Genotype: What is Mendelian inheritance controlled by? Incomplete Dominance:. Example of Incomplete Dominance:

2 Example Number 2 When green betta fish (B 1 B 1 ) are crossed with a steel blue betta fish (B 2 B 2 ) all the offspring have the heterozygous genotype (B 1 B 2 ). These offspring will be royal blue in color. Practice Problem: What is the phenotypic ratio with two royal blue betta fish are crossed? Practice Problems: The petal color of four o clocks (flowering plants) is inherited by incomplete dominance. Plants with R 1 R 1 genes have red flowers. Plants with R 2 R 2 genes have white flowers. Plants with R 1 R 2 genes have pink flowers. 1. Joey planted snapdragons in his garden. All the seeds came from one set of parent plants. When the flowers bloomed, Joey saw that all of his flowers were pink. What are the genotypes of the parent plants? Include a punnett square in your answer. Genotype of the parents: and

3 2. Kory also planted snapdragons in his garden. All of his seeds came from one set of parents. When his plants bloomed, 50% were white and 50% were pink. What are the genotypes of the parent plants? Include a punnett square in your answer. Genotype of the parents: and 3. Casie, Zach, and Kelly each have beautiful gardens of snapdragon flowers. Casie has a garden of red snapdragons and would like to create a new section to her garden including only pink four snapdragons. Zach breeds only pink snapdragons and Kelly breeds white snapdragons. From whose garden will Casie have the greatest probability of creating a pink population of snapdragons flowers? Create two punnett squares to prove your point. Casie s Flowers x Zach s Flowers Casie s Flowers x Kelly s Flowers From whose garden will Casie choose mates for her flowers?

4 Codominance:. Example of Codominance: Practice Problems: The gene for the coat color of shorthorn cattle in inherited by codominance. Red Shorthorn cattle have RR genes. White shorthorn cattle have WW genes. Roan (coat of both red and white hairs) cattle have RW genes. 1. Determine the genes of the offspring if a red cow and a roan bull are bred. Show a punnett square. What % of offspring should have red coats? white coats? roan coats? % red coats: % white coats: % roan coats: 2. Determine the offspring of two roan parents. Show a punnett square. What percentage of offspring should have red coats? white coats? roan coats? % red coat: % white coat: % roan coat:

5 3. In chickens, the allele for black feathers (B) is co-dominant with the allele for white feathers (W). Heterozygous chickens appear speckled with black and white feathers. A black chicken breeds with a heterozygous speckled chicken. What are the genotypic and phenotypic ratios? Show a punnett square. Genotypic Ratio: Phenotypic Ratio: 4. A rooster and chicken mate. When the chicks hatch 3 are speckled, 2 are black and 1 is white. What are the parents s genotypes? Draw a punnett square to show your work. Parent s Genotypes: and

6 Practice: Codominance and Incomplete Dominance Name: Mods: Directions: Look at the following examples. State whether each of the following is an example of Co-dominance or Incomplete dominance. Then create genotypes based off of the given phenotypes. Remember that the medium trait must always be heterozygous. An example has been done for you. Example: Black, grey, or white. This is incomplete dominance because neither trait is being fully expressed, it s a blend. Genotypes: B 1 B 1 Black B 2 B 2 Grey B 2 B 2 White a. Birds can be blue, white, or white with blue-tipped feathers. b. Flowers can be white, pink, or red. c. A Hoo can have curly hair, spiked hair, or a mix of both curly and spiked. d. A Sneech can be tall, medium, or short. e. A dog can be spotted, black, or white. f. I ate a chocolate chip cookie, an Oreo cookie, and a chocolate chip Oreo cookie for lunch. g. There were three types of flowers: green, blue, and yellow. h. I raise cows, obviously, I have a black angus and a shorthorn cow. I cross these two cows and get a ½ angus, ½ shorthorn.

7 1. In smileys, eye shape can be starred, circular, or a circle with a star. Write the genotypes for the pictured phenotypes. 2. Is this an example of incomplete dominance or a co-dominance inheritance pattern? 3. Show the cross between a star-eyed and a circle-eyed. 4. What are the phenotypes of the offspring? 5. What are the genotypes? 6. Show the cross between a circle-star eyed, and a circle eyed. 7. What percent of the offspring have circle-eyes? 8. What percent of the offspring have circle-star eyes?

8 9. Show the cross between two circle-star eyed. 10. What percent of the offspring are circle-eyed? 11. What percent of the offspring will have circle-star eyes? 12. What is the possibility or chance of having a star-eyed child? 13. Complete the punnet square for a cross between a homozygous red-flowered snapdragon (R 1 R 1 ) and a homozygous white-flowered snapdragon (R 2 R 2 ). Give the genotype(s) and phenotype(s) of the offspring in the F1 generation. Genotype(s): Phenotype(s): 14. When traits are inherited in an incomplete dominance pattern, what is true of the phenotype of the heterozygotes? 15. Complete the punnett square for a cross between two pink-flowered F1 plants. Give the phenotype ratio of the offspring in the F2 generation. Phenotype ratio:

9 16. In what type of inheritance are both alleles expressed equally? 17. Complete the Punnett square for a cross between a black chicken (BB) and a white chicken (WW). Give the phenotype of the offspring in the F1 generation. Key BB - Black WW white BW - checkered Phenotype of offspring: 18. What type of inheritance pattern is this?

10 Multiple Alleles: Example(s) of Multiple Alleles: Note: Even though there are multiple alleles for certain traits an individual can only carry alleles because. Blood Types are also an example of multiple alleles. How many different types of blood are there? What are the four blood types? How many alleles control the blood types? Blood Types A and B are. Blood Type O is. Why is it important for you to know your blood type? The blood type that is known as the Universal acceptor is. Universal acceptor means that people with this blood type can receive blood from anyone, It doesn t matter what their blood type is. The blood type that is known as the Universal donor is. Universal donor means that their blood can be given to any individual regardless of their blood type.

11 Practice Problems: Your blood type is controlled by multiple alleles. Blood type is controlled by three alleles in which A (I A ) and B (I B ) are codominant, and both are dominant over O (ii). Type A Blood = I A I A or I A i Type B Blood = I B I B or I B i Type O Blood = ii Type AB Blood = I A I B 1. If your mom has type AB blood and your dad has type O blood then what blood types could your siblings have? Draw a punnett square to show the cross and possible offspring. What are the possible blood types (phenotypes) of your siblings? What are the possible genotypes from these two parents? 2. A man with blood type B marries a woman with blood type A. They have four children, one with the blood type AB, one with blood type A, one with the blood type B and one with the blood type O. Draw a punnett square showing the cross. What are the genotypes of each parent? Genotypes of Parents: and

12 The chart below lists the blood phenotypes of 8 individuals. Use the information in the chart to solve the genetics problems that follow. Females Blood Type Males Blood Type Anne Type O Charlie Type A Wendy Type B Scott Type AB Susan Type AB Larry Type O Patricia Type A Keith Type B 3. Larry has a son with type B blood. Which of the females listed above could be this child s biological mother? Biological mother could be: 4. Keith and Wendy have a 4 year old son with type O blood. How is this possible? Use a punnett square as part of your answer.

13 Blood Type compatibility: What is an antibody? How do they relate to blood types? Can differences between a mother and fetus s blood cause risks to the baby or mom? Explain: Polygenetic Inheritance: Example(s) of Polygenetic Inheritance: Most human traits are. Eye Color -There are known genes that control human eye color. -Green alleles are to blue alleles -Green alleles are to brown alleles This does not account for all eye colors, like,, or eye color that changes overtime or patterns in eye color. Scientist hypothesize that we have not all the that control eye color.

14 Epistasis In mice, different genes affect. Two genes give the mouse a. One affects the. One determines if it will have The fifth determines if it will have. - gene that can interfere with the expression of other genes. - a lack of pigment in skin, hair and eyes. A mouse that is for the alleles that prevent of the skin will be white regardless of what those other genes code for. Environmental Influences Effects of genes can be altered by the. The genetic make-up of an organism at fertilization determines In what two ways can the environment affect the genetic make-up of an organism? Examples of each:

15 Boy vs. Girl All somatic, or regular chromosomes are identical pairs Do sex chromosomes always match? Why or why not? Does the sperm or egg determine the sex of a baby? Why? X-Chromosome Inactivation Since males have one and one, they express all of the on both chromosomes. Even if males have all genes, they will still be. In females ( ) one of the is turned off, this is. Because one X-chromosome is randomly turned off, females are a of two types of cells. One type with an active X-chromosome from and one with an active X-chromosome from. Examples: Female calico cats have white fur and alleles for black and orange fur that are expressed randomly in some cells. Since males have only 1 X chromosome they can have black or orange.

16 Sex-Linked Traits:. What is the fate of a male who inherits an x-linked trait? Why? Will a female who inherits an x-linked trait have the same fate? Why or why not? Example of Sex-Linked Traits: Carrier: Can sex-linked traits be hidden? Explain:

17 Practice Problems: The human blood clotting disorder is a recessive trait (must receive both recessive alleles to express trait) which is found on the X chromosome. X H X H and X H X h = females without hemophilia X h X h = female with hemophilia X H Y = male without hemophilia X h Y = male with hemophilia 1. A woman who is heterozygous for hemophilia mates with a male without hemophilia. What percent of the female offspring will be a carrier for hemophilia (heterozygous)? Describe the phenotypes of the boy offspring. Percent of female offspring that are carriers: Male offspring s phenotypes: 2. A woman who is a carrier mates with a male with hemophilia. Will any girls have hemophilia?

18 Below is a chart listing some alien sex-linked characteristics. Use the chart to solve the genetics problems below. Trait Chromosome Dominant Phenotype Recessive Phenotype Body Color X Purple (P) Pink (p) Eye Color X Yellow (E) Red (e) Extra Arms Y Extra arms present (4) Extra arms present (4) 3. A male with yellow eyes mates with a red-eyed female. What is the chance that this couple will have a baby boy with red eyes? Probability of baby boy having red eyes: % 4. A female, heterozygous for the body color trait mates with a pink male. What is the chance that these aliens will give birth to a purple-skinned girls? Purple-skinned Girl: % Genetic Disorder: Mutation:

19 What is the difference between a treatment and a cure? Cystic Fibrous What is it? What are the symptoms? What is the treatment Dominant or Recessive or Sex-linked Other Important Information: Sickle Cell Anemia What is it? What are the symptoms? What is the treatment Dominant or Recessive or Sex-linked Other Important Information:

20 Hemophilia What is it? What are the symptoms? What is the treatment Dominant or Recessive or Sex-linked Other Important Information: Huntington s What is it? What are the symptoms? What is the treatment Dominant or Recessive or Sex-linked Other Important Information:

21 Down Syndrome What is it? What are the symptoms? What is the treatment Dominant or Recessive or Sex-linked Other Important Information: Diagnosing Genetic Disorders What two things did Doctors rely on in the past in order to determine genetic disorders? and What two things do Doctors rely on today in order to determine genetic disorders? and How does the process of amniocentesis lead to a karyotype? Karyotype: Karyotypes are arranged in pairs by and of centromeres.

22 Genetic Counseling What does a genetic counselor do? Who might visit a Genetic counselor? Pedigree: It is an important tool that geneticists use to A pedigree is a chart or that

23 Common Symbols Used In Pedigrees Male Female Marriage (Husband and Wife) Parents to their children Siblings (Brothers and Sisters) Individual is affected by trait (shows up) Carrier of the trait Death Successive Generations are labeled by Individuals are labeled by

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers.

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers. Heredity 1. Sarah is doing an experiment on pea plants. She is studying the color of the pea plants. Sarah has noticed that many pea plants have purple flowers and many have white flowers. Sarah crosses

More information

Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele.

Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele. Genetics Problems Name ANSWER KEY Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele. 1. What would be the genotype

More information

GENETIC CROSSES. Monohybrid Crosses

GENETIC CROSSES. Monohybrid Crosses GENETIC CROSSES Monohybrid Crosses Objectives Explain the difference between genotype and phenotype Explain the difference between homozygous and heterozygous Explain how probability is used to predict

More information

Incomplete Dominance and Codominance

Incomplete Dominance and Codominance Name: Date: Period: Incomplete Dominance and Codominance 1. In Japanese four o'clock plants red (R) color is incompletely dominant over white (r) flowers, and the heterozygous condition (Rr) results in

More information

7A The Origin of Modern Genetics

7A The Origin of Modern Genetics Life Science Chapter 7 Genetics of Organisms 7A The Origin of Modern Genetics Genetics the study of inheritance (the study of how traits are inherited through the interactions of alleles) Heredity: the

More information

Human Blood Types: Codominance and Multiple Alleles. Codominance: both alleles in the heterozygous genotype express themselves fully

Human Blood Types: Codominance and Multiple Alleles. Codominance: both alleles in the heterozygous genotype express themselves fully Human Blood Types: Codominance and Multiple Alleles Codominance: both alleles in the heterozygous genotype express themselves fully Multiple alleles: three or more alleles for a trait are found in the

More information

CCR Biology - Chapter 7 Practice Test - Summer 2012

CCR Biology - Chapter 7 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 7 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A person who has a disorder caused

More information

Heredity - Patterns of Inheritance

Heredity - Patterns of Inheritance Heredity - Patterns of Inheritance Genes and Alleles A. Genes 1. A sequence of nucleotides that codes for a special functional product a. Transfer RNA b. Enzyme c. Structural protein d. Pigments 2. Genes

More information

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes.

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. 1 Biology Chapter 10 Study Guide Trait A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. Genes Genes are located on chromosomes

More information

Phenotypes and Genotypes of Single Crosses

Phenotypes and Genotypes of Single Crosses GENETICS PROBLEM PACKET- Gifted NAME PER Phenotypes and Genotypes of Single Crosses Use these characteristics about plants to answer the following questions. Round seed is dominant over wrinkled seed Yellow

More information

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6 Name: Multiple-choice section Choose the answer which best completes each of the following statements or answers the following questions and so make your tutor happy! 1. Which of the following conclusions

More information

Mendelian and Non-Mendelian Heredity Grade Ten

Mendelian and Non-Mendelian Heredity Grade Ten Ohio Standards Connection: Life Sciences Benchmark C Explain the genetic mechanisms and molecular basis of inheritance. Indicator 6 Explain that a unit of hereditary information is called a gene, and genes

More information

The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes.

The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes. 1. Why is the white-eye phenotype always observed in males carrying the white-eye allele? a. Because the trait is dominant b. Because the trait is recessive c. Because the allele is located on the X chromosome

More information

Two copies of each autosomal gene affect phenotype.

Two copies of each autosomal gene affect phenotype. SECTION 7.1 CHROMOSOMES AND PHENOTYPE Study Guide KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. VOCABULARY carrier sex-linked gene X chromosome inactivation

More information

Genetics with a Smile

Genetics with a Smile Teacher Notes Materials Needed: Two coins (penny, poker chip, etc.) per student - One marked F for female and one marked M for male Copies of student worksheets - Genetics with a Smile, Smiley Face Traits,

More information

Chapter 9 Patterns of Inheritance

Chapter 9 Patterns of Inheritance Bio 100 Patterns of Inheritance 1 Chapter 9 Patterns of Inheritance Modern genetics began with Gregor Mendel s quantitative experiments with pea plants History of Heredity Blending theory of heredity -

More information

CHROMOSOMES AND INHERITANCE

CHROMOSOMES AND INHERITANCE SECTION 12-1 REVIEW CHROMOSOMES AND INHERITANCE VOCABULARY REVIEW Distinguish between the terms in each of the following pairs of terms. 1. sex chromosome, autosome 2. germ-cell mutation, somatic-cell

More information

PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES

PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES 1. Margaret has just learned that she has adult polycystic kidney disease. Her mother also has the disease, as did her maternal grandfather and his younger

More information

LAB : PAPER PET GENETICS. male (hat) female (hair bow) Skin color green or orange Eyes round or square Nose triangle or oval Teeth pointed or square

LAB : PAPER PET GENETICS. male (hat) female (hair bow) Skin color green or orange Eyes round or square Nose triangle or oval Teeth pointed or square Period Date LAB : PAPER PET GENETICS 1. Given the list of characteristics below, you will create an imaginary pet and then breed it to review the concepts of genetics. Your pet will have the following

More information

Biology Final Exam Study Guide: Semester 2

Biology Final Exam Study Guide: Semester 2 Biology Final Exam Study Guide: Semester 2 Questions 1. Scientific method: What does each of these entail? Investigation and Experimentation Problem Hypothesis Methods Results/Data Discussion/Conclusion

More information

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction:

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction: Bio EOC Topics for Cell Reproduction: Asexual vs. sexual reproduction Mitosis steps, diagrams, purpose o Interphase, Prophase, Metaphase, Anaphase, Telophase, Cytokinesis Meiosis steps, diagrams, purpose

More information

Genetics 1. Defective enzyme that does not make melanin. Very pale skin and hair color (albino)

Genetics 1. Defective enzyme that does not make melanin. Very pale skin and hair color (albino) Genetics 1 We all know that children tend to resemble their parents. Parents and their children tend to have similar appearance because children inherit genes from their parents and these genes influence

More information

2 18. If a boy s father has haemophilia and his mother has one gene for haemophilia. What is the chance that the boy will inherit the disease? 1. 0% 2

2 18. If a boy s father has haemophilia and his mother has one gene for haemophilia. What is the chance that the boy will inherit the disease? 1. 0% 2 1 GENETICS 1. Mendel is considered to be lucky to discover the laws of inheritance because 1. He meticulously analyzed his data statistically 2. He maintained pedigree records of various generations he

More information

Variations on a Human Face Lab

Variations on a Human Face Lab Variations on a Human Face Lab Introduction: Have you ever wondered why everybody has a different appearance even if they are closely related? It is because of the large variety or characteristics that

More information

Bio 102 Practice Problems Mendelian Genetics and Extensions

Bio 102 Practice Problems Mendelian Genetics and Extensions Bio 102 Practice Problems Mendelian Genetics and Extensions Short answer (show your work or thinking to get partial credit): 1. In peas, tall is dominant over dwarf. If a plant homozygous for tall is crossed

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ Meiosis Quiz 1. (1 point) A kidney cell is an example of which type of cell? a. sex cell b. germ cell c. somatic cell d. haploid cell 2. (1 point) How many chromosomes are in a human

More information

If you crossed a homozygous, black guinea pig with a white guinea pig, what would be the phenotype(s)

If you crossed a homozygous, black guinea pig with a white guinea pig, what would be the phenotype(s) Biological Principles Name: In guinea pigs, black hair (B) is dominant to white hair (b). Homozygous black guinea pig White guinea pig Heterozygous black guinea pig Genotype Phenotype Why is there no heterozygous

More information

Ex) A tall green pea plant (TTGG) is crossed with a short white pea plant (ttgg). TT or Tt = tall tt = short GG or Gg = green gg = white

Ex) A tall green pea plant (TTGG) is crossed with a short white pea plant (ttgg). TT or Tt = tall tt = short GG or Gg = green gg = white Worksheet: Dihybrid Crosses U N I T 3 : G E N E T I C S STEP 1: Determine what kind of problem you are trying to solve. STEP 2: Determine letters you will use to specify traits. STEP 3: Determine parent

More information

Genetics for the Novice

Genetics for the Novice Genetics for the Novice by Carol Barbee Wait! Don't leave yet. I know that for many breeders any article with the word genetics in the title causes an immediate negative reaction. Either they quickly turn

More information

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Ch. 8 Cell Division Cells divide to produce new cells must pass genetic information to new cells - What process of DNA allows this? Two types

More information

Terms: The following terms are presented in this lesson (shown in bold italics and on PowerPoint Slides 2 and 3):

Terms: The following terms are presented in this lesson (shown in bold italics and on PowerPoint Slides 2 and 3): Unit B: Understanding Animal Reproduction Lesson 4: Understanding Genetics Student Learning Objectives: Instruction in this lesson should result in students achieving the following objectives: 1. Explain

More information

Bio 102 Practice Problems Mendelian Genetics: Beyond Pea Plants

Bio 102 Practice Problems Mendelian Genetics: Beyond Pea Plants Bio 102 Practice Problems Mendelian Genetics: Beyond Pea Plants Short answer (show your work or thinking to get partial credit): 1. In four-o'clock flowers, red flower color (R) is incompletely dominant

More information

The Making of the Fittest: Natural Selection in Humans

The Making of the Fittest: Natural Selection in Humans OVERVIEW MENDELIN GENETIC, PROBBILITY, PEDIGREE, ND CHI-QURE TTITIC This classroom lesson uses the information presented in the short film The Making of the Fittest: Natural election in Humans (http://www.hhmi.org/biointeractive/making-fittest-natural-selection-humans)

More information

Mendelian inheritance and the

Mendelian inheritance and the Mendelian inheritance and the most common genetic diseases Cornelia Schubert, MD, University of Goettingen, Dept. Human Genetics EUPRIM-Net course Genetics, Immunology and Breeding Mangement German Primate

More information

17. A testcross A.is used to determine if an organism that is displaying a recessive trait is heterozygous or homozygous for that trait. B.

17. A testcross A.is used to determine if an organism that is displaying a recessive trait is heterozygous or homozygous for that trait. B. ch04 Student: 1. Which of the following does not inactivate an X chromosome? A. Mammals B. Drosophila C. C. elegans D. Humans 2. Who originally identified a highly condensed structure in the interphase

More information

DRAGON GENETICS LAB -- Principles of Mendelian Genetics

DRAGON GENETICS LAB -- Principles of Mendelian Genetics DragonGeneticsProtocol Mendelian Genetics lab Student.doc DRAGON GENETICS LAB -- Principles of Mendelian Genetics Dr. Pamela Esprivalo Harrell, University of North Texas, developed an earlier version of

More information

Genetics Part 1: Inheritance of Traits

Genetics Part 1: Inheritance of Traits Genetics Part 1: Inheritance of Traits Genetics is the study of how traits are passed from parents to offspring. Offspring usually show some traits of each parent. For a long time, scientists did not understand

More information

Mendelian Genetics in Drosophila

Mendelian Genetics in Drosophila Mendelian Genetics in Drosophila Lab objectives: 1) To familiarize you with an important research model organism,! Drosophila melanogaster. 2) Introduce you to normal "wild type" and various mutant phenotypes.

More information

Baby Lab. Class Copy. Introduction

Baby Lab. Class Copy. Introduction Class Copy Baby Lab Introduction The traits on the following pages are believed to be inherited in the explained manner. Most of the traits, however, in this activity were created to illustrate how human

More information

Genetic Mutations. Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes.

Genetic Mutations. Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes. Genetic Mutations Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes. Agenda Warm UP: What is a mutation? Body cell? Gamete? Notes on Mutations Karyotype Web Activity

More information

B2 5 Inheritrance Genetic Crosses

B2 5 Inheritrance Genetic Crosses B2 5 Inheritrance Genetic Crosses 65 minutes 65 marks Page of 55 Q. A woman gives birth to triplets. Two of the triplets are boys and the third is a girl. The triplets developed from two egg cells released

More information

About The Causes of Hearing Loss

About The Causes of Hearing Loss About 1 in 500 infants is born with or develops hearing loss during early childhood. Hearing loss has many causes: some are genetic (that is, caused by a baby s genes) or non-genetic (such as certain infections

More information

Lesson Plan: GENOTYPE AND PHENOTYPE

Lesson Plan: GENOTYPE AND PHENOTYPE Lesson Plan: GENOTYPE AND PHENOTYPE Pacing Two 45- minute class periods RATIONALE: According to the National Science Education Standards, (NSES, pg. 155-156), In the middle-school years, students should

More information

BioBoot Camp Genetics

BioBoot Camp Genetics BioBoot Camp Genetics BIO.B.1.2.1 Describe how the process of DNA replication results in the transmission and/or conservation of genetic information DNA Replication is the process of DNA being copied before

More information

Inheritance of Color And The Polled Trait Dr. R. R. Schalles, Dept. of Animal Sciences and Industry Kansas State University

Inheritance of Color And The Polled Trait Dr. R. R. Schalles, Dept. of Animal Sciences and Industry Kansas State University Inheritance of Color And The Polled Trait Dr. R. R. Schalles, Dept. of Animal Sciences and Industry Kansas State University Introduction All functions of an animal are controlled by the enzymes (and other

More information

This fact sheet describes how genes affect our health when they follow a well understood pattern of genetic inheritance known as autosomal recessive.

This fact sheet describes how genes affect our health when they follow a well understood pattern of genetic inheritance known as autosomal recessive. 11111 This fact sheet describes how genes affect our health when they follow a well understood pattern of genetic inheritance known as autosomal recessive. In summary Genes contain the instructions for

More information

MCB41: Second Midterm Spring 2009

MCB41: Second Midterm Spring 2009 MCB41: Second Midterm Spring 2009 Before you start, print your name and student identification number (S.I.D) at the top of each page. There are 7 pages including this page. You will have 50 minutes for

More information

DNA Determines Your Appearance!

DNA Determines Your Appearance! DNA Determines Your Appearance! Summary DNA contains all the information needed to build your body. Did you know that your DNA determines things such as your eye color, hair color, height, and even the

More information

Can receive blood from: * I A I A and I A i o Type A Yes No A or AB A or O I B I B and I B i o Type B No Yes B or AB B or O

Can receive blood from: * I A I A and I A i o Type A Yes No A or AB A or O I B I B and I B i o Type B No Yes B or AB B or O Genetics of the ABO Blood Groups written by J. D. Hendrix Learning Objectives Upon completing the exercise, each student should be able: to explain the concept of blood group antigens; to list the genotypes

More information

CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE. Section B: Sex Chromosomes

CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE. Section B: Sex Chromosomes CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE Section B: Sex Chromosomes 1. The chromosomal basis of sex varies with the organism 2. Sex-linked genes have unique patterns of inheritance 1. The chromosomal

More information

Mitosis, Meiosis and Fertilization 1

Mitosis, Meiosis and Fertilization 1 Mitosis, Meiosis and Fertilization 1 I. Introduction When you fall and scrape the skin off your hands or knees, how does your body make new skin cells to replace the skin cells that were scraped off? How

More information

Chromosomes, Mapping, and the Meiosis Inheritance Connection

Chromosomes, Mapping, and the Meiosis Inheritance Connection Chromosomes, Mapping, and the Meiosis Inheritance Connection Carl Correns 1900 Chapter 13 First suggests central role for chromosomes Rediscovery of Mendel s work Walter Sutton 1902 Chromosomal theory

More information

Population Genetics and Multifactorial Inheritance 2002

Population Genetics and Multifactorial Inheritance 2002 Population Genetics and Multifactorial Inheritance 2002 Consanguinity Genetic drift Founder effect Selection Mutation rate Polymorphism Balanced polymorphism Hardy-Weinberg Equilibrium Hardy-Weinberg Equilibrium

More information

Chapter 4 Pedigree Analysis in Human Genetics. Chapter 4 Human Heredity by Michael Cummings 2006 Brooks/Cole-Thomson Learning

Chapter 4 Pedigree Analysis in Human Genetics. Chapter 4 Human Heredity by Michael Cummings 2006 Brooks/Cole-Thomson Learning Chapter 4 Pedigree Analysis in Human Genetics Mendelian Inheritance in Humans Pigmentation Gene and Albinism Fig. 3.14 Two Genes Fig. 3.15 The Inheritance of Human Traits Difficulties Long generation time

More information

Each person normally has 23 pairs of chromosomes, or 46 in all. We inherit one chromosome per pair from our mother and one from our father.

Each person normally has 23 pairs of chromosomes, or 46 in all. We inherit one chromosome per pair from our mother and one from our father. AP Psychology 2.2 Behavioral Genetics Article Chromosomal Abnormalities About 1 in 150 babies is born with a chromosomal abnormality (1, 2). These are caused by errors in the number or structure of chromosomes.

More information

CCpp X ccpp. CcPp X CcPp. CP Cp cp cp. Purple. White. Purple CcPp. Purple Ccpp White. White. Summary: 9/16 purple, 7/16 white

CCpp X ccpp. CcPp X CcPp. CP Cp cp cp. Purple. White. Purple CcPp. Purple Ccpp White. White. Summary: 9/16 purple, 7/16 white P F 1 CCpp X ccpp Cp Cp CcPp X CcPp F 2 CP Cp cp cp CP Cp cp cp CCPP CCPp CcPP CcPp CCPp CCpp CcPp Ccpp CcPP CcPp ccpp ccpp Summary: 9/16 purple, 7/16 white CcPp Ccpp ccpp ccpp AABB X aabb P AB ab Gametes

More information

AP Biology PowerPoint Notes Chapter 11 & 12 Patterns of Heredity and Human Genetics

AP Biology PowerPoint Notes Chapter 11 & 12 Patterns of Heredity and Human Genetics AP Biology PowerPoint Notes Chapter 11 & 12 Patterns of Heredity and Human Genetics Mendelism and Genotype Genotype must be considered an integrated whole of all the genes because genes often work together

More information

Helen Geeson BSc PGCE. Background

Helen Geeson BSc PGCE. Background The Genetics of Dachshund Coats and Colours Helen Geeson Sc PGCE ackground Dogs have 39 pairs of Chromosomes (one from each parent). Chromosomes are long chains of genes which are the coded instructions

More information

Nevada Department of Education Standards

Nevada Department of Education Standards Blood-Typing Through an experiment with Kool-Aid, students follow the steps of the scientific method to learn about the experimental procedure of blood typing. Grade Level: 5th Objectives: Students will

More information

The Genetics of Drosophila melanogaster

The Genetics of Drosophila melanogaster The Genetics of Drosophila melanogaster Thomas Hunt Morgan, a geneticist who worked in the early part of the twentieth century, pioneered the use of the common fruit fly as a model organism for genetic

More information

Genetics Module B, Anchor 3

Genetics Module B, Anchor 3 Genetics Module B, Anchor 3 Key Concepts: - An individual s characteristics are determines by factors that are passed from one parental generation to the next. - During gamete formation, the alleles for

More information

Influence of Sex on Genetics. Chapter Six

Influence of Sex on Genetics. Chapter Six Influence of Sex on Genetics Chapter Six Humans 23 Autosomes Chromosomal abnormalities very severe Often fatal All have at least one X Deletion of X chromosome is fatal Males = heterogametic sex XY Females

More information

Genetics Test Biology I

Genetics Test Biology I Genetics Test Biology I Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Avery s experiments showed that bacteria are transformed by a. RNA. c. proteins.

More information

12.1 The Role of DNA in Heredity

12.1 The Role of DNA in Heredity 12.1 The Role of DNA in Heredity Only in the last 50 years have scientists understood the role of DNA in heredity. That understanding began with the discovery of DNA s structure. In 1952, Rosalind Franklin

More information

Hardy-Weinberg Equilibrium Problems

Hardy-Weinberg Equilibrium Problems Hardy-Weinberg Equilibrium Problems 1. The frequency of two alleles in a gene pool is 0.19 (A) and 0.81(a). Assume that the population is in Hardy-Weinberg equilibrium. (a) Calculate the percentage of

More information

Type A carbohydrate molecules on their red blood cells. Type B carbohydrate molecules on their red blood cells

Type A carbohydrate molecules on their red blood cells. Type B carbohydrate molecules on their red blood cells Using Blood Tests to Identify Babies and Criminals Copyright, 2010, by Drs. Jennifer Doherty and Ingrid Waldron, Department of Biology, University of Pennsylvania 1 I. Were the babies switched? Two couples

More information

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics Ms. Foglia Date AP: LAB 8: THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

More information

Using Blood Tests to Identify Babies and Criminals

Using Blood Tests to Identify Babies and Criminals Using Blood Tests to Identify Babies and Criminals Copyright, 2012, by Drs. Jennifer Doherty and Ingrid Waldron, Department of Biology, University of Pennsylvania 1 I. Were the babies switched? Two couples

More information

7 th Grade Life Science Name: Miss Thomas & Mrs. Wilkinson Lab: Superhero Genetics Due Date:

7 th Grade Life Science Name: Miss Thomas & Mrs. Wilkinson Lab: Superhero Genetics Due Date: 7 th Grade Life Science Name: Miss Thomas & Mrs. Wilkinson Partner: Lab: Superhero Genetics Period: Due Date: The editors at Marvel Comics are tired of the same old characters. They re all out of ideas

More information

Saffiyah Y. Manboard Biology Instructor Seagull Alternative High School Saffiyah.manboard@browardschools.com

Saffiyah Y. Manboard Biology Instructor Seagull Alternative High School Saffiyah.manboard@browardschools.com The Effect of Discovery Learning through Biotechnology on the Knowledge and Perception of Sickle Cell Anemia and It s Genetics on Lower Income Students Saffiyah Y. Manboard Biology Instructor Seagull Alternative

More information

EXERCISE 11 MENDELIAN GENETICS PROBLEMS

EXERCISE 11 MENDELIAN GENETICS PROBLEMS EXERCISE 11 MENDELIAN GENETICS PROBLEMS These problems are divided into subdivisions composed of problems that require application of a specific genetic principle. These problems are intended to complement

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know. Define: gene locus gamete male gamete female

More information

Ringneck Doves. A Handbook of Care & Breeding

Ringneck Doves. A Handbook of Care & Breeding Ringneck Doves A Handbook of Care & Breeding With over 100 Full Color Photos, Including Examples and Descriptions of 33 Different Colors and Varieties. K. Wade Oliver Table of Contents Introduction, 4

More information

LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics Period Date LAB : THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

More information

Recovering the Romanovs

Recovering the Romanovs Recovering the Romanovs ACTIVITY 1 The Romanov Family: Screen #4 Inheritance of a Sex-linked Trait Key: H=normal allele; h=hemophilia allele; X=X chromosome; Y=Y chromosome 1. Use a Punnett square to show

More information

P1 Gold X Black. 100% Black X. 99 Black and 77 Gold. Critical Values 3.84 5.99 7.82 9.49 11.07 12.59 14.07 15.51

P1 Gold X Black. 100% Black X. 99 Black and 77 Gold. Critical Values 3.84 5.99 7.82 9.49 11.07 12.59 14.07 15.51 Questions for Exam I Fall 2005 1. Wild-type humbugs have no spots, have red eyes and brown bodies. You have isolated mutations in three new autosomal humbug genes. The mutation Sp gives a dominant phenotype

More information

LAB 11 Drosophila Genetics

LAB 11 Drosophila Genetics LAB 11 Drosophila Genetics Introduction: Drosophila melanogaster, the fruit fly, is an excellent organism for genetics studies because it has simple food requirements, occupies little space, is hardy,

More information

Reebops. A model organism for teaching genetic concepts

Reebops. A model organism for teaching genetic concepts A model organism for teaching genetic concepts The activity helps to demonstrate how genetics is responsible both for similarities and variation among members of the same species. are imaginary organisms

More information

somatic cell egg genotype gamete polar body phenotype homologous chromosome trait dominant autosome genetics recessive

somatic cell egg genotype gamete polar body phenotype homologous chromosome trait dominant autosome genetics recessive CHAPTER 6 MEIOSIS AND MENDEL Vocabulary Practice somatic cell egg genotype gamete polar body phenotype homologous chromosome trait dominant autosome genetics recessive CHAPTER 6 Meiosis and Mendel sex

More information

Genetics Review for USMLE (Part 2)

Genetics Review for USMLE (Part 2) Single Gene Disorders Genetics Review for USMLE (Part 2) Some Definitions Alleles variants of a given DNA sequence at a particular location (locus) in the genome. Often used more narrowly to describe alternative

More information

1 Mutation and Genetic Change

1 Mutation and Genetic Change CHAPTER 14 1 Mutation and Genetic Change SECTION Genes in Action KEY IDEAS As you read this section, keep these questions in mind: What is the origin of genetic differences among organisms? What kinds

More information

BIO 184 Page 1 Spring 2013 NAME VERSION 1 EXAM 3: KEY. Instructions: PRINT your Name and Exam version Number on your Scantron

BIO 184 Page 1 Spring 2013 NAME VERSION 1 EXAM 3: KEY. Instructions: PRINT your Name and Exam version Number on your Scantron BIO 184 Page 1 Spring 2013 EXAM 3: KEY Instructions: PRINT your Name and Exam version Number on your Scantron Example: PAULA SMITH, EXAM 2 VERSION 1 Write your name CLEARLY at the top of every page of

More information

2 GENETIC DATA ANALYSIS

2 GENETIC DATA ANALYSIS 2.1 Strategies for learning genetics 2 GENETIC DATA ANALYSIS We will begin this lecture by discussing some strategies for learning genetics. Genetics is different from most other biology courses you have

More information

Chromosomal Basis of Inheritance. Ch. 3

Chromosomal Basis of Inheritance. Ch. 3 Chromosomal Basis of Inheritance Ch. 3 THE CHROMOSOME THEORY OF INHERITANCE AND SEX CHROMOSOMES! The chromosome theory of inheritance describes how the transmission of chromosomes account for the Mendelian

More information

Patient Information. for Childhood

Patient Information. for Childhood Patient Information Genetic Testing for Childhood Hearing Loss Introduction This document describes the most common genetic cause of childhood hearing loss and explains the role of genetic testing. Childhood

More information

Genetic Testing in Research & Healthcare

Genetic Testing in Research & Healthcare We Innovate Healthcare Genetic Testing in Research & Healthcare We Innovate Healthcare Genetic Testing in Research and Healthcare Human genetic testing is a growing science. It is used to study genes

More information

Marrying a relative. Is there an increased chance that a child will have genetic problems if its parents are related to each other?

Marrying a relative. Is there an increased chance that a child will have genetic problems if its parents are related to each other? Marrying a relative Is there an increased chance that a child will have genetic problems if its parents are related to each other? The simple answer to this question is Yes, there is an increased chance.

More information

XII. Biology, Grade 10

XII. Biology, Grade 10 XII. Biology, Grade 10 Grade 10 Biology Pilot Test The spring 2004 Grade 10 MCAS Biology Test was based on learning standards in the Biology content strand of the Massachusetts Science and Technology/Engineering

More information

Tuesday 14 May 2013 Morning

Tuesday 14 May 2013 Morning THIS IS A NEW SPECIFICATION H Tuesday 14 May 2013 Morning GCSE TWENTY FIRST CENTURY SCIENCE BIOLOGY A A161/02 Modules B1 B2 B3 (Higher Tier) *A137150613* Candidates answer on the Question Paper. A calculator

More information

Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15

Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15 Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15 Species - group of individuals that are capable of interbreeding and producing fertile offspring; genetically similar 13.7, 14.2 Population

More information

UNIT 13 (OPTION) Genetic Abnormalities

UNIT 13 (OPTION) Genetic Abnormalities Unit 13 Genetic Abnormailities 1 UNIT 13 (OPTION) Genetic Abnormalities Originally developed by: Hildur Helgedottir RN, MN Revised (2000) by: Marlene Reimer RN, PhD, CCN (C) Associate Professor Faculty

More information

Preimplantation Genetic Diagnosis. Evaluation for single gene disorders

Preimplantation Genetic Diagnosis. Evaluation for single gene disorders Preimplantation Genetic Diagnosis Evaluation for single gene disorders What is Preimplantation Genetic Diagnosis? Preimplantation genetic diagnosis or PGD is a technology that allows genetic testing of

More information

Gene Mapping Techniques

Gene Mapping Techniques Gene Mapping Techniques OBJECTIVES By the end of this session the student should be able to: Define genetic linkage and recombinant frequency State how genetic distance may be estimated State how restriction

More information

Part I Failure to Thrive

Part I Failure to Thrive Part I Failure to Thrive Emma and Jacob Miller were so excited at the birth of their baby Matthew. Jacob, he s just so perfect! Just one problem though, it looks like he has your hairline! Emma teased

More information

Cat caryotype (38 chromosomes)

Cat caryotype (38 chromosomes) CAT GENETICS Cat caryotype (38 chromosomes) D Dense pigment d dilute pigment L short hair dominant l long hair monohybrid dihybrid Cat Genetics and Mosaicism The Calico phenotype reflects transcriptional

More information

Cat Coat Color, Pattern and Genetics

Cat Coat Color, Pattern and Genetics Sonja Prohaska Computational EvoDevo University of Leipzig May 18, 2015 Cat Coat Color, Pattern and Genetics How Hair Gets Color melanoblasts derive from neural crest dorso-ventral migration (back to belly)

More information

Blood Stains at the Crime Scene Forensic Investigation

Blood Stains at the Crime Scene Forensic Investigation Blood Stains at the Crime Scene Forensic Investigation Introduction Blood stains at a crime scene can be crucial in solving the crime. Numerous analytical techniques can be used to study blood stains.

More information

Scheme of work Cambridge IGCSE Biology (0610)

Scheme of work Cambridge IGCSE Biology (0610) Scheme of work Cambridge IGCSE Biology (0610) Unit 8: Inheritance and evolution Recommended prior knowledge Basic knowledge of Unit 1 cell structure is required, and also an understanding of the processes

More information

Activity 4 Probability, Genetics, and Inheritance

Activity 4 Probability, Genetics, and Inheritance Activity 4 Probability, Genetics, and Inheritance Objectives After completing this activity students will understand basic probability and single-gene inheritance. Students will be able to predict expected

More information

240Tutoring Life Science Study Material

240Tutoring Life Science Study Material 240Tutoring Life Science Study Material This information is a sample of the instructional content and practice questions found on the 240Tutoring GACE Early Childhood Education. This information is meant

More information