Joint Continuous Distributions

Size: px
Start display at page:

Download "Joint Continuous Distributions"

Transcription

1 Joint Continuous Distributions Statistics 11 Summer 6 Copright c 6 b Mark E. Irwin

2 Joint Continuous Distributions Not surprisingl we can look at the joint distribution of or more continuous RVs. For eample, we could look at the amount of time it takes to get to the Science Center from home each morning for the remaining das this week (X = Thursda travel time and Y = Frida s travel time). Probabilities are based on the joint PDF f X,Y (, ). being in the event A is given b The probabilit of P [(X, Y ) A] = A f X,Y (, )dd for an A R. Joint Continuous Distributions 1

3 Note that a joint densit must satisf Ω f(, ) f(, )dd = 1 where Ω is the sample space for the combination of RVs. f(,) Joint Continuous Distributions

4 For rectangular regions, the joint CDF is useful for calculating probabilities. F X,Y (, ) = P [X, Y ] = f X,Y (, )dd P [ 1 < X, 1 < Y ] = F (, ) F (, 1 ) F ( 1, ) + F ( 1, 1 ) Joint Continuous Distributions 3

5 As with the univariate case, the joint PDF is given b f X,Y (, ) = F X,Y (, ) wherever the partial derivative is defined. For small and, if f is continuous at (, ), P [ X +, Y + ] f X,Y (, ) so the probabilit of getting in a small region around (, ) is proportional to f X,Y (, ) so the densit is giving information about how likel and observation at the point is. Joint Continuous Distributions 4

6 The marginal distribution of each component is easil determined from the joint densit as f X () = f X,Y (, )d This is the analogue to the discrete case, where we are integrating out instead of adding over it. Joint Continuous Distributions 5

7 For eample, let f X,Y (, ) = 9 ; 1, z Then f X () = 1 9 d = 3 ; 1 Similarl f Y () = 3. Joint Continuous Distributions 6

8 Also F X,Y (, ) = 3 3 ; 1, 1 z F X,Y (, ) = 9 dd; 1, 1 Joint Continuous Distributions 7

9 Not all joint RVs are defined on nice rectangles. For eample z f X,Y (, ) = e (+) ;, is defined on an infinite triangle. You need to be careful in determining the marginal distributions. Joint Continuous Distributions 8

10 f X () = e e d = e ; and f Y () = e e d = e (1 e ); Joint Continuous Distributions 9

11 The concept of conditional distribution is a bit more comple in the continuous case. P [ X + Y + ] = P [ X +, Y + ] P [ Y + ] f X,Y (, ) f Y () { } fx,y (, ) = f Y () So conditional on Y [, + ], X has, approimatel, a densit given b the epression in { }. Note that this densit does not depend on as long as it is small. Joint Continuous Distributions 1

12 Thus we write the conditional PDF of X Y = as f X Y ( ) = f X,Y (, ) f Y () X Y = 1 Y X = f(,).1 f(,) Joint Continuous Distributions 11

13 For the eamples seen so far f X,Y (, ) = 9 f X Y ( ) = 9 3 = 3 ; 1 f Y X ( ) = 9 3 = 3 ; 1 Joint Continuous Distributions 1

14 f X,Y (, ) = e (+) f X Y ( ) = e (+) e (1 e ) = e 1 e ; This is an eample of a truncated distribution. X has an eponential distribution ecept that values larger than are removed. f Y X ( ) = e (+) e = e ; This is an eample an eample of a shifted eponential. Y is eponential on the interval [, ). Joint Continuous Distributions 13

15 Independent Continuous Random Variables A set of continuous RVs X 1, X,..., X n are independent if and onl if for all 1,,..., n. f( 1,,..., n ) = f X1 ( 1 )f X ( )... f Xn ( n ) Note that the tet defines independence in terms of CDFs instead of the densities. These are equivalent definitions since n 1... n F X1 ( 1 )F X ( )... F Xn ( n ) = f X1 ( 1 )f X ( )... f Xn ( n ) and Independent Continuous Random Variables 14

16 1... n f X1 (u 1 )f X (u )... f Xn (u n )du 1 du... du n n = i=1 [ i f Xi (u i )du i ] = F X1 ( 1 )F X ( )... F Xn ( n ) Both of these are equivalent to requiring P [X A, Y B] = P [X A]P [Y B] for all sets A and B (with the obvious etension to 3 or more RVs) The proof of this is similar to that for the discrete case. Replace the sums b integrals. Independent Continuous Random Variables 15

17 This factorization of densities (or CDFs) gives an eas wa to check whether RVs are independent. If the joint densit can be written as (using RVs for eample where X and Y) f X,Y (, ) = g()h()for all X, Y with g() and h(), X and Y are independent. Note that in this factorization g and h don t have to be densities (the will be proportional to the marginal densities). For eample, with f(, ) = 9, this can be decomposed with g() = 9 and h() =. However an eample discussed in section 3.3, f(, ) = + 4, X and Y are not independent since there is no decomposition of the valid form. Independent Continuous Random Variables 16

18 The condition for all X, Y is important. The eample where the sample space was defined on the triangle f X,Y (, ) = e (+) ;, appears that it can be factored in the desired form (e (+) = e e ). However it doesn t account for the region with probabilit. This result isn t usuall used to show dependence. To do this, usuall ou will show that the joint densit is not the product of the marginals or in terms of conditional distributions. There is the similar result with the CDF. F (, ) = G()H() with G and H both nondecreasing, non-negative functions. Independent Continuous Random Variables 17

19 Two continuous RVs are independent iff or f Y X ( ) = f Y () for all f X Y ( ) = f X () for all Actuall if one holds, the other has to as well. Technical point: Actuall needs to be for all but a countable number of points. Independent Continuous Random Variables 18

20 Dependent Continuous Random Variables As with the discrete case, joint distributions can be built up with the use of conditional distributions. The joint densit of two RVs can be written as f X,Y (, ) = f X ()f Y X ( ) = f Y ()f X Y ( ) There is the obvious etension to three variables of f X,Y,Z (,, z) = f X ()f Y X ( )f Z X,Y (z, ) Of course there are versions with all 6 possible orderings of X, Y, and Z. Dependent Continuous Random Variables 19

21 Eample: A model for SAT like scores Let X be the results of test 1 (e.g. math) and Y be the results of test (e.g. English). A possible model for this this is X N(µ X, σ X) Y X = N(µ Y + ρ σ Y σ X ( µ X ), (1 ρ )σ Y ) where 1 ρ 1. If ρ > this model suggests that if X is bigger than its mean, Y tends to be bigger than its mean. For those of ou that have seen linear regression E[Y X = ] = µ Y + ρ σ Y σ X ( µ X ) is the population regression line and ρ is the population correlation. Dependent Continuous Random Variables

22 The joint densit of X and Y is f X,Y (, ) = = ( 1 ep 1 σ X π ( µ X ) ) σ X 1 σ Y π(1 ρ ) ep 1 ( µ Y ρ σ Y σ X ( µ X ) σ Y (1 ρ ) ( [ 1 πσ X σ ep 1 ( µx ) Y 1 ρ (1 ρ ) + ( µ Y ) σ Y σ X ρ( µ X)( µ Y ) σ X σ Y ) ]) This is known as the bivariate normal densit. Dependent Continuous Random Variables 1

23 ρ = 3 ρ = f(,) ρ =.5 3 ρ = f(,) Dependent Continuous Random Variables

24 ρ =.5 3 ρ = f(,) ρ =.75 3 ρ = f(,) Dependent Continuous Random Variables 3

25 Useful properties of the bivariate normal Marginals are univariate normal X N(µ X, σ X) and Y N(µ Y, σ Y ) Conditional distributions are univariate normal Y X = N(µ Y + ρ σ Y σ X ( µ X ), (1 ρ )σ Y ) X Y = N(µ X + ρ σ X σ Y ( µ Y ), (1 ρ )σ X) Sums of normals are normal. If Z = X + Y, then Z N(µ X + µ Y, σ X + σ Y + ρσ X σ Y ) Dependent Continuous Random Variables 4

26 Note that for all the eamples presented µ X = µ Y = and σ X = σ Y = 1, so the pairs of marginal distributions is the same in all 4 cases. However the joint distributions, and thus the conditional distributions, are all different. To prove that a sum of normals is normal, ou can use the following lemma. Lemma. If X and Y are two continuous RVs and Z = X + Y, then the PDF of Z is f Z (z) = = X Y f X,Y (, z )d f X,Y (z, )d Eample: Let X 1, X,... X n be independent Ep(λ) RVs. Then S n = X 1 + X X n Gamma(n, λ). Dependent Continuous Random Variables 5

27 For S = X 1 + X f S (s) = = s f X1 ()f X (s )d ( λe λ ) ( λe λ(s )) d s = λ e λs d = λ se λs Then for S 3 = S + X 3 f S3 (s) = f S ()f X3 (s )d = s = λ 3 e λs d = λ3 s e λs s ( λ e λ) ( λe λ(s )) d which is a Gamma(3, λ) densit. The general case follows b induction. Dependent Continuous Random Variables 6

Examples: Joint Densities and Joint Mass Functions Example 1: X and Y are jointly continuous with joint pdf

Examples: Joint Densities and Joint Mass Functions Example 1: X and Y are jointly continuous with joint pdf AMS 3 Joe Mitchell Eamples: Joint Densities and Joint Mass Functions Eample : X and Y are jointl continuous with joint pdf f(,) { c 2 + 3 if, 2, otherwise. (a). Find c. (b). Find P(X + Y ). (c). Find marginal

More information

So, using the new notation, P X,Y (0,1) =.08 This is the value which the joint probability function for X and Y takes when X=0 and Y=1.

So, using the new notation, P X,Y (0,1) =.08 This is the value which the joint probability function for X and Y takes when X=0 and Y=1. Joint probabilit is the probabilit that the RVs & Y take values &. like the PDF of the two events, and. We will denote a joint probabilit function as P,Y (,) = P(= Y=) Marginal probabilit of is the probabilit

More information

Sections 2.11 and 5.8

Sections 2.11 and 5.8 Sections 211 and 58 Timothy Hanson Department of Statistics, University of South Carolina Stat 704: Data Analysis I 1/25 Gesell data Let X be the age in in months a child speaks his/her first word and

More information

What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference

What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference 0. 1. Introduction and probability review 1.1. What is Statistics? What is Statistics? Lecture 1. Introduction and probability review There are many definitions: I will use A set of principle and procedures

More information

Section 7.2 Linear Programming: The Graphical Method

Section 7.2 Linear Programming: The Graphical Method Section 7.2 Linear Programming: The Graphical Method Man problems in business, science, and economics involve finding the optimal value of a function (for instance, the maimum value of the profit function

More information

Lecture Notes 1. Brief Review of Basic Probability

Lecture Notes 1. Brief Review of Basic Probability Probability Review Lecture Notes Brief Review of Basic Probability I assume you know basic probability. Chapters -3 are a review. I will assume you have read and understood Chapters -3. Here is a very

More information

Transformations and Expectations of random variables

Transformations and Expectations of random variables Transformations and Epectations of random variables X F X (): a random variable X distributed with CDF F X. Any function Y = g(x) is also a random variable. If both X, and Y are continuous random variables,

More information

Joint Exam 1/P Sample Exam 1

Joint Exam 1/P Sample Exam 1 Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question

More information

Math 2443, Section 16.3

Math 2443, Section 16.3 Math 44, Section 6. Review These notes will supplement not replace) the lectures based on Section 6. Section 6. i) ouble integrals over general regions: We defined double integrals over rectangles in the

More information

sin(θ) = opp hyp cos(θ) = adj hyp tan(θ) = opp adj

sin(θ) = opp hyp cos(θ) = adj hyp tan(θ) = opp adj Math, Trigonometr and Vectors Geometr 33º What is the angle equal to? a) α = 7 b) α = 57 c) α = 33 d) α = 90 e) α cannot be determined α Trig Definitions Here's a familiar image. To make predictive models

More information

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2015 Timo Koski Matematisk statistik 24.09.2015 1 / 1 Learning outcomes Random vectors, mean vector, covariance matrix,

More information

), 35% use extra unleaded gas ( A

), 35% use extra unleaded gas ( A . At a certain gas station, 4% of the customers use regular unleaded gas ( A ), % use extra unleaded gas ( A ), and % use premium unleaded gas ( A ). Of those customers using regular gas, onl % fill their

More information

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,

More information

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2014 Timo Koski () Mathematisk statistik 24.09.2014 1 / 75 Learning outcomes Random vectors, mean vector, covariance

More information

Random variables, probability distributions, binomial random variable

Random variables, probability distributions, binomial random variable Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that

More information

Lecture 8: More Continuous Random Variables

Lecture 8: More Continuous Random Variables Lecture 8: More Continuous Random Variables 26 September 2005 Last time: the eponential. Going from saying the density e λ, to f() λe λ, to the CDF F () e λ. Pictures of the pdf and CDF. Today: the Gaussian

More information

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1 Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.

More information

Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image.

Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image. Math, Trigonometr and Vectors Geometr Trig Definitions Here's a familiar image. To make predictive models of the phsical world, we'll need to make visualizations, which we can then turn into analtical

More information

Gaussian Probability Density Functions: Properties and Error Characterization

Gaussian Probability Density Functions: Properties and Error Characterization Gaussian Probabilit Densit Functions: Properties and Error Characterization Maria Isabel Ribeiro Institute for Sstems and Robotics Instituto Superior Tcnico Av. Rovisco Pais, 1 149-1 Lisboa PORTUGAL {mir@isr.ist.utl.pt}

More information

Linear Inequality in Two Variables

Linear Inequality in Two Variables 90 (7-) Chapter 7 Sstems of Linear Equations and Inequalities In this section 7.4 GRAPHING LINEAR INEQUALITIES IN TWO VARIABLES You studied linear equations and inequalities in one variable in Chapter.

More information

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its

More information

LESSON EIII.E EXPONENTS AND LOGARITHMS

LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS OVERVIEW Here s what ou ll learn in this lesson: Eponential Functions a. Graphing eponential functions b. Applications of eponential

More information

SECTION 2.2. Distance and Midpoint Formulas; Circles

SECTION 2.2. Distance and Midpoint Formulas; Circles SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation

More information

Systems of Linear Equations: Solving by Substitution

Systems of Linear Equations: Solving by Substitution 8.3 Sstems of Linear Equations: Solving b Substitution 8.3 OBJECTIVES 1. Solve sstems using the substitution method 2. Solve applications of sstems of equations In Sections 8.1 and 8.2, we looked at graphing

More information

Section V.2: Magnitudes, Directions, and Components of Vectors

Section V.2: Magnitudes, Directions, and Components of Vectors Section V.: Magnitudes, Directions, and Components of Vectors Vectors in the plane If we graph a vector in the coordinate plane instead of just a grid, there are a few things to note. Firstl, directions

More information

Pearson s Correlation Coefficient

Pearson s Correlation Coefficient Pearson s Correlation Coefficient In this lesson, we will find a quantitative measure to describe the strength of a linear relationship (instead of using the terms strong or weak). A quantitative measure

More information

Chapter 3 RANDOM VARIATE GENERATION

Chapter 3 RANDOM VARIATE GENERATION Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.

More information

Lines and Planes 1. x(t) = at + b y(t) = ct + d

Lines and Planes 1. x(t) = at + b y(t) = ct + d 1 Lines in the Plane Lines and Planes 1 Ever line of points L in R 2 can be epressed as the solution set for an equation of the form A + B = C. The equation is not unique for if we multipl both sides b

More information

THE CENTRAL LIMIT THEOREM TORONTO

THE CENTRAL LIMIT THEOREM TORONTO THE CENTRAL LIMIT THEOREM DANIEL RÜDT UNIVERSITY OF TORONTO MARCH, 2010 Contents 1 Introduction 1 2 Mathematical Background 3 3 The Central Limit Theorem 4 4 Examples 4 4.1 Roulette......................................

More information

MULTIVARIATE PROBABILITY DISTRIBUTIONS

MULTIVARIATE PROBABILITY DISTRIBUTIONS MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined

More information

Probability and statistics; Rehearsal for pattern recognition

Probability and statistics; Rehearsal for pattern recognition Probability and statistics; Rehearsal for pattern recognition Václav Hlaváč Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics Center for Machine Perception

More information

Introduction to Probability

Introduction to Probability Introduction to Probability EE 179, Lecture 15, Handout #24 Probability theory gives a mathematical characterization for experiments with random outcomes. coin toss life of lightbulb binary data sequence

More information

A Tutorial on Probability Theory

A Tutorial on Probability Theory Paola Sebastiani Department of Mathematics and Statistics University of Massachusetts at Amherst Corresponding Author: Paola Sebastiani. Department of Mathematics and Statistics, University of Massachusetts,

More information

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i ) Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (1903-1987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll

More information

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8.

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8. Random variables Remark on Notations 1. When X is a number chosen uniformly from a data set, What I call P(X = k) is called Freq[k, X] in the courseware. 2. When X is a random variable, what I call F ()

More information

Name Date. Break-Even Analysis

Name Date. Break-Even Analysis Name Date Break-Even Analsis In our business planning so far, have ou ever asked the questions: How much do I have to sell to reach m gross profit goal? What price should I charge to cover m costs and

More information

Factoring bivariate polynomials with integer coefficients via Newton polygons

Factoring bivariate polynomials with integer coefficients via Newton polygons Filomat 27:2 (2013), 215 226 DOI 10.2298/FIL1302215C Published b Facult of Sciences and Mathematics, Universit of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Factoring bivariate polnomials

More information

MATHEMATICAL METHODS OF STATISTICS

MATHEMATICAL METHODS OF STATISTICS MATHEMATICAL METHODS OF STATISTICS By HARALD CRAMER TROFESSOK IN THE UNIVERSITY OF STOCKHOLM Princeton PRINCETON UNIVERSITY PRESS 1946 TABLE OF CONTENTS. First Part. MATHEMATICAL INTRODUCTION. CHAPTERS

More information

Core Maths C3. Revision Notes

Core Maths C3. Revision Notes Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...

More information

C3: Functions. Learning objectives

C3: Functions. Learning objectives CHAPTER C3: Functions Learning objectives After studing this chapter ou should: be familiar with the terms one-one and man-one mappings understand the terms domain and range for a mapping understand the

More information

We start with the basic operations on polynomials, that is adding, subtracting, and multiplying.

We start with the basic operations on polynomials, that is adding, subtracting, and multiplying. R. Polnomials In this section we want to review all that we know about polnomials. We start with the basic operations on polnomials, that is adding, subtracting, and multipling. Recall, to add subtract

More information

Example: Document Clustering. Clustering: Definition. Notion of a Cluster can be Ambiguous. Types of Clusterings. Hierarchical Clustering

Example: Document Clustering. Clustering: Definition. Notion of a Cluster can be Ambiguous. Types of Clusterings. Hierarchical Clustering Overview Prognostic Models and Data Mining in Medicine, part I Cluster Analsis What is Cluster Analsis? K-Means Clustering Hierarchical Clustering Cluster Validit Eample: Microarra data analsis 6 Summar

More information

Stat 704 Data Analysis I Probability Review

Stat 704 Data Analysis I Probability Review 1 / 30 Stat 704 Data Analysis I Probability Review Timothy Hanson Department of Statistics, University of South Carolina Course information 2 / 30 Logistics: Tuesday/Thursday 11:40am to 12:55pm in LeConte

More information

M2S1 Lecture Notes. G. A. Young http://www2.imperial.ac.uk/ ayoung

M2S1 Lecture Notes. G. A. Young http://www2.imperial.ac.uk/ ayoung M2S1 Lecture Notes G. A. Young http://www2.imperial.ac.uk/ ayoung September 2011 ii Contents 1 DEFINITIONS, TERMINOLOGY, NOTATION 1 1.1 EVENTS AND THE SAMPLE SPACE......................... 1 1.1.1 OPERATIONS

More information

Pre Calculus Math 40S: Explained!

Pre Calculus Math 40S: Explained! Pre Calculus Math 0S: Eplained! www.math0s.com 0 Logarithms Lesson PART I: Eponential Functions Eponential functions: These are functions where the variable is an eponent. The first tpe of eponential graph

More information

Sums of Independent Random Variables

Sums of Independent Random Variables Chapter 7 Sums of Independent Random Variables 7.1 Sums of Discrete Random Variables In this chapter we turn to the important question of determining the distribution of a sum of independent random variables

More information

Core Maths C2. Revision Notes

Core Maths C2. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

More information

z 0 and y even had the form

z 0 and y even had the form Gaussian Integers The concepts of divisibility, primality and factoring are actually more general than the discussion so far. For the moment, we have been working in the integers, which we denote by Z

More information

Order Statistics. Lecture 15: Order Statistics. Notation Detour. Order Statistics, cont.

Order Statistics. Lecture 15: Order Statistics. Notation Detour. Order Statistics, cont. Lecture 5: Statistics 4 Let X, X 2, X 3, X 4, X 5 be iid random variables with a distribution F with a range of a, b). We can relabel these X s such that their labels correspond to arranging them in increasing

More information

Statistics 100A Homework 4 Solutions

Statistics 100A Homework 4 Solutions Problem 1 For a discrete random variable X, Statistics 100A Homework 4 Solutions Ryan Rosario Note that all of the problems below as you to prove the statement. We are proving the properties of epectation

More information

Algebra II. Administered May 2013 RELEASED

Algebra II. Administered May 2013 RELEASED STAAR State of Teas Assessments of Academic Readiness Algebra II Administered Ma 0 RELEASED Copright 0, Teas Education Agenc. All rights reserved. Reproduction of all or portions of this work is prohibited

More information

t hours This is the distance in miles travelled in 2 hours when the speed is 70mph. = 22 yards per second. = 110 yards.

t hours This is the distance in miles travelled in 2 hours when the speed is 70mph. = 22 yards per second. = 110 yards. The area under a graph often gives useful information. Velocit-time graphs Constant velocit The sketch shows the velocit-time graph for a car that is travelling along a motorwa at a stead 7 mph. 7 The

More information

Cross-validation for detecting and preventing overfitting

Cross-validation for detecting and preventing overfitting Cross-validation for detecting and preventing overfitting Note to other teachers and users of these slides. Andrew would be delighted if ou found this source material useful in giving our own lectures.

More information

Functions and Graphs CHAPTER INTRODUCTION. The function concept is one of the most important ideas in mathematics. The study

Functions and Graphs CHAPTER INTRODUCTION. The function concept is one of the most important ideas in mathematics. The study Functions and Graphs CHAPTER 2 INTRODUCTION The function concept is one of the most important ideas in mathematics. The stud 2-1 Functions 2-2 Elementar Functions: Graphs and Transformations 2-3 Quadratic

More information

Mathematics Placement Packet Colorado College Department of Mathematics and Computer Science

Mathematics Placement Packet Colorado College Department of Mathematics and Computer Science Mathematics Placement Packet Colorado College Department of Mathematics and Computer Science Colorado College has two all college requirements (QR and SI) which can be satisfied in full, or part, b taking

More information

6.3 PARTIAL FRACTIONS AND LOGISTIC GROWTH

6.3 PARTIAL FRACTIONS AND LOGISTIC GROWTH 6 CHAPTER 6 Techniques of Integration 6. PARTIAL FRACTIONS AND LOGISTIC GROWTH Use partial fractions to find indefinite integrals. Use logistic growth functions to model real-life situations. Partial Fractions

More information

Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x

Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x Functions and equations Assessment statements. Concept of function f : f (); domain, range, image (value). Composite functions (f g); identit function. Inverse function f.. The graph of a function; its

More information

( ) is proportional to ( 10 + x)!2. Calculate the

( ) is proportional to ( 10 + x)!2. Calculate the PRACTICE EXAMINATION NUMBER 6. An insurance company eamines its pool of auto insurance customers and gathers the following information: i) All customers insure at least one car. ii) 64 of the customers

More information

Probability Distribution

Probability Distribution Lecture 4 Probability Distribution Continuous Case Definition: A random variable that can take on any value in an interval is called continuous. Definition: Let Y be any r.v. The distribution function

More information

ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude

ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude ACT Math Vocabular Acute When referring to an angle acute means less than 90 degrees. When referring to a triangle, acute means that all angles are less than 90 degrees. For eample: Altitude The height

More information

SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills

SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills SUNY ECC ACCUPLACER Preparation Workshop Algebra Skills Gail A. Butler Ph.D. Evaluating Algebraic Epressions Substitute the value (#) in place of the letter (variable). Follow order of operations!!! E)

More information

CONDITIONAL, PARTIAL AND RANK CORRELATION FOR THE ELLIPTICAL COPULA; DEPENDENCE MODELLING IN UNCERTAINTY ANALYSIS

CONDITIONAL, PARTIAL AND RANK CORRELATION FOR THE ELLIPTICAL COPULA; DEPENDENCE MODELLING IN UNCERTAINTY ANALYSIS CONDITIONAL, PARTIAL AND RANK CORRELATION FOR THE ELLIPTICAL COPULA; DEPENDENCE MODELLING IN UNCERTAINTY ANALYSIS D. Kurowicka, R.M. Cooke Delft University of Technology, Mekelweg 4, 68CD Delft, Netherlands

More information

The Big Picture. Correlation. Scatter Plots. Data

The Big Picture. Correlation. Scatter Plots. Data The Big Picture Correlation Bret Hanlon and Bret Larget Department of Statistics Universit of Wisconsin Madison December 6, We have just completed a length series of lectures on ANOVA where we considered

More information

Math 431 An Introduction to Probability. Final Exam Solutions

Math 431 An Introduction to Probability. Final Exam Solutions Math 43 An Introduction to Probability Final Eam Solutions. A continuous random variable X has cdf a for 0, F () = for 0 <

More information

Probability Generating Functions

Probability Generating Functions page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence

More information

Chapter 13 Introduction to Linear Regression and Correlation Analysis

Chapter 13 Introduction to Linear Regression and Correlation Analysis Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing

More information

Linear Algebraic Equations, SVD, and the Pseudo-Inverse

Linear Algebraic Equations, SVD, and the Pseudo-Inverse Linear Algebraic Equations, SVD, and the Pseudo-Inverse Philip N. Sabes October, 21 1 A Little Background 1.1 Singular values and matrix inversion For non-smmetric matrices, the eigenvalues and singular

More information

f x a 0 n 1 a 0 a 1 cos x a 2 cos 2x a 3 cos 3x b 1 sin x b 2 sin 2x b 3 sin 3x a n cos nx b n sin nx n 1 f x dx y

f x a 0 n 1 a 0 a 1 cos x a 2 cos 2x a 3 cos 3x b 1 sin x b 2 sin 2x b 3 sin 3x a n cos nx b n sin nx n 1 f x dx y Fourier Series When the French mathematician Joseph Fourier (768 83) was tring to solve a problem in heat conduction, he needed to epress a function f as an infinite series of sine and cosine functions:

More information

SECTION 2-2 Straight Lines

SECTION 2-2 Straight Lines - Straight Lines 11 94. Engineering. The cross section of a rivet has a top that is an arc of a circle (see the figure). If the ends of the arc are 1 millimeters apart and the top is 4 millimeters above

More information

Chapter 9 Descriptive Statistics for Bivariate Data

Chapter 9 Descriptive Statistics for Bivariate Data 9.1 Introduction 215 Chapter 9 Descriptive Statistics for Bivariate Data 9.1 Introduction We discussed univariate data description (methods used to eplore the distribution of the values of a single variable)

More information

SYSTEMS OF LINEAR EQUATIONS

SYSTEMS OF LINEAR EQUATIONS SYSTEMS OF LINEAR EQUATIONS Sstems of linear equations refer to a set of two or more linear equations used to find the value of the unknown variables. If the set of linear equations consist of two equations

More information

Chapter 2: Boolean Algebra and Logic Gates. Boolean Algebra

Chapter 2: Boolean Algebra and Logic Gates. Boolean Algebra The Universit Of Alabama in Huntsville Computer Science Chapter 2: Boolean Algebra and Logic Gates The Universit Of Alabama in Huntsville Computer Science Boolean Algebra The algebraic sstem usuall used

More information

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015. Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x

More information

Partial Fractions. and Logistic Growth. Section 6.2. Partial Fractions

Partial Fractions. and Logistic Growth. Section 6.2. Partial Fractions SECTION 6. Partial Fractions and Logistic Growth 9 Section 6. Partial Fractions and Logistic Growth Use partial fractions to find indefinite integrals. Use logistic growth functions to model real-life

More information

CHAPTER TEN. Key Concepts

CHAPTER TEN. Key Concepts CHAPTER TEN Ke Concepts linear regression: slope intercept residual error sum of squares or residual sum of squares sum of squares due to regression mean squares error mean squares regression (coefficient)

More information

4.1 Ordinal versus cardinal utility

4.1 Ordinal versus cardinal utility Microeconomics I. Antonio Zabalza. Universit of Valencia 1 Micro I. Lesson 4. Utilit In the previous lesson we have developed a method to rank consistentl all bundles in the (,) space and we have introduced

More information

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4) Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

More information

Student Outcomes. Lesson Notes. Classwork. Discussion (10 minutes)

Student Outcomes. Lesson Notes. Classwork. Discussion (10 minutes) NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 5 8 Student Outcomes Students know the definition of a number raised to a negative exponent. Students simplify and write equivalent expressions that contain

More information

MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables

MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides,

More information

Implicit Differentiation

Implicit Differentiation Revision Notes 2 Calculus 1270 Fall 2007 INSTRUCTOR: Peter Roper OFFICE: LCB 313 [EMAIL: roper@math.utah.edu] Standard Disclaimer These notes are not a complete review of the course thus far, and some

More information

Math Review. The second part is a refresher of some basic topics for those who know how but lost their fluency over the years.

Math Review. The second part is a refresher of some basic topics for those who know how but lost their fluency over the years. Math Review The Math Review is divided into two parts: I. The first part is a general overview of the math classes, their sequence, basic content, and short quizzes to see if ou are prepared to take a

More information

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in

More information

Multivariate Normal Distribution

Multivariate Normal Distribution Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues

More information

The Exponential Distribution

The Exponential Distribution 21 The Exponential Distribution From Discrete-Time to Continuous-Time: In Chapter 6 of the text we will be considering Markov processes in continuous time. In a sense, we already have a very good understanding

More information

ST 371 (IV): Discrete Random Variables

ST 371 (IV): Discrete Random Variables ST 371 (IV): Discrete Random Variables 1 Random Variables A random variable (rv) is a function that is defined on the sample space of the experiment and that assigns a numerical variable to each possible

More information

2.4. Factoring Quadratic Expressions. Goal. Explore 2.4. Launch 2.4

2.4. Factoring Quadratic Expressions. Goal. Explore 2.4. Launch 2.4 2.4 Factoring Quadratic Epressions Goal Use the area model and Distributive Property to rewrite an epression that is in epanded form into an equivalent epression in factored form The area of a rectangle

More information

Lecture 4: Joint probability distributions; covariance; correlation

Lecture 4: Joint probability distributions; covariance; correlation Lecture 4: Joint probability distributions; covariance; correlation 10 October 2007 In this lecture we ll learn the following: 1. what joint probability distributions are; 2. visualizing multiple variables/joint

More information

Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

More information

Computational Geometry Lab: FEM BASIS FUNCTIONS FOR A TETRAHEDRON

Computational Geometry Lab: FEM BASIS FUNCTIONS FOR A TETRAHEDRON Computational Geometry Lab: FEM BASIS FUNCTIONS FOR A TETRAHEDRON John Burkardt Information Technology Department Virginia Tech http://people.sc.fsu.edu/ jburkardt/presentations/cg lab fem basis tetrahedron.pdf

More information

5.2 Inverse Functions

5.2 Inverse Functions 78 Further Topics in Functions. Inverse Functions Thinking of a function as a process like we did in Section., in this section we seek another function which might reverse that process. As in real life,

More information

Slope-Intercept Form and Point-Slope Form

Slope-Intercept Form and Point-Slope Form Slope-Intercept Form and Point-Slope Form In this section we will be discussing Slope-Intercept Form and the Point-Slope Form of a line. We will also discuss how to graph using the Slope-Intercept Form.

More information

15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors

15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors SECTION 5. Eact First-Order Equations 09 SECTION 5. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Section 5.6, ou studied applications of differential

More information

Triangle deletion. Ernie Croot. February 3, 2010

Triangle deletion. Ernie Croot. February 3, 2010 Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,

More information

Geometry Notes RIGHT TRIANGLE TRIGONOMETRY

Geometry Notes RIGHT TRIANGLE TRIGONOMETRY Right Triangle Trigonometry Page 1 of 15 RIGHT TRIANGLE TRIGONOMETRY Objectives: After completing this section, you should be able to do the following: Calculate the lengths of sides and angles of a right

More information

Introduction to Regression and Data Analysis

Introduction to Regression and Data Analysis Statlab Workshop Introduction to Regression and Data Analysis with Dan Campbell and Sherlock Campbell October 28, 2008 I. The basics A. Types of variables Your variables may take several forms, and it

More information

SLOPE OF A LINE 3.2. section. helpful. hint. Slope Using Coordinates to Find 6% GRADE 6 100 SLOW VEHICLES KEEP RIGHT

SLOPE OF A LINE 3.2. section. helpful. hint. Slope Using Coordinates to Find 6% GRADE 6 100 SLOW VEHICLES KEEP RIGHT . Slope of a Line (-) 67. 600 68. 00. SLOPE OF A LINE In this section In Section. we saw some equations whose graphs were straight lines. In this section we look at graphs of straight lines in more detail

More information

Random Variables. Chapter 2. Random Variables 1

Random Variables. Chapter 2. Random Variables 1 Random Variables Chapter 2 Random Variables 1 Roulette and Random Variables A Roulette wheel has 38 pockets. 18 of them are red and 18 are black; these are numbered from 1 to 36. The two remaining pockets

More information

Rotated Ellipses. And Their Intersections With Lines. Mark C. Hendricks, Ph.D. Copyright March 8, 2012

Rotated Ellipses. And Their Intersections With Lines. Mark C. Hendricks, Ph.D. Copyright March 8, 2012 Rotated Ellipses And Their Intersections With Lines b Mark C. Hendricks, Ph.D. Copright March 8, 0 Abstract: This paper addresses the mathematical equations for ellipses rotated at an angle and how to

More information

ú Ó Á É é ú ú É ú Á Á ú É É É ú É Ó É ó É Á ú ú ó Á Á ú Ó ú Ó ú É Á ú Á ú ó ú Á ú Á É Á Á Ó É Á ú ú é ú ú ú ú Á ú ó ú Ó Á Á Á Á ú ú ú é É ó é ó ú ú ú É é ú ú ú óú ú ú Ó Á ú ö é É ú ú ú úé ú ú É É Á É

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,

More information