Examples: Joint Densities and Joint Mass Functions Example 1: X and Y are jointly continuous with joint pdf

Size: px
Start display at page:

Download "Examples: Joint Densities and Joint Mass Functions Example 1: X and Y are jointly continuous with joint pdf"

Transcription

1 AMS 3 Joe Mitchell Eamples: Joint Densities and Joint Mass Functions Eample : X and Y are jointl continuous with joint pdf f(,) { c if, 2, otherwise. (a). Find c. (b). Find P(X + Y ). (c). Find marginal pdf s of X and of Y. (d). Are X and Y independent (justif!). (e). Find E(e X cosy ). (f). Find cov(x,y ). We start (as alwas!) b drawing the. (See below, left.) 2 2 with > (a). We find c b setting so c. f(,)dd 2 (c 2 + 2c )dd , (b). Draw a picture of the (a -b-2 rectangle), and intersect it with the set {(,) : + }, which is the region above the line. See figure above, right. To compute the probabilit, we double integrate the joint densit over this subset of the : 2 P(X + Y ) ( )dd 3 72 (c). We compute the marginal pdfs: f X () f Y () { 2 f(,)d (2 + )d if 3 otherwise { f(,)d (2 + )d + if otherwise

2 (d). NO, X and Y are NOT independent. The is a rectangle, so we need to check if it is true that f(,) f X ()f Y (), for all (,). We easil find countereamples: f(.2,.3) f X (.2)f Y (.3). (e). (f). 2 E(e X cos Y ) ( 2 + [ 3 )dd 2 (e cos )( )dd cov(x,y ) E(XY ) E(X)E(Y ) 2 ( 2 + ] [ 3 )dd Eample 2: X and Y are jointl continuous with joint pdf { c if,, + f(,), otherwise. 2 ( )dd ] (a). Find c. (b). Find P(Y > X). (c). Find marginal pdf s of X and of Y. (d). Are X and Y independent (justif!). We start (as alwas!) b drawing the. (See below, left.) with > (a). We find c b setting so c 24. f(,)dd.5 cdd c 24, (b). Draw a picture of the (a triangle), and intersect it with the set {(,) : }, which is the region above the line ; this ields a triangle whose leftmost -value is and whose rightmost -value is /2 (which is onl seen b drawing the figure!). See figure above, right. To compute the probabilit, we double integrate the joint densit over this subset of the : P(Y X) /2 2 24dd

3 (c). We compute the marginal pdfs: f X () f Y () f(,)d f(,)d { 24d 2( ) 2 if otherwise { 24d 2( ) 2 if otherwise (d). NO, X and Y are NOT independent. The is not a rectangle or generalized rectangle, so we know we can find points (,) where it fails to be true that f(,) f X ()f Y (). In particular, f(.7,.7) f X (.7)f Y (.7) >. Eample 3: X and Y are jointl continuous with joint pdf { c if, f(,), otherwise. (a). Find c. (b). Find P( Y 2X.). (c). Find marginal pdf s of X and of Y. (d). Are X and Y independent (justif!). We start (as alwas!) b drawing the, which is just a unit square in this case. (See below, left.) with.< 2< (a). We find c b setting so c 4. f(,)dd cdd c 4, (b). Draw a picture of the (unit square), and intersect it with the set {(,) : 2.} {(,) :. 2.} {(,) : }, which is the region above the line 2. and below the line See figure above, left. (You will not be able to figure out the limits of integration without it!) To compute the probabilit, we double integrate the joint densit over this subset of the support set: P( Y 2X.). (+.)/2 3 4dd +. (+.)/2 (.)/2 4dd

4 (c). We compute the marginal pdfs: f X () f Y () (d). YES, X and Y are independent, since { f(,)d 4d 2 if otherwise { f(,)d 4d 2 if otherwise { if and f X ()f Y () otherwise is eactl the same as f(,), the joint densit, for all and. Eample 4: X and Y are independent continuous random variables, each with pdf g(w) { 2w if w, otherwise. (a). Find P(X + Y ). (b). Find the cdf and pdf of Z X + Y. Since X and Y are independent, we know that { 2 2 if and f(,) f X ()f Y () otherwise We start (as alwas!) b drawing the, which is a unit square in this case. (See below, left.) 4

5 with +< z z.4 z with +<.4 z.6 with +<.6 z.4 z.6 Case: <z<2 Case: <z< (a). Draw a picture of the (unit square), and intersect it with the set {(,) : + }, which is the region below the line. See figure above, right. To compute the probabilit, we double integrate the joint densit over this subset of the : P(X + Y ) 4dd 6 (b). Refer to the figure (lower left and lower right). To compute the cdf of Z X + Y, we use the definition of cdf, evaluating each case b double integrating the joint densit over the subset of the corresponding to {(,) : + z}, for different cases depending on the value of z: F Z (z) P(Z z) P(X + Y z) P(Y X + z) if z z z 4dd if z z 4dd + z z 4dd if z 2 if z 2 5

6 Eample 5: X and Y are jointl continuous with joint pdf { e (+) if, f(,), otherwise. Let Z X/Y. Find the pdf of Z. The first thing we do is draw a picture of the (which in this case is the first quadrant); see below, left. (/z) with (/)<z, for z> To find the densit, f Z (z), we start, as alwas, b finding the cdf, F Z (z) P(Z z), and then differentiating: f Z (z) F Z(z). Thus, using the definition, and a picture of the, we start b handling the cases, F Z (z) P(Z z) P(X/Y z) { if z < P(Y (/z)x) if z >, where we have used the fact that X and Y are both nonnegative (with probabilit ), so multipling both sides of the inequalit b Y does not flip the inequalit; note, however, that when we divide both sides b z, to obtain Y (/z)x, we were making the assumption that z > (otherwise the inequalit would flip). Now, we consider the picture of the, together with the halfplane specified b (/z); see the figure above, right. We double integrate the joint densit over the portion of the where (/z), obtaining F Z (z) P(Z z) P(X/Y z) { if z < P(Y (/z)x) if z >, { if z < (/z) e (+) dd z if z >. z+ Then, to get the pdf, we take the derivative: { if z < f Z (z) (z+) z if z > (z+) 2 (z+) 2 6

7 Eample 6: X and Y are independent, each with an eponential(λ) distribution. Find the densit of Z X + Y and of W Y X 2. Since X and Y are independent, we know that f(,) f X ()f Y (), giving us f(,) { λe λ λe λ if, otherwise. The first thing we do is draw a picture of the : the first quadrant. (a). To find the densit, f Z (z), we start, as alwas, b finding the cdf, F Z (z) P(Z z), and then differentiating: f Z (z) F Z(z). Thus, using the definition, and a picture of the together with the halfplane + z, we get F Z (z) P(Z z) P(X + Y z) P(Y X + z) { if z < z z λe λ λe λ dd e λz λze λz if z This gives the pdf, { if z < f Z (z) λ 2 ze λz if z, which is the pdf of a Gamma(2,λ). Thus, Z is Gamma(2,λ) random variable. (b). To find the densit, f W (w), we start, as alwas, b finding the cdf, F W (w) P(W w), and then differentiating: f W (w) F W(w). Thus, using the definition, and a picture of the together with the region specified b 2 + w, we get F W (w) P(W w) P(Y X 2 w) P(Y X 2 + w) { 2 +w λe λ λe λ dd if w > w 2 +w λe λ λe λ dd if w < Then, we differentiate to get f W (w) F W(w). (Go ahead and evaluate the integral, then take the derivative.) Eample 7: X and Y are jointl continuous with (X,Y ) uniforml distributed over the union of the two squares {(,) :, } and {(,) :, 3 4}. (a). Find E(Y ). (b). Find the marginal densities of X and Y. (c). Are X and Y independent? (d). Find the pdf of Z X + Y. Solution to be provided. (possibl in class) Eample 8: X and Y have joint densit f(,) { + if,, otherwise. Find the joint cdf, F X,Y (,), for all and. Compute the covariance and correlation of X and Y. Solution to be provided. (possibl in class) 7

8 Eample 9: Suppose that X and Y have joint mass function as shown in the table below. (Here, X takes on possible values in the set { 2, 2}, Y takes on values in the set { 2,, 2, 3.}.) (a). (6 points) Compute P( X + Y 2 < ). (b). (6 points) Find the marginal mass function of Y and plot it. (be ver eplicit!) (c). (6 points) Compute var(x 2 Y ) and cov(x,y ). (d). (2 points) Are X and Y independent? (Wh or wh not?) Solution to be provided. (possibl in class) Eample : Two fair dice are rolled. Let X be the larger of the two values shown on the dice, and let Y be the absolute value of the difference of the two values shown. Give the joint pmf of X and Y. Compute cov(x,y ), E(X), E(Y X ), P(X > 2Y ). The sample space is the set S {(, ), (, 2),...,(6, 6)}; there are 36 equall likel outcomes. Note that X {, 2,...,6} and Y {,,...,5}. p(, ) P(X,Y ) P({(, )}) /36, where (,) is the outcome in which the first die is a and the second die is also a (so that the larger die is and the difference of the two values is ). Similarl, p(i, ) P(X i,y ) P({(i,i)}) /36, for i, 2,...,6. in which the first die is a i and the second die is also a i Now, p(, ) p(, 2) p(, 6), since, if the larger of the two dice shows, the difference cannot be or more. Now, p(2, ) P(X 2,Y ) P({(2, ), (, 2)}) 2/36. Similarl, p(3, ) p(3, 2) p(4, ) p(4, 2) p(4, 3) p(5, ) p(5, 4) p(6, ) p(6, 5) 2/36, since each corresponding event is a subset of two outcomes from S. All other values of p(i,j) are. Check that the sum of all values p(i,j) is, as it must be! Thus, in summar, if j i, and i {, 2,...,6},j {,,...,5} p(i,j) if (i,j) {(, ), (2, ),...,(6, )} 36 2 otherwise 36 (It is convenient to arrange all these numbers in a table.) We can also compute 6 5 E(X) i p(i,j) 6 i j 36, cov(x,y ) E(XY ) [E(X)][E(Y )] ij p(i, j) i p(i,j) j p(i,j) i j i j i j 8

9 Eample : Alice and Bob plan to meet at a cafe to do AMS3 homework together. Alice arrives at the cafe at a random time (uniform) between noon and :pm toda; Bob independentl arrives at a random time (uniform) between noon and 2:pm toda. (a). What is the epected amount of time that somebod waits for the other? (b). What is the probabilit that Bob has to wait for Alice? Let X be the number of hours past noon that Alice arrives at the cafe. Let Y be the number of hours past noon that Bob arrives at the cafe. Then, we know that X is Uniform(,), and Y is Uniform(,2). Since, b the stated assumption, X and Y are independent, we know that the joint densit is given b { f(,) /2 if, 2 otherwise We begin (as alwas) b plotting the : it is simpl a rectangle of width and height 2. (a). Let W ma{x,y } min{x,y }; then, W is the amount of time (in hours) that somebod has to wait. We want to compute E(W). Now, W is a function of X and Y. So we just use the law of the unconscious statistician: E(W) E(ma{X,Y } min{x,y }) 2 [ma{, } min{, }](/2)dd [ma{,} min{,}]f(,)dd Now, in order to write the function [ma{, } min{, }] eplicitl, we break into two cases: If <, then ma{,} min{,} ; if >, then ma{,} min{,}. Thus, we integrate to get E(W) E(ma{X,Y } min{x,y }) ( )(/2)dd+ 2 ( )(/2)dd Thus, the epected time waiting is 5/6 hours (or 5 minutes). (Note that it is wrong to reason like this: Alice epects to arrive at 2:3; Bob epects to arrive at :; thus, we epect that Bob will wait 3 minutes for Alice.) (b). We want to compute the probabilit that Bob has to wait for Alice, which is P(Y < X), which we do b integrating the joint densit, f(,), over the region where <. Draw a picture! (Show the (a rectangle), and the line.) P(Y < X) (/2)dd 4 Eample 2: Suppose X and Y are independent and that X is eponential with mean.5 and Y has densit { f Y () 3e 3 if > otherwise Find the densit of the random variable W min{x,y } and the random variable Z X + Y. 9

), 35% use extra unleaded gas ( A

), 35% use extra unleaded gas ( A . At a certain gas station, 4% of the customers use regular unleaded gas ( A ), % use extra unleaded gas ( A ), and % use premium unleaded gas ( A ). Of those customers using regular gas, onl % fill their

More information

Joint Exam 1/P Sample Exam 1

Joint Exam 1/P Sample Exam 1 Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question

More information

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8.

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8. Random variables Remark on Notations 1. When X is a number chosen uniformly from a data set, What I call P(X = k) is called Freq[k, X] in the courseware. 2. When X is a random variable, what I call F ()

More information

Math 431 An Introduction to Probability. Final Exam Solutions

Math 431 An Introduction to Probability. Final Exam Solutions Math 43 An Introduction to Probability Final Eam Solutions. A continuous random variable X has cdf a for 0, F () = for 0 <

More information

Statistics 100A Homework 7 Solutions

Statistics 100A Homework 7 Solutions Chapter 6 Statistics A Homework 7 Solutions Ryan Rosario. A television store owner figures that 45 percent of the customers entering his store will purchase an ordinary television set, 5 percent will purchase

More information

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i ) Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (1903-1987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll

More information

Probability for Estimation (review)

Probability for Estimation (review) Probability for Estimation (review) In general, we want to develop an estimator for systems of the form: x = f x, u + η(t); y = h x + ω(t); ggggg y, ffff x We will primarily focus on discrete time linear

More information

University of California, Los Angeles Department of Statistics. Random variables

University of California, Los Angeles Department of Statistics. Random variables University of California, Los Angeles Department of Statistics Statistics Instructor: Nicolas Christou Random variables Discrete random variables. Continuous random variables. Discrete random variables.

More information

Double Integrals in Polar Coordinates

Double Integrals in Polar Coordinates Double Integrals in Polar Coordinates. A flat plate is in the shape of the region in the first quadrant ling between the circles + and +. The densit of the plate at point, is + kilograms per square meter

More information

Lecture 6: Discrete & Continuous Probability and Random Variables

Lecture 6: Discrete & Continuous Probability and Random Variables Lecture 6: Discrete & Continuous Probability and Random Variables D. Alex Hughes Math Camp September 17, 2015 D. Alex Hughes (Math Camp) Lecture 6: Discrete & Continuous Probability and Random September

More information

Gaussian Probability Density Functions: Properties and Error Characterization

Gaussian Probability Density Functions: Properties and Error Characterization Gaussian Probabilit Densit Functions: Properties and Error Characterization Maria Isabel Ribeiro Institute for Sstems and Robotics Instituto Superior Tcnico Av. Rovisco Pais, 1 149-1 Lisboa PORTUGAL {mir@isr.ist.utl.pt}

More information

6.041/6.431 Spring 2008 Quiz 2 Wednesday, April 16, 7:30-9:30 PM. SOLUTIONS

6.041/6.431 Spring 2008 Quiz 2 Wednesday, April 16, 7:30-9:30 PM. SOLUTIONS 6.4/6.43 Spring 28 Quiz 2 Wednesday, April 6, 7:3-9:3 PM. SOLUTIONS Name: Recitation Instructor: TA: 6.4/6.43: Question Part Score Out of 3 all 36 2 a 4 b 5 c 5 d 8 e 5 f 6 3 a 4 b 6 c 6 d 6 e 6 Total

More information

So, using the new notation, P X,Y (0,1) =.08 This is the value which the joint probability function for X and Y takes when X=0 and Y=1.

So, using the new notation, P X,Y (0,1) =.08 This is the value which the joint probability function for X and Y takes when X=0 and Y=1. Joint probabilit is the probabilit that the RVs & Y take values &. like the PDF of the two events, and. We will denote a joint probabilit function as P,Y (,) = P(= Y=) Marginal probabilit of is the probabilit

More information

Chapter 16, Part C Investment Portfolio. Risk is often measured by variance. For the binary gamble L= [, z z;1/2,1/2], recall that expected value is

Chapter 16, Part C Investment Portfolio. Risk is often measured by variance. For the binary gamble L= [, z z;1/2,1/2], recall that expected value is Chapter 16, Part C Investment Portfolio Risk is often measured b variance. For the binar gamble L= [, z z;1/,1/], recall that epected value is 1 1 Ez = z + ( z ) = 0. For this binar gamble, z represents

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

ST 371 (IV): Discrete Random Variables

ST 371 (IV): Discrete Random Variables ST 371 (IV): Discrete Random Variables 1 Random Variables A random variable (rv) is a function that is defined on the sample space of the experiment and that assigns a numerical variable to each possible

More information

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1]. Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real

More information

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,

More information

ISyE 6761 Fall 2012 Homework #2 Solutions

ISyE 6761 Fall 2012 Homework #2 Solutions 1 1. The joint p.m.f. of X and Y is (a) Find E[X Y ] for 1, 2, 3. (b) Find E[E[X Y ]]. (c) Are X and Y independent? ISE 6761 Fall 212 Homework #2 Solutions f(x, ) x 1 x 2 x 3 1 1/9 1/3 1/9 2 1/9 1/18 3

More information

Stats on the TI 83 and TI 84 Calculator

Stats on the TI 83 and TI 84 Calculator Stats on the TI 83 and TI 84 Calculator Entering the sample values STAT button Left bracket { Right bracket } Store (STO) List L1 Comma Enter Example: Sample data are {5, 10, 15, 20} 1. Press 2 ND and

More information

Final Mathematics 5010, Section 1, Fall 2004 Instructor: D.A. Levin

Final Mathematics 5010, Section 1, Fall 2004 Instructor: D.A. Levin Final Mathematics 51, Section 1, Fall 24 Instructor: D.A. Levin Name YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT. A CORRECT ANSWER WITHOUT SHOWING YOUR REASONING WILL NOT RECEIVE CREDIT. Problem Points Possible

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

More information

Introduction to Probability

Introduction to Probability Introduction to Probability EE 179, Lecture 15, Handout #24 Probability theory gives a mathematical characterization for experiments with random outcomes. coin toss life of lightbulb binary data sequence

More information

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL STATIsTICs 4 IV. RANDOm VECTORs 1. JOINTLY DIsTRIBUTED RANDOm VARIABLEs If are two rom variables defined on the same sample space we define the joint

More information

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2015 Timo Koski Matematisk statistik 24.09.2015 1 / 1 Learning outcomes Random vectors, mean vector, covariance matrix,

More information

Section V.2: Magnitudes, Directions, and Components of Vectors

Section V.2: Magnitudes, Directions, and Components of Vectors Section V.: Magnitudes, Directions, and Components of Vectors Vectors in the plane If we graph a vector in the coordinate plane instead of just a grid, there are a few things to note. Firstl, directions

More information

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1 Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.

More information

Feb 28 Homework Solutions Math 151, Winter 2012. Chapter 6 Problems (pages 287-291)

Feb 28 Homework Solutions Math 151, Winter 2012. Chapter 6 Problems (pages 287-291) Feb 8 Homework Solutions Math 5, Winter Chapter 6 Problems (pages 87-9) Problem 6 bin of 5 transistors is known to contain that are defective. The transistors are to be tested, one at a time, until the

More information

Covariance and Correlation

Covariance and Correlation Covariance and Correlation ( c Robert J. Serfling Not for reproduction or distribution) We have seen how to summarize a data-based relative frequency distribution by measures of location and spread, such

More information

MULTIVARIATE PROBABILITY DISTRIBUTIONS

MULTIVARIATE PROBABILITY DISTRIBUTIONS MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined

More information

MAS108 Probability I

MAS108 Probability I 1 QUEEN MARY UNIVERSITY OF LONDON 2:30 pm, Thursday 3 May, 2007 Duration: 2 hours MAS108 Probability I Do not start reading the question paper until you are instructed to by the invigilators. The paper

More information

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015. Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x

More information

Lecture 7: Continuous Random Variables

Lecture 7: Continuous Random Variables Lecture 7: Continuous Random Variables 21 September 2005 1 Our First Continuous Random Variable The back of the lecture hall is roughly 10 meters across. Suppose it were exactly 10 meters, and consider

More information

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2014 Timo Koski () Mathematisk statistik 24.09.2014 1 / 75 Learning outcomes Random vectors, mean vector, covariance

More information

e.g. arrival of a customer to a service station or breakdown of a component in some system.

e.g. arrival of a customer to a service station or breakdown of a component in some system. Poisson process Events occur at random instants of time at an average rate of λ events per second. e.g. arrival of a customer to a service station or breakdown of a component in some system. Let N(t) be

More information

Mathematical Expectation

Mathematical Expectation Mathematical Expectation Properties of Mathematical Expectation I The concept of mathematical expectation arose in connection with games of chance. In its simplest form, mathematical expectation is the

More information

5. Continuous Random Variables

5. Continuous Random Variables 5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be

More information

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its

More information

Section 7.2 Linear Programming: The Graphical Method

Section 7.2 Linear Programming: The Graphical Method Section 7.2 Linear Programming: The Graphical Method Man problems in business, science, and economics involve finding the optimal value of a function (for instance, the maimum value of the profit function

More information

ECE302 Spring 2006 HW5 Solutions February 21, 2006 1

ECE302 Spring 2006 HW5 Solutions February 21, 2006 1 ECE3 Spring 6 HW5 Solutions February 1, 6 1 Solutions to HW5 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in italics

More information

Chapter 9 Monté Carlo Simulation

Chapter 9 Monté Carlo Simulation MGS 3100 Business Analysis Chapter 9 Monté Carlo What Is? A model/process used to duplicate or mimic the real system Types of Models Physical simulation Computer simulation When to Use (Computer) Models?

More information

LESSON EIII.E EXPONENTS AND LOGARITHMS

LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS OVERVIEW Here s what ou ll learn in this lesson: Eponential Functions a. Graphing eponential functions b. Applications of eponential

More information

Florida Algebra I EOC Online Practice Test

Florida Algebra I EOC Online Practice Test Florida Algebra I EOC Online Practice Test Directions: This practice test contains 65 multiple-choice questions. Choose the best answer for each question. Detailed answer eplanations appear at the end

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

More information

ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude

ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude ACT Math Vocabular Acute When referring to an angle acute means less than 90 degrees. When referring to a triangle, acute means that all angles are less than 90 degrees. For eample: Altitude The height

More information

Lecture Notes 1. Brief Review of Basic Probability

Lecture Notes 1. Brief Review of Basic Probability Probability Review Lecture Notes Brief Review of Basic Probability I assume you know basic probability. Chapters -3 are a review. I will assume you have read and understood Chapters -3. Here is a very

More information

Stat 704 Data Analysis I Probability Review

Stat 704 Data Analysis I Probability Review 1 / 30 Stat 704 Data Analysis I Probability Review Timothy Hanson Department of Statistics, University of South Carolina Course information 2 / 30 Logistics: Tuesday/Thursday 11:40am to 12:55pm in LeConte

More information

Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 2 Solutions

Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 2 Solutions Math 370, Spring 008 Prof. A.J. Hildebrand Practice Test Solutions About this test. This is a practice test made up of a random collection of 5 problems from past Course /P actuarial exams. Most of the

More information

Chapter 4 - Lecture 1 Probability Density Functions and Cumul. Distribution Functions

Chapter 4 - Lecture 1 Probability Density Functions and Cumul. Distribution Functions Chapter 4 - Lecture 1 Probability Density Functions and Cumulative Distribution Functions October 21st, 2009 Review Probability distribution function Useful results Relationship between the pdf and the

More information

TEST 2 STUDY GUIDE. 1. Consider the data shown below.

TEST 2 STUDY GUIDE. 1. Consider the data shown below. 2006 by The Arizona Board of Regents for The University of Arizona All rights reserved Business Mathematics I TEST 2 STUDY GUIDE 1 Consider the data shown below (a) Fill in the Frequency and Relative Frequency

More information

Random variables, probability distributions, binomial random variable

Random variables, probability distributions, binomial random variable Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that

More information

Lecture 9: Introduction to Pattern Analysis

Lecture 9: Introduction to Pattern Analysis Lecture 9: Introduction to Pattern Analysis g Features, patterns and classifiers g Components of a PR system g An example g Probability definitions g Bayes Theorem g Gaussian densities Features, patterns

More information

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving

More information

Example: Document Clustering. Clustering: Definition. Notion of a Cluster can be Ambiguous. Types of Clusterings. Hierarchical Clustering

Example: Document Clustering. Clustering: Definition. Notion of a Cluster can be Ambiguous. Types of Clusterings. Hierarchical Clustering Overview Prognostic Models and Data Mining in Medicine, part I Cluster Analsis What is Cluster Analsis? K-Means Clustering Hierarchical Clustering Cluster Validit Eample: Microarra data analsis 6 Summar

More information

Math 151. Rumbos Spring 2014 1. Solutions to Assignment #22

Math 151. Rumbos Spring 2014 1. Solutions to Assignment #22 Math 151. Rumbos Spring 2014 1 Solutions to Assignment #22 1. An experiment consists of rolling a die 81 times and computing the average of the numbers on the top face of the die. Estimate the probability

More information

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4) Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

More information

C3: Functions. Learning objectives

C3: Functions. Learning objectives CHAPTER C3: Functions Learning objectives After studing this chapter ou should: be familiar with the terms one-one and man-one mappings understand the terms domain and range for a mapping understand the

More information

More Equations and Inequalities

More Equations and Inequalities Section. Sets of Numbers and Interval Notation 9 More Equations and Inequalities 9 9. Compound Inequalities 9. Polnomial and Rational Inequalities 9. Absolute Value Equations 9. Absolute Value Inequalities

More information

Linear Inequality in Two Variables

Linear Inequality in Two Variables 90 (7-) Chapter 7 Sstems of Linear Equations and Inequalities In this section 7.4 GRAPHING LINEAR INEQUALITIES IN TWO VARIABLES You studied linear equations and inequalities in one variable in Chapter.

More information

Statistics 100A Homework 8 Solutions

Statistics 100A Homework 8 Solutions Part : Chapter 7 Statistics A Homework 8 Solutions Ryan Rosario. A player throws a fair die and simultaneously flips a fair coin. If the coin lands heads, then she wins twice, and if tails, the one-half

More information

The Normal Distribution. Alan T. Arnholt Department of Mathematical Sciences Appalachian State University

The Normal Distribution. Alan T. Arnholt Department of Mathematical Sciences Appalachian State University The Normal Distribution Alan T. Arnholt Department of Mathematical Sciences Appalachian State University arnholt@math.appstate.edu Spring 2006 R Notes 1 Copyright c 2006 Alan T. Arnholt 2 Continuous Random

More information

Feb 7 Homework Solutions Math 151, Winter 2012. Chapter 4 Problems (pages 172-179)

Feb 7 Homework Solutions Math 151, Winter 2012. Chapter 4 Problems (pages 172-179) Feb 7 Homework Solutions Math 151, Winter 2012 Chapter Problems (pages 172-179) Problem 3 Three dice are rolled. By assuming that each of the 6 3 216 possible outcomes is equally likely, find the probabilities

More information

12.5: CHI-SQUARE GOODNESS OF FIT TESTS

12.5: CHI-SQUARE GOODNESS OF FIT TESTS 125: Chi-Square Goodness of Fit Tests CD12-1 125: CHI-SQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability

More information

Random Variables. Chapter 2. Random Variables 1

Random Variables. Chapter 2. Random Variables 1 Random Variables Chapter 2 Random Variables 1 Roulette and Random Variables A Roulette wheel has 38 pockets. 18 of them are red and 18 are black; these are numbered from 1 to 36. The two remaining pockets

More information

Master s Theory Exam Spring 2006

Master s Theory Exam Spring 2006 Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem

More information

Math 461 Fall 2006 Test 2 Solutions

Math 461 Fall 2006 Test 2 Solutions Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two

More information

Probability Models.S1 Introduction to Probability

Probability Models.S1 Introduction to Probability Probability Models.S1 Introduction to Probability Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard The stochastic chapters of this book involve random variability. Decisions are

More information

Section 6.1 Joint Distribution Functions

Section 6.1 Joint Distribution Functions Section 6.1 Joint Distribution Functions We often care about more than one random variable at a time. DEFINITION: For any two random variables X and Y the joint cumulative probability distribution function

More information

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 A Summar of Concepts Needed to be Successful in Mathematics The following sheets list the ke concepts which are taught in the specified math course. The sheets

More information

The Big Picture. Correlation. Scatter Plots. Data

The Big Picture. Correlation. Scatter Plots. Data The Big Picture Correlation Bret Hanlon and Bret Larget Department of Statistics Universit of Wisconsin Madison December 6, We have just completed a length series of lectures on ANOVA where we considered

More information

Aggregate Loss Models

Aggregate Loss Models Aggregate Loss Models Chapter 9 Stat 477 - Loss Models Chapter 9 (Stat 477) Aggregate Loss Models Brian Hartman - BYU 1 / 22 Objectives Objectives Individual risk model Collective risk model Computing

More information

Binomial random variables

Binomial random variables Binomial and Poisson Random Variables Solutions STAT-UB.0103 Statistics for Business Control and Regression Models Binomial random variables 1. A certain coin has a 5% of landing heads, and a 75% chance

More information

Core Maths C2. Revision Notes

Core Maths C2. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

More information

Math/Stats 342: Solutions to Homework

Math/Stats 342: Solutions to Homework Math/Stats 342: Solutions to Homework Steven Miller (sjm1@williams.edu) November 17, 2011 Abstract Below are solutions / sketches of solutions to the homework problems from Math/Stats 342: Probability

More information

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS UNIT I: RANDOM VARIABLES PART- A -TWO MARKS 1. Given the probability density function of a continuous random variable X as follows f(x) = 6x (1-x) 0

More information

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

More information

Continuous Random Variables

Continuous Random Variables Chapter 5 Continuous Random Variables 5.1 Continuous Random Variables 1 5.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Recognize and understand continuous

More information

5.2 Inverse Functions

5.2 Inverse Functions 78 Further Topics in Functions. Inverse Functions Thinking of a function as a process like we did in Section., in this section we seek another function which might reverse that process. As in real life,

More information

Order Statistics. Lecture 15: Order Statistics. Notation Detour. Order Statistics, cont.

Order Statistics. Lecture 15: Order Statistics. Notation Detour. Order Statistics, cont. Lecture 5: Statistics 4 Let X, X 2, X 3, X 4, X 5 be iid random variables with a distribution F with a range of a, b). We can relabel these X s such that their labels correspond to arranging them in increasing

More information

Implicit Differentiation

Implicit Differentiation Revision Notes 2 Calculus 1270 Fall 2007 INSTRUCTOR: Peter Roper OFFICE: LCB 313 [EMAIL: roper@math.utah.edu] Standard Disclaimer These notes are not a complete review of the course thus far, and some

More information

The Bivariate Normal Distribution

The Bivariate Normal Distribution The Bivariate Normal Distribution This is Section 4.7 of the st edition (2002) of the book Introduction to Probability, by D. P. Bertsekas and J. N. Tsitsiklis. The material in this section was not included

More information

Functions and Graphs CHAPTER INTRODUCTION. The function concept is one of the most important ideas in mathematics. The study

Functions and Graphs CHAPTER INTRODUCTION. The function concept is one of the most important ideas in mathematics. The study Functions and Graphs CHAPTER 2 INTRODUCTION The function concept is one of the most important ideas in mathematics. The stud 2-1 Functions 2-2 Elementar Functions: Graphs and Transformations 2-3 Quadratic

More information

MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.

MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values. MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

More information

An Introduction to Basic Statistics and Probability

An Introduction to Basic Statistics and Probability An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random

More information

THE POWER RULES. Raising an Exponential Expression to a Power

THE POWER RULES. Raising an Exponential Expression to a Power 8 (5-) Chapter 5 Eponents and Polnomials 5. THE POWER RULES In this section Raising an Eponential Epression to a Power Raising a Product to a Power Raising a Quotient to a Power Variable Eponents Summar

More information

How many of these intersection points lie in the interior of the shaded region? If 1. then what is the value of

How many of these intersection points lie in the interior of the shaded region? If 1. then what is the value of NOVEMBER A stack of 00 nickels has a height of 6 inches What is the value, in dollars, of an 8-foot-high stack of nickels? Epress our answer to the nearest hundredth A cube is sliced b a plane that goes

More information

3. Regression & Exponential Smoothing

3. Regression & Exponential Smoothing 3. Regression & Exponential Smoothing 3.1 Forecasting a Single Time Series Two main approaches are traditionally used to model a single time series z 1, z 2,..., z n 1. Models the observation z t as a

More information

Practice problems for Homework 11 - Point Estimation

Practice problems for Homework 11 - Point Estimation Practice problems for Homework 11 - Point Estimation 1. (10 marks) Suppose we want to select a random sample of size 5 from the current CS 3341 students. Which of the following strategies is the best:

More information

Exploratory Data Analysis

Exploratory Data Analysis Exploratory Data Analysis Johannes Schauer johannes.schauer@tugraz.at Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction

More information

Lecture 4: Joint probability distributions; covariance; correlation

Lecture 4: Joint probability distributions; covariance; correlation Lecture 4: Joint probability distributions; covariance; correlation 10 October 2007 In this lecture we ll learn the following: 1. what joint probability distributions are; 2. visualizing multiple variables/joint

More information

Exponential Distribution

Exponential Distribution Exponential Distribution Definition: Exponential distribution with parameter λ: { λe λx x 0 f(x) = 0 x < 0 The cdf: F(x) = x Mean E(X) = 1/λ. f(x)dx = Moment generating function: φ(t) = E[e tx ] = { 1

More information

Statistics 100A Homework 4 Solutions

Statistics 100A Homework 4 Solutions Problem 1 For a discrete random variable X, Statistics 100A Homework 4 Solutions Ryan Rosario Note that all of the problems below as you to prove the statement. We are proving the properties of epectation

More information

Notes on the Negative Binomial Distribution

Notes on the Negative Binomial Distribution Notes on the Negative Binomial Distribution John D. Cook October 28, 2009 Abstract These notes give several properties of the negative binomial distribution. 1. Parameterizations 2. The connection between

More information

Department of Civil Engineering-I.I.T. Delhi CEL 899: Environmental Risk Assessment Statistics and Probability Example Part 1

Department of Civil Engineering-I.I.T. Delhi CEL 899: Environmental Risk Assessment Statistics and Probability Example Part 1 Department of Civil Engineering-I.I.T. Delhi CEL 899: Environmental Risk Assessment Statistics and Probability Example Part Note: Assume missing data (if any) and mention the same. Q. Suppose X has a normal

More information

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1 Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

More information

SECTION 5-1 Exponential Functions

SECTION 5-1 Exponential Functions 354 5 Eponential and Logarithmic Functions Most of the functions we have considered so far have been polnomial and rational functions, with a few others involving roots or powers of polnomial or rational

More information

1 Maximizing pro ts when marginal costs are increasing

1 Maximizing pro ts when marginal costs are increasing BEE12 Basic Mathematical Economics Week 1, Lecture Tuesda 12.1. Pro t maimization 1 Maimizing pro ts when marginal costs are increasing We consider in this section a rm in a perfectl competitive market

More information

Systems of Linear Equations: Solving by Substitution

Systems of Linear Equations: Solving by Substitution 8.3 Sstems of Linear Equations: Solving b Substitution 8.3 OBJECTIVES 1. Solve sstems using the substitution method 2. Solve applications of sstems of equations In Sections 8.1 and 8.2, we looked at graphing

More information

LINEAR FUNCTIONS OF 2 VARIABLES

LINEAR FUNCTIONS OF 2 VARIABLES CHAPTER 4: LINEAR FUNCTIONS OF 2 VARIABLES 4.1 RATES OF CHANGES IN DIFFERENT DIRECTIONS From Precalculus, we know that is a linear function if the rate of change of the function is constant. I.e., for

More information

Hypothesis Testing for Beginners

Hypothesis Testing for Beginners Hypothesis Testing for Beginners Michele Piffer LSE August, 2011 Michele Piffer (LSE) Hypothesis Testing for Beginners August, 2011 1 / 53 One year ago a friend asked me to put down some easy-to-read notes

More information