3. Continuous Random Variables

Size: px
Start display at page:

Download "3. Continuous Random Variables"

Transcription

1 3. Continuous Random Variables A continuous random variable is one which can take any value in an interval (or union of intervals) The values that can be taken by such a variable cannot be listed. Such variables are normally measured according to a scale. Examples of continuous random variables: age, height, weight, time, air pressure. Such variables are normally only measured to a given accuracy (e.g. the age of a person is normally given to the nearest year). 1 / 112

2 3.1 The notion of a density function Suppose X is a continuous random variable. Let f δ (x) = P(x < X < x + δ) δ This is the probability that X lies in an interval of length δ divided by the length of the interval. i.e. this can be thought of as the average probability density on the interval (x, x + δ). 2 / 112

3 The notion of a density function Let f X (x) = lim δ 0 P(x < X < x + δ) δ Then f X (x) is the probability density function of the random variable X. If it is clear which variable we are talking about then the subscript may be left out. Likely values of X correspond to areas where the density function is large. Unlikely values of X correspond to areas where the density function is small. 3 / 112

4 3.2 Properties of a density function A density function f (x) of a random variable X satisfies 2 conditions: 2) 1) f (x) 0, for all x. f (x)dx=1. The second condition simply states that the total area under the density curve is 1. 4 / 112

5 The support of a continuous random variable The support of a continuous random variable X, S X, is the set of values for which f (x) > 0. We have S X f (x)dx = 1 In general, we only have to integrate over intervals where the density function is positive. 5 / 112

6 Density curves and probability The probability that X lies between a and b is the area under the density curve between x = a and x = b. 6 / 112

7 Density curves and probability Hence, In particular, P(a < X < b) = b a f (x)dx. 1. P(X > a)= 2. P(X < b)= a b f (x)dx f (x)dx. Note that for any constant a, P(X = a) = 0. 7 / 112

8 3.4 Expected value of a continuous random variable The expected value of a random variable X with density function f (x) is E(X ) = µ X = xf (x)dx. S X i.e. we integrate over the interval(s) where the density function is positive. If a distribution is symmetrical about x = x 0, then (as long as the expected value exists) E(X ) = x 0. The expected value of the function g(x) is E[g(X )] = g(x)f (x)dx. S X The k-th moment of X is given by E(X k ), where E[X k ] = x k f (x)dx. S X 8 / 112

9 3.5 Variance of a continuous random variable The variance of X is given by σx 2 = Var(X ) = E[(X µ)2 ] = (x µ) 2 f (x)dx S X It can be shown that σ 2 X = E(X 2 ) E(X ) 2. The proof of this is analogous to the one presented for the case of a discrete random variable. σ X is the standard deviation of the random variable X. Note that these formulas are analogous to the definitions of expected values for discrete random variables. The only change is that the summations become integrals. All the properties of E(X ) and Var(X ) given in Chapter 2 hold for continuous distributions, e.g. Var(aX + b) = a 2 Var(X ). 9 / 112

10 3.6 The Cumulative Distribution Function and Quartiles of a distribution The cumulative distribution function of a continuous random variable X is denoted F X. By definition, F X (x) = P(X x) = P(X < x) = where f X is the density function. x f X (t)dt, Differentiating this equation we obtain F X (x) = f X (x). Suppose S X = [a, b], where a and b are finite. For x a, F X (x) = 0. Also, for x b, F X (x) = / 112

11 The Quartiles of a distribution For 0 < p < 1, the p-quartile of a continuous random variable, q p satisfies F X (q p ) = p. q 0.5 is the median of X. q 0.25 and q 0.75 are called the lower and upper quartiles of X, respectively. If the support S X is an interval, then all quartiles are uniquely defined. 11 / 112

12 Relation between the mean and the median for a continuous distribution If a continuous random variable X has a distribution which is symmetric around x 0, then q 0.5 = x 0 and as long as E[X ] exists E[X ] = q 0.5 = x 0. Many continuous distributions have a long right hand tail (e.g. the distribution of wages, the exponential and gamma distributions [see later]). For such distributions, the mean is greater than the median, i.e. in everyday language the average (median) person earns less than the average (understood as the mean) wage. For distributions with a long left had tail, the median is greater than the mean. 12 / 112

13 Example 3.1 Suppose the random variable X has density function f (x) = cx on the interval [0,5] and f (x) = 0 outside this interval. 1. Calculate the value of the constant c. 2. Calculate the probability that (X 2) Calculate E(X ) and σ X. 4. Derive the cumulative distribution function of X. 5. Calculate the median, lower quartile and upper quartile of this distribution. 13 / 112

14 Example We use the fact that Hence S X f (x)dx = cxdx = 1 0.5c[x 2 ] 5 0 = 1 0.5c 25 = 1 c = 2/25 = / 112

15 Example In order to find P[(X 2) 2 1], we first transform the problem into one of the form P(X A). Solving graphically or algebraically (X 2) 2 1, X 1 or X 3. These two events are mutually exclusive. 15 / 112

16 Example 3.1 Since we only need to integrate over intervals where the density function is positive (between 0 and 5), P(X 1 X 3) = P(X 1)+P(X 3) = Thus, P(X 1 X 3)= 1 0 cxdx cxdx 1 0 f (x)dx+ 5 =[0.04x 2 ] [0.04x 2 ] 5 3 = = f (x)dx 16 / 112

17 Example We have E(X )= 5 0 = c 3 [x 3 ] 5 0 = xf (x)dx = cx 2 dx = / 112

18 Example 3.1 To calculate the standard deviation, we first calculate the variance. We use Var(X ) = E(X 2 ) E(X ) 2. We have Hence, E(X 2 )= 5 0 x 2 f (x)dx = =[0.02x 4 ] 5 0 = 25 2 Var(X ) = 25 2 Hence, s = 25/ x 3 dx ( ) 10 2 = / 112

19 Example The support of X is [0, 5]. It follows that for x 0, F X (x) = 0. Also, for x 5, F X (x) = 1. For 0 < x < 5, since f X (x) = 0 for x < 0 F (x)= x f (t)dt = x =[0.04t 2 ] x 0 = 0.04x 2. 0 f (t)dt = x tdt 19 / 112

20 Example The median, q 0.5, satisfies F (q 0.5 ) = 0.5. Note that for x 0, F (x) = 0 and for x 5, F (x) = 1. Hence, any quartile must lie in the interval (0, 5). F (q 0.5 ) = 0.04q = 0.5 q = Since the median must be positive, it follows that q 0.5 = / 112

21 Example 3.1 Similarly, the lower quartile, q 0.25, satisfies F (q 0.25 )=0.04q = 0.25 q = 6.25 q 0.25 = 2.5 The upper quartile, q 0.75, satisfies F (q 0.75 )=0.04q = 0.75 q = q / 112

22 3.7 Standard continuous distributions The uniform distribution on the interval [a, b]. We write X U[a, b]. f (x) 1 b a 0 a b x 22 / 112

23 The uniform distribution The area under the density function (a rectangle) is 1. The width of this rectangle is (b a), the height of this rectangle is f (x). Hence, for x [a, b] Otherwise, f (x) = 0. (b a)f (x) = 1 f (x) = 1 b a 23 / 112

24 The uniform distribution By symmetry E(X ) is the mid-point of the interval i.e. E(X ) = a + b 2. Suppose a calculator calculates to k decimal places. The rounding error involved in a calculation may be assumed to be uniform on the interval [ 5 10 (k+1), 5 10 (k+1) ]. 24 / 112

25 Example 3.2 Suppose the length of the side of a square is chosen from the uniform distribution on [0, 3]. Calculate 1. the probability that the length of the side is between 2 and 4 2. the expected area of this square. 25 / 112

26 Example Let X be the length of the side of the square. The density function is f (x) = 1/3, x [0, 3]. Otherwise, f (x) = 0. Hence, P(2 < X < 4) = 4 2 f (x)dx = dx, since there is no density on the interval [3,4]. Thus, [ x ] 3 P(2 < X < 4) = = = 1 3. Also, a geometric argument could be made to find the appropriate area under the density curve / 112

27 Example If X is the length of the side of a square, then the area is X 2. The expected area is E(X 2 ). E(X 2 )= 3 0 [ x 3 = 9 x 2 f (x)dx = ] 3 0 = x 2 3 dx 27 / 112

28 The exponential distribution The density function of an exponential random variable with parameter λ is given by f (x) = λe λx, for x 0 and f (x) = 0 for x < 0. We write X Exp(λ). 28 / 112

29 The exponential distribution This distribution may be used to model the time between the arrival of telephone calls. λ is the rate at which calls arrive (i.e. the expected length of time between calls is 1/λ). The parameter λ as defined here is called the rate parameter. 29 / 112

30 The exponential distribution It should be noted that sometimes the parameter of the exponential distribution is given as the expected value, i.e. here the expected time between calls. Denote this parameter by θ(= 1/λ). We have f (x) = e x/θ. θ I will use the rate, rather than the expected value, as the parameter. 30 / 112

31 The exponential, geometric and Poisson distributions The probability of a call coming in some small unit of time (say millisecond) is small. Consider a succession of milliseconds and think that if a call comes in during a particular millisecond then we have a success. The arrival time of the first call is thus the time to the first success in such a series of experiments. It follows that the exponential distribution is a continuous analogue of the geometric distribution. It will be shown during the tutorials that the exponential distribution also has the memoryless property. 31 / 112

32 The exponential, geometric and Poisson distributions From this interpretation of the exponential distribution, we can see that there is also a connection between the exponential distribution and the Poisson distribution. Since the probability of a call arriving in a short period of time is small, if we consider a large number of short periods, the number of calls arriving will have a Poisson distribution. Namely, If the time between observations, X, has an Exp(λ) distribution, then the number of observations in time t has a Poisson(λt) distribution. Since λ is the rate at which calls come in per unit time, λt is the expected number of calls to arrive in time t. 32 / 112

33 Example 3.3 The average number of calls coming into a call centre is 3/minute. Calculate 1) the probability that the time between two calls is greater than k mins. 2) t, where t is the time such that the length of time between two calls is less than t with probability 0.8, i.e. t = q / 112

34 Example Let X be the time between calls, we have X Exp(3). f (x) = 3e 3x, for x 0. Otherwise, f (x) = 0. Note that the units of time are minutes. P(X > k)= k f (x)dx = = [ e 3x] k = e 3k. k 3e 3x dx 34 / 112

35 Example We need to find t such that P(X < t) = 0.8. This means that 0.8 = t Hence, e 3t = 0.2. Taking logarithms 0 t f (x)dx= 3e 3x dx 0 = [ e 3x] t 0 = 1 e 3t. 3t = ln(0.2) t = ln(0.2) mins 32.19secs. 35 / 112

36 3.7.3 The normal (Gaussian) distribution X has a normal distribution with expected value (mean) µ and variance σ 2 if f (x) = 1 [ ] (x µ) 2 σ 2π exp 2σ 2. We write X N(µ, σ 2 ). This is the very commonly met bell shaped distribution. Much of the theory of statistics is based upon the properties of this distribution. The normal distribution will be the subject of much of the rest of this chapter. The normal distribution with expected value 0 and variance 1, N(0, 1), is called the standard normal distribution. 36 / 112

37 The normal (Gaussian) distribution 37 / 112

38 3.7.4 The Gamma distribution Suppose the random variable X has a gamma distribution with shape parameter α and rate parameter β. We write X Γ(α, β). In this case, the density function of X is f (x) = βα x α 1 e βx Γ(α) If α is a positive integer, then Γ(α) = (α 1)!. 38 / 112

39 The Gamma distribution 39 / 112

40 Relation of the Gamma distribution to the exponential distribution Note that if α = 1, then the density function given above reduces to the density function of the exponential distribution, i.e. the Γ(1, β) distribution is the exponential(β) distribution. Moreover, if α is a positive integer, then if X Γ(α, β), X is the sum of α independent random variables with an exponential(β) distribution. In this case, X can be thought of as the time till the α-th call when calls come in at random with a constant rate. 40 / 112

41 Relation of the Gamma distribution to the exponential distribution If X Γ(α, β), then for any constant k > 0, kx Γ(α, β k ). In particular, if X Exp(λ), then Y = kx Exp( λ k ) (by multiplying the time to a call by k, the call rate is divided by k). 41 / 112

42 Relation of the Gamma distribution to the standard normal distribution Assume that X 1, X 2,..., X ν are independent random variables from the standard normal distribution. Let Y = X X X 2 ν. The distribution of Y is called the Chi-squared distribution with ν degrees of freedom. We write Y χ 2 (ν). This distribution is the same as the Γ( ν 2, 1 2 ) distribution. The Chi-squared distribution is often encountered in statistical problems. α is called the shape parameter of the Gamma distribution, since as α increases the distribution becomes more symmetrical. This is related to the central limit theorem (see later in this chapter). 42 / 112

43 Expected value and variance of standard continuous distributions Distribution Expected value Variance N(µ, σ 2 ) µ σ Exp(λ) λ λ α α 2 Γ(α, β) U[a, b] β a+b 2 β 2 (b a) 2 12 The expected value is sometimes referred to as the mean. However, it should not be confused with the sample mean. The derivation of some of these results is considered in the tutorials. 43 / 112

44 The Cauchy Distribution The standard Cauchy distribution has density function f (x) = 1 π(1 + x 2 ), x R. This distribution is symmetric around 0 and has a similar shape to the normal distribution (however, it is less peaked/more spread out). 44 / 112

45 The Cauchy Distribution Note that this does indeed define a probability distribution, since f (x) > 0, x R. Also, f (x)dx= 1 dx π 1 + x 2 = 1 [ tan 1 (x) ] π = 1 [ π π 2 π ] = / 112

46 The Cauchy Distribution However, the expected value is undefined for this distribution, since E(X )= xf (x)dx = 1 π = [ ln(1 + x 2 ) ] xdx 1 + x 2 This integral is undefined as ln(1 + x 2 ) is unbounded as x tends to or. 46 / 112

47 3.8 Two Inequalities Markov s Inequality Assume that X is a non-negative random variable. P(X > k) E(X ) k Chebyshev s Inequality P( X E(X ) > kσ) 1 k / 112

48 Proof of Markov s Inequality for Continuous Distributions Since X is assumed to be non-negative, we have Note that i) k 0 ii) k E(X )= = 0 k 0 xf (x)dx xf (x)dx + xf (x)dx 0 and xf (x)dx k k k xf (x)dx f (x)dx = kp(x > k). 48 / 112

49 Proof of Markov s Inequality for Continuous Distributions It follows that E(X ) kp(x > k) P(X > k) E(X ) k 49 / 112

50 Proof of Chebyshev s Inequality for Continuous Distributions We have Var(X ) = σ 2 = = (x E[X ]) 2 f (x)dx (x E[X ]) 2 f (x)dx + x E(x) kσ (x E[X ]) 2 f (x)dx x E(x) >kσ The first of these integrals is non-negative and (x E[X ]) 2 f (x)dx k 2 σ 2 f (x)dx = k 2 σ 2 P( X E(X ) > kσ) x E(x) >kσ x E(x) >kσ 50 / 112

51 Proof of Chebyshev s Inequality for Continuous Distributions It follows that σ 2 k 2 σ 2 P( X E(X ) > kσ) 1 P( X E(X ) > kσ) k2 51 / 112

52 Example I throw a coin 100 times. Let X be the number of heads. i) Using Markov s inequality find an upper bound on P(X > 70). ii) Using Chebyshev s inequality find a lower bound on P(30 X 70). iii) Using your answer to ii) and the symmetry of the distribution of X, obtain a better upper bound on P(X > 70). 52 / 112

53 Example We have X Bin(100,0.5). Thus E(X ) = 50, Var(X ) = 25. i) Using Markov s inequality P(X > k) E(X ) k P(X > 70) E(X ) = / 112

54 Example A.1 ii) Note that P(30 X 70) = P( X E(X ) 4σ). Using Chebyshev s inequality We have P( X E(X ) > kσ) 1 k 2 P( X E(X ) > 4σ) P( X E(X ) 4σ) = 1 P( X E(X ) > 4σ) = / 112

55 Example A.1 Using the symmetry of the distribution of X around 50, we have P(X > 70) = P(X < 30). Hence, P(( X E(X ) > 4σ) = P(X < 30)+P(X > 70) = 2P(X > 70) It follows that P(X > 70) / 112

56 Jensen s Inequalities Suppose g is a convex function. It follows that E[g(X )] g(e[x ]). Note that since g(x ) = X 2 is a convex function, we have E[g(X )] = E[X 2 ] g(e[x ]) = E[X ] 2. Suppose that h is a concave function. It follows that E[h(X )] h(e[x ]). Since h(x ) = ln X is a concave function, we have E[h(X )] = E[ln X ] h[e(x )] = ln(e[x ]). 56 / 112

57 3.9 The Normal Distribution and the Central Limit Theorem The importance of the normal distribution results from the central limit theorem, which explains why this bell shaped distribution is so often observed in nature. 57 / 112

58 3.8.1 The standard normal distribution The density function cannot be integrated algebraically. Hence, tables for the standard normal distribution are used in order to calculate probabilities associated with the normal distribution. A standard normal random variable has expected value 0 and standard deviation equal to 1. Such a random variable is denoted by Z i.e. Z N(0, 1). 58 / 112

59 Using tables for the standard normal distribution The table for the standard normal distribution used in this course gives probabilities of the form P(Z > k) for k 0 [note that other tables may give P(Z < k)]. Of course, often we have to calculate probabilities of events which take a different form. In order to do this we use the following 3 rules. These follow from the interpretation of the probability of an event as the appropriate area under the density curve. 59 / 112

60 1. The law of complementarity The law of complementarity P(Z < k) = 1 P(Z > k) It should be noted that P(Z = k) = 0. The area under the density curve is 1, hence P(Z < k) + P(Z > k) = 1 i.e. P(Z < k) = 1 P(Z > k). This is a general rule for continuous distributions. 60 / 112

61 The law of complementarity 61 / 112

62 2. The law of symmetry The law of symmetry Since the standard normal distribution is symmetric about 0, P(Z < k) = P(Z > k) This is used to calculate probabilities when the constant is negative. This law is specific to distributions which are symmetric around / 112

63 The law of symmetry 63 / 112

64 3. The interval rule The interval rule P(a < Z < b)=p(z > a) P(Z > b) General for continuous distributions 64 / 112

65 Reading the table for the standard normal distribution In order to read P(Z > k), where k is given to 2 decimal places, we find the row corresponding to the digits either side of the decimal point and the column corresponding to the second place after the decimal point. The table on the next slide illustrates a fragment of the table. 65 / 112

66 Reading the table for the standard normal distribution For example, P(Z > 1.22) = Since P(Z > k) is decreasing in k, we assume that for k > 4, P(Z > k) / 112

67 Example 3.4 Calculate i) P(Z > 1.76) ii) P(Z < 0.18) iii) P(Z > 0.83) iv) P( 0.43 < Z < 1.36). 67 / 112

68 Example 3.4 i) This can be read directly from the table (row corresponding to 1.7, column corresponding to 0.06) P(Z > 1.76) = ii) This is a probability in the left hand tail of the distribution. We use the law of symmetry P(Z < 0.18) = P(Z > 0.18) = In general, when we have a negative constant, we first use the law of symmetry to obtain a positive constant. 68 / 112

69 Example 3.4 iii) In some cases, neither the law of symmetry nor the law of complementarity transforms the calculation immediately into the correct form. [P(Z > k) where k > 0]. In this case we have to use both rules. Here, Using the law of symmetry P(Z > 0.83) = P(Z < 0.83) Using the law of complementarity P(Z < 0.83) = 1 P(Z > 0.83) = = / 112

70 Example 3.4 When we have to calculate something of the form P(a < Z < b), we always use the interval rule P( 0.43 < Z < 1.36) = P(Z > 0.43) P(Z > 1.36). To calculate the first probability we first use symmetry. The second probability can be read directly P(Z > 0.43) P(Z > 1.36)=P(Z < 0.43) P(Z > 1.36) =1 P(Z > 0.43) P(Z > 1.36) = = / 112

71 Reading the table for the standard normal distribution Sometimes it is necessary to find the number k for which P(Z > k) = p, where p 0.5. In this case we find the value closest to p in the heart of the table and the value of k is read from the values corresponding to appropriate row and column. The rules of complementarity and symmetry may be needed to obtain the desired form i.e. P(Z > k) = p, where p / 112

72 Example 3.5 Find the value of k satisfying P(Z > k) = / 112

73 Example 3.5 Since P(Z > 0) = 0.5, it is clear that k < / 112

74 Example 3.5 First we use the the law of complementarity to obtain a suitable value for p P(Z < k) = 1 P(Z > k) P(Z < k) = Now we use the law of symmetry to obtain the required form P(Z < k) = P(Z > k) = / 112

75 Example 3.5 The number closest to 0.17 in the heart of the table is This is in the row corresponding to 0.9 and the column corresponding to Hence, we have P(Z > k) = 0.17; P(Z > 0.95) Thus, k 0.95, i.e. k / 112

76 3.8.2 Standardisation of a normal random variable Clearly, the technique used in the previous subsection only works for a standard normal random variable. How do we calculate appropriate probabilities for a general normal distribution i.e. X N(µ, σ 2 )? The first step is to standardise the variable. 76 / 112

77 Standardisation of a normal random variable If X N(µ, σ 2 ), then Z = X µ σ N(0, 1) Subtracting the expected value first centres the distribution around 0 and then division by the standard deviation shrinks the dispersion of the distribution to the dispersion of the standard normal distribution. It should be noted that such standardisation is specific to the normal distribution. 77 / 112

78 Transformations of normal random variables In general, if X N(µ, σ 2 ), then Y = ax + b also has a normal distribution. In particular, Y N(aµ + b, a 2 σ 2 ). The sum of independent, normal random variables is also normally distributed. 78 / 112

79 Transformations of normal random variables Moreover, any linear combination of independent normally distributed random variables has a normal distribution. Note that if X 1, X 2,..., X n are independent random variables and {α i } n i=1 a set of constants, then E[α 1 X 1 +α 2 X α n X n ]=α 1 E[X 1 ]+α 2 E[X 2 ]+...+ α n E[X n ] Var[α 1 X 1 +α 2 X α n X n ]=α 2 1Var[X 1 ]+α 2 2Var[X 2 ]+...+α 2 nvar[x n ] After appropriate standardisation of such a sum, we can calculate the appropriate probabilities as before. 79 / 112

80 Example 3.6 The height of male students is normal with an expected value of 175cm and variance of 144cm 2. The height of female students is normal with an expected value of 165cm and variance of 81cm 2. a) What is the probability that a randomly picked male student is i) taller than 190cm ii) between 163 and 181cm? iii) taller than a randomly chosen female student? b) 10% of male students are shorter than what height? 80 / 112

81 Example 3.6 Let X and Y denote the height of a male and female student, respectively. i) We must calculate P(X > 190). First we standardise: ( X µ P(X > 190) = P σ > ) = P(Z > 1.25). This can be now read directly from the table P(X > 190) = P(Z > 1.25) = / 112

82 Example 3.6 ii) We must calculate P(163 < X < 181). Again, we first standardise ( P(163 < X < 181)=P < X µ ) < 144 σ 144 =P( 1 < Z < 0.5). Using the interval rule P( 1 < Z < 0.5) = P(Z > 1) P(Z > 0.5). 82 / 112

83 Example 3.6 Using symmetry for the first probability P(Z > 1) P(Z > 0.5)=P(Z < 1) P(Z > 0.5) =1 P(Z > 1) P(Z > 0.5) = = / 112

84 Example 3.6 iii) We must calculate P(X > Y ). This can be rewritten as P(X Y > 0). We first must derive the distribution of U = X Y. Since both the male and female are chosen at random, we may assume that X and Y are independent. It follows that U = X Y has a normal distribution. E[U]=E[X Y ] = E[X ] E[Y ] = 10 Var[U]=Var[X + ( Y )] = Var[X ] + ( 1) 2 Var[Y ] = = 225 = / 112

85 Example 3.6 Thus U N(10, 15 2 ). We must calculate P(U > 0). Standardising P(U > 0) = P( U ) > 10 ) = P(Z > 0.67) 15 Using symmetry and then the law of complementarity P(Z > 0.67)=P(Z < 0.67) = 1 P(Z > 0.67) = = / 112

86 Example 3.6 b) We have to find k, such that P(X < k) = 0.1. First we standardise ( X µ P < k 175 ) = 0.1. σ σ Thus P(Z < c) = 0.1, where c = k Since we have a left hand tail probability i.e. P(Z < c) < 0.5, we use the law of symmetry P(Z > c) = P(Z < c) = / 112

87 Example 3.6 The value closest to 0.1 in the heart of the table is in the row corresponding to 1.2 and the column corresponding to Hence, P(Z > c) = 0.1; P(Z > 1.28) = Thus, c 1.28, i.e. c Since c = k , we have k k = Thus, 10% of the population of male students are shorter than 159.6cm tall. 87 / 112

88 3.8.3 The central limit theorem Suppose I throw a coin once. The distribution of the number of heads, X, is P(X = 0) = 0.5; P(X = 1) = 0.5, i.e. nothing like a bell shape distribution. However, suppose I throw the coin a large number of times, say k times. I am reasonably likely to get around k 2 heads, but the probability of getting either a large number or small number of heads (with respect to k 2 ) is very small. The distribution of the number of heads thrown, X, has a bell like shape (i.e. similar to the normal distribution). 88 / 112

89 The central limit theorem This is a particular case of the central limit theorem. Note that X can be written as X = X 1 + X X n, where X i = 1 if the i-th toss results in heads X i = 0 if the i-th toss results in tails. 89 / 112

90 The central limit theorem (CLT) Suppose X = X 1 + X X n, where n is large and the X i are independent random variables, then X is approximately normally distributed, i.e. X approx N(µ, σ 2 ), where µ=e(x ) = σ 2 =Var(X ) = n E(X i ) i=1 n Var(X i ). This approximation is good if n 30, the variances of the X i are comparable and the distributions of the X i s are reasonably symmetrical. If the distributions of the X i s are clearly asymmetric, then this approximation will be less accurate. i=1 90 / 112

91 Example 3.7 n independent observations are taken from the exponential distribution with expected value 1 (note that the sum of these random variables has a gamma distribution with parameters α = n and β = 1). Using an appropriate approximation, estimate the probability that the mean of these observations (the sample mean X ) is between 0.9 and 1.1 when i) n = 30, ii) n = / 112

92 Example 3.7 i) For n = 30 P(0.9 < X < 1.1) = P(0.9 < 30 i=1 X i 30 < 1.1) = P(27 < 30 i=1 X i < 33) Since X i Exp(1), we have E(X i ) = Var(X i ) = 1. Therefore, E( 30 i=1 X i ) = 30 i=1 E(X i ) = 30. Since the observations are independent Var( 30 i=1 X i ) = 30 i=1 Var(X i ) = / 112

93 Example 3.7 Using the central limit theorem 30 S = X i approx N(30, 30) i=1 Standardising ( P(27 < S < 33)=P < S µ < 30 σ P( 0.55 < Z < 0.55) ) / 112

94 Example 3.7 Using the interval rule P( 0.55 < Z < 0.55)=P(Z > 0.55) P(Z > 0.55) =P(Z < 0.55) P(Z > 0.55) =[1 P(Z > 0.55)] P(Z > 0.55) = = / 112

95 Example 3.7 ii) For n = 100, P(0.9 < X < 1.1) = P(0.9 < 100 i=1 X i < 1.1) = P(90 < X i < 110). i=1 Since X i Exp(1), we have E(X i ) = Var(X i ) = X i ) = E(X i ) = E( i=1 i=1 Since the observations are independent Var( X i ) = Var(X i ) = 100. i=1 i=1 95 / 112

96 Example 3.7 Using the central limit theorem 100 S = X i approx N(100, 100). 1 Standardising ( P(90 < S < 110)=P < S µ 100 σ =P( 1 < Z < 1) < ) / 112

97 Example 3.7 Using the interval rule P( 1 < Z < 1)=P(Z > 1) P(Z > 1) =P(Z < 1) P(Z > 1) =[1 P(Z > 1)] P(Z > 1) = = / 112

98 The relation between the central limit theorem and sampling Note 1: As the sample size grows, the probability of the sample mean being close to the expected value (the theoretical mean) increases. Note 2: For the example above, the exact probabilities can be calculated (using a computer), since the sum of the variables has a gamma distribution. 98 / 112

99 The relation between the central limit theorem and sampling In the first case, the exact probability (to 4 d.p.) is (compared to the estimate ). In the second case, the exact probability (to 4 d.p.) is (compared to the estimate ). Hence, as the number of observations increases, the more accurate the approximation using the CLT is. Since the exponential distribution is clearly asymmetrical, the approximation using CLT is relatively poor. 99 / 112

100 Proportion of observations from a normal distribution within one standard deviation of the mean Note 3: After standardisation, the constants indicate the number of standard deviations from the mean (a negative sign indicates deviations below the mean). Here, P( 1 < Z < 1) = shows that if X comes from a normal distribution, the probability of being within one standard deviation of the mean is just over 2 3. Similarly, P( 2 < Z < 2) = Thus, with a probability of just over 0.95 an observation from a normal distribution will be less than 2 standard deviations from the mean. 100 / 112

101 3.8.4 The normal approximation to the binomial distribution Suppose n is large and X Bin(n, p), then X approx N(µ, σ 2 ), where µ = np, σ 2 = np(1 p). This approximation is used when n 30, 0.1 p 0.9. For values of p outside this range, the Poisson approximation tends to work better. 101 / 112

102 The continuity correction for the normal approximation to the binomial distribution It should be noted that X has a discrete distribution, but we are using a continuous distribution in the approximation. For example, suppose we wanted to estimate the probability of obtaining exactly k heads when we throw a coin n times. This probability will in general be positive. However, if we use the normal approximation without an appropriate correction, we cannot sensibly estimate P(X = k) [for continuous distributions P(X = k) = 0]. 102 / 112

103 The continuity correction for the normal approximation to the binomial distribution Suppose the random variable X takes only integer values and has an approximately normal distribution. In order to estimate P(X = k), we use the continuity correction. This uses the fact that when k is an integer P(X = k) = P(k 0.5 < X < k + 0.5). 103 / 112

104 Example 3.8 Suppose a coin is tossed 36 times. Using CLT, estimate the probability that exactly 20 heads are thrown. 104 / 112

105 Example 3.8 Let X be the number of heads. We have X Bin(36, 0.5). Hence, E(X )=np = = 18 Var(X )=np(1 p) = = 9 It follows that X approx N(18, 9). We wish to estimate P(X = 20). Using the continuity correction, P(X = 20)=P(19.5 < X < 20.5) =P( < X µ < ) 9 σ 9 P(0.5 < Z < 0.83) = P(Z > 0.5) P(Z > 0.83) 105 / 112

106 Example 3.8 Hence, P(Z > 0.5) P(Z > 0.83)= = / 112

107 The continuity correction for the normal approximation to the binomial distribution This continuity correction can be adapted to problems in which we have to estimate the probability that the number of successes is in a given interval. e.g. P(15 X < 21)=P(X = 15) + P(X = 16) P(X = 20) =P(14.5 < X < 15.5) P(19.5 < X < 20.5) =P(14.5 < X < 20.5) 107 / 112

108 Example 3.8 A die is thrown 180 times. Estimate the probability that 1) at least 35 sixes are thrown 2) between 27 and 33 sixes are thrown (inclusively). 108 / 112

109 Example 3.8 Let X be the number of sixes. We have X Bin(180, 1 6 ) E(X )=np = = 30 Var(X )=np(1 p) = = / 112

110 Example 3.8 i) Using the continuity correction P(X 35)=P(X = 35) + P(X = 36) +... Standardising =P(34.5 < X < 35.5) + P(35.5 < X < 36.5) +... =P(X > 34.5) P(X > 34.5)=P( X µ > ) σ 25 P(Z > 0.9) = / 112

111 Example 3.8 ii) Using the continuity correction P(27 X 33)=P(X = 27) + P(X = 28) P(X = 33) Standardising =P(26.5 < X < 27.5) P(32.5 < X < 33.5) =P(26.5 < X < 33.5) P(26.5 < X < 33.5)=P( < X µ 25 σ < ) =P( 0.7 < Z < 0.7) = P(Z > 0.7) P(Z > 0.7) =P(Z < 0.7) P(Z > 0.7) =1 P(Z > 0.7) P(Z > 0.7) = = / 112

112 The normal approximation to the binomial It should be noted that the normal approximation to the binomial is most accurate when n is large and p is close to 0.5. This is due to the fact that X = X 1 + X X n, where X i 0 1(p). The distribution of X i is symmetric when p = / 112

4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions 4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

More information

Continuous Random Variables

Continuous Random Variables Continuous Random Variables COMP 245 STATISTICS Dr N A Heard Contents 1 Continuous Random Variables 2 11 Introduction 2 12 Probability Density Functions 3 13 Transformations 5 2 Mean, Variance and Quantiles

More information

Topic 2: Scalar random variables. Definition of random variables

Topic 2: Scalar random variables. Definition of random variables Topic 2: Scalar random variables Discrete and continuous random variables Probability distribution and densities (cdf, pmf, pdf) Important random variables Expectation, mean, variance, moments Markov and

More information

Chapter 4 Expected Values

Chapter 4 Expected Values Chapter 4 Expected Values 4. The Expected Value of a Random Variables Definition. Let X be a random variable having a pdf f(x). Also, suppose the the following conditions are satisfied: x f(x) converges

More information

Continuous Random Variables and Probability Distributions. Stat 4570/5570 Material from Devore s book (Ed 8) Chapter 4 - and Cengage

Continuous Random Variables and Probability Distributions. Stat 4570/5570 Material from Devore s book (Ed 8) Chapter 4 - and Cengage 4 Continuous Random Variables and Probability Distributions Stat 4570/5570 Material from Devore s book (Ed 8) Chapter 4 - and Cengage Continuous r.v. A random variable X is continuous if possible values

More information

Continuous random variables

Continuous random variables Continuous random variables So far we have been concentrating on discrete random variables, whose distributions are not continuous. Now we deal with the so-called continuous random variables. A random

More information

POL 571: Expectation and Functions of Random Variables

POL 571: Expectation and Functions of Random Variables POL 571: Expectation and Functions of Random Variables Kosuke Imai Department of Politics, Princeton University March 10, 2006 1 Expectation and Independence To gain further insights about the behavior

More information

MATH 201. Final ANSWERS August 12, 2016

MATH 201. Final ANSWERS August 12, 2016 MATH 01 Final ANSWERS August 1, 016 Part A 1. 17 points) A bag contains three different types of dice: four 6-sided dice, five 8-sided dice, and six 0-sided dice. A die is drawn from the bag and then rolled.

More information

Lecture 8: Continuous random variables, expectation and variance

Lecture 8: Continuous random variables, expectation and variance Lecture 8: Continuous random variables, expectation and variance Lejla Batina Institute for Computing and Information Sciences Digital Security Version: spring 2012 Lejla Batina Version: spring 2012 Wiskunde

More information

Examination 110 Probability and Statistics Examination

Examination 110 Probability and Statistics Examination Examination 0 Probability and Statistics Examination Sample Examination Questions The Probability and Statistics Examination consists of 5 multiple-choice test questions. The test is a three-hour examination

More information

CSE 312, 2011 Winter, W.L.Ruzzo. 7. continuous random variables

CSE 312, 2011 Winter, W.L.Ruzzo. 7. continuous random variables CSE 312, 2011 Winter, W.L.Ruzzo 7. continuous random variables continuous random variables Discrete random variable: takes values in a finite or countable set, e.g. X {1,2,..., 6} with equal probability

More information

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) Chapter 4 4.

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) Chapter 4 4. UCLA STAT 11 A Applied Probability & Statistics for Engineers Instructor: Ivo Dinov, Asst. Prof. In Statistics and Neurology Teaching Assistant: Neda Farzinnia, UCLA Statistics University of California,

More information

Continuous Random Variables

Continuous Random Variables Probability 2 - Notes 7 Continuous Random Variables Definition. A random variable X is said to be a continuous random variable if there is a function f X (x) (the probability density function or p.d.f.)

More information

4. Joint Distributions of Two Random Variables

4. Joint Distributions of Two Random Variables 4. Joint Distributions of Two Random Variables 4.1 Joint Distributions of Two Discrete Random Variables Suppose the discrete random variables X and Y have supports S X and S Y, respectively. The joint

More information

Random Variables of The Discrete Type

Random Variables of The Discrete Type Random Variables of The Discrete Type Definition: Given a random experiment with an outcome space S, a function X that assigns to each element s in S one and only one real number x X(s) is called a random

More information

Random Variables and Their Expected Values

Random Variables and Their Expected Values Discrete and Continuous Random Variables The Probability Mass Function The (Cumulative) Distribution Function Discrete and Continuous Random Variables The Probability Mass Function The (Cumulative) Distribution

More information

Common probability distributionsi Math 217/218 Probability and Statistics Prof. D. Joyce, 2016

Common probability distributionsi Math 217/218 Probability and Statistics Prof. D. Joyce, 2016 Introduction. ommon probability distributionsi Math 7/8 Probability and Statistics Prof. D. Joyce, 06 I summarize here some of the more common distributions used in probability and statistics. Some are

More information

5. Continuous Random Variables

5. Continuous Random Variables 5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be

More information

Summary of Probability

Summary of Probability Summary of Probability Mathematical Physics I Rules of Probability The probability of an event is called P(A), which is a positive number less than or equal to 1. The total probability for all possible

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

EE 322: Probabilistic Methods for Electrical Engineers. Zhengdao Wang Department of Electrical and Computer Engineering Iowa State University

EE 322: Probabilistic Methods for Electrical Engineers. Zhengdao Wang Department of Electrical and Computer Engineering Iowa State University EE 322: Probabilistic Methods for Electrical Engineers Zhengdao Wang Department of Electrical and Computer Engineering Iowa State University Discrete Random Variables 1 Introduction to Random Variables

More information

Section 5.1 Continuous Random Variables: Introduction

Section 5.1 Continuous Random Variables: Introduction Section 5. Continuous Random Variables: Introduction Not all random variables are discrete. For example:. Waiting times for anything (train, arrival of customer, production of mrna molecule from gene,

More information

What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference

What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference 0. 1. Introduction and probability review 1.1. What is Statistics? What is Statistics? Lecture 1. Introduction and probability review There are many definitions: I will use A set of principle and procedures

More information

Solution Using the geometric series a/(1 r) = x=1. x=1. Problem For each of the following distributions, compute

Solution Using the geometric series a/(1 r) = x=1. x=1. Problem For each of the following distributions, compute Math 472 Homework Assignment 1 Problem 1.9.2. Let p(x) 1/2 x, x 1, 2, 3,..., zero elsewhere, be the pmf of the random variable X. Find the mgf, the mean, and the variance of X. Solution 1.9.2. Using the

More information

Lecture 10: Other Continuous Distributions and Probability Plots

Lecture 10: Other Continuous Distributions and Probability Plots Lecture 10: Other Continuous Distributions and Probability Plots Devore: Section 4.4-4.6 Page 1 Gamma Distribution Gamma function is a natural extension of the factorial For any α > 0, Γ(α) = 0 x α 1 e

More information

Probability and Statistics

Probability and Statistics CHAPTER 2: RANDOM VARIABLES AND ASSOCIATED FUNCTIONS 2b - 0 Probability and Statistics Kristel Van Steen, PhD 2 Montefiore Institute - Systems and Modeling GIGA - Bioinformatics ULg kristel.vansteen@ulg.ac.be

More information

the number of organisms in the squares of a haemocytometer? the number of goals scored by a football team in a match?

the number of organisms in the squares of a haemocytometer? the number of goals scored by a football team in a match? Poisson Random Variables (Rees: 6.8 6.14) Examples: What is the distribution of: the number of organisms in the squares of a haemocytometer? the number of hits on a web site in one hour? the number of

More information

The Effects of a Square Root Transform on a Poisson Distributed Quantity.

The Effects of a Square Root Transform on a Poisson Distributed Quantity. Tina Memo No. 2001-010 Internal Report The Effects of a Square Root Transform on a Poisson Distributed Quantity. N.A. Thacker and P.A. Bromiley Last updated 25 / 01 / 2009 Imaging Science and Biomedical

More information

Expectation Discrete RV - weighted average Continuous RV - use integral to take the weighted average

Expectation Discrete RV - weighted average Continuous RV - use integral to take the weighted average PHP 2510 Expectation, variance, covariance, correlation Expectation Discrete RV - weighted average Continuous RV - use integral to take the weighted average Variance Variance is the average of (X µ) 2

More information

Normal distribution Approximating binomial distribution by normal 2.10 Central Limit Theorem

Normal distribution Approximating binomial distribution by normal 2.10 Central Limit Theorem 1.1.2 Normal distribution 1.1.3 Approimating binomial distribution by normal 2.1 Central Limit Theorem Prof. Tesler Math 283 October 22, 214 Prof. Tesler 1.1.2-3, 2.1 Normal distribution Math 283 / October

More information

FALL 2005 EXAM C SOLUTIONS

FALL 2005 EXAM C SOLUTIONS FALL 005 EXAM C SOLUTIONS Question #1 Key: D S ˆ(300) = 3/10 (there are three observations greater than 300) H ˆ (300) = ln[ S ˆ (300)] = ln(0.3) = 1.0. Question # EX ( λ) = VarX ( λ) = λ µ = v = E( λ)

More information

Joint Probability Distributions and Random Samples (Devore Chapter Five)

Joint Probability Distributions and Random Samples (Devore Chapter Five) Joint Probability Distributions and Random Samples (Devore Chapter Five) 1016-345-01 Probability and Statistics for Engineers Winter 2010-2011 Contents 1 Joint Probability Distributions 1 1.1 Two Discrete

More information

4. Introduction to Statistics

4. Introduction to Statistics Statistics for Engineers 4-1 4. Introduction to Statistics Descriptive Statistics Types of data A variate or random variable is a quantity or attribute whose value may vary from one unit of investigation

More information

Sufficient Statistics and Exponential Family. 1 Statistics and Sufficient Statistics. Math 541: Statistical Theory II. Lecturer: Songfeng Zheng

Sufficient Statistics and Exponential Family. 1 Statistics and Sufficient Statistics. Math 541: Statistical Theory II. Lecturer: Songfeng Zheng Math 541: Statistical Theory II Lecturer: Songfeng Zheng Sufficient Statistics and Exponential Family 1 Statistics and Sufficient Statistics Suppose we have a random sample X 1,, X n taken from a distribution

More information

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4) Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

More information

Review. Lecture 3: Probability Distributions. Poisson Distribution. May 8, 2012 GENOME 560, Spring Su In Lee, CSE & GS

Review. Lecture 3: Probability Distributions. Poisson Distribution. May 8, 2012 GENOME 560, Spring Su In Lee, CSE & GS Lecture 3: Probability Distributions May 8, 202 GENOME 560, Spring 202 Su In Lee, CSE & GS suinlee@uw.edu Review Random variables Discrete: Probability mass function (pmf) Continuous: Probability density

More information

Lecture 16: Expected value, variance, independence and Chebyshev inequality

Lecture 16: Expected value, variance, independence and Chebyshev inequality Lecture 16: Expected value, variance, independence and Chebyshev inequality Expected value, variance, and Chebyshev inequality. If X is a random variable recall that the expected value of X, E[X] is the

More information

2. Describing Data. We consider 1. Graphical methods 2. Numerical methods 1 / 56

2. Describing Data. We consider 1. Graphical methods 2. Numerical methods 1 / 56 2. Describing Data We consider 1. Graphical methods 2. Numerical methods 1 / 56 General Use of Graphical and Numerical Methods Graphical methods can be used to visually and qualitatively present data and

More information

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 31

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 31 MATH 56A SPRING 2008 STOCHASTIC PROCESSES 3.3. Invariant probability distribution. Definition.4. A probability distribution is a function π : S [0, ] from the set of states S to the closed unit interval

More information

Homework n o 7 Math 505a

Homework n o 7 Math 505a Homework n o 7 Math 505a Two players (player A and player B) play a board game. The rule is the following: both player start at position 0. Then, at every round, a dice is thrown: If the result is different

More information

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1]. Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real

More information

Introduction to Probability

Introduction to Probability Motoya Machida January 7, 6 This material is designed to provide a foundation in the mathematics of probability. We begin with the basic concepts of probability, such as events, random variables, independence,

More information

The basics of probability theory. Distribution of variables, some important distributions

The basics of probability theory. Distribution of variables, some important distributions The basics of probability theory. Distribution of variables, some important distributions 1 Random experiment The outcome is not determined uniquely by the considered conditions. For example, tossing a

More information

Random variables, probability distributions, binomial random variable

Random variables, probability distributions, binomial random variable Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that

More information

Lecture 13: Some Important Continuous Probability Distributions (Part 2)

Lecture 13: Some Important Continuous Probability Distributions (Part 2) Lecture 13: Some Important Continuous Probability Distributions (Part 2) Kateřina Staňková Statistics (MAT1003) May 14, 2012 Outline 1 Erlang distribution Formulation Application of Erlang distribution

More information

Review Exam Suppose that number of cars that passes through a certain rural intersection is a Poisson process with an average rate of 3 per day.

Review Exam Suppose that number of cars that passes through a certain rural intersection is a Poisson process with an average rate of 3 per day. Review Exam 2 This is a sample of problems that would be good practice for the exam. This is by no means a guarantee that the problems on the exam will look identical to those on the exam but it should

More information

Lecture 6: Discrete & Continuous Probability and Random Variables

Lecture 6: Discrete & Continuous Probability and Random Variables Lecture 6: Discrete & Continuous Probability and Random Variables D. Alex Hughes Math Camp September 17, 2015 D. Alex Hughes (Math Camp) Lecture 6: Discrete & Continuous Probability and Random September

More information

Probabilities and Random Variables

Probabilities and Random Variables Probabilities and Random Variables This is an elementary overview of the basic concepts of probability theory. 1 The Probability Space The purpose of probability theory is to model random experiments so

More information

Notes on the second moment method, Erdős multiplication tables

Notes on the second moment method, Erdős multiplication tables Notes on the second moment method, Erdős multiplication tables January 25, 20 Erdős multiplication table theorem Suppose we form the N N multiplication table, containing all the N 2 products ab, where

More information

Probability & Statistics Primer Gregory J. Hakim University of Washington 2 January 2009 v2.0

Probability & Statistics Primer Gregory J. Hakim University of Washington 2 January 2009 v2.0 Probability & Statistics Primer Gregory J. Hakim University of Washington 2 January 2009 v2.0 This primer provides an overview of basic concepts and definitions in probability and statistics. We shall

More information

Statistics 100A Homework 6 Solutions

Statistics 100A Homework 6 Solutions Chapter 5 Statistics A Homework Solutions Ryan Rosario 3. The time in hours) required to repair a machine is an exponential distributed random variable with paramter λ. What is Let X denote the time in

More information

Important Probability Distributions OPRE 6301

Important Probability Distributions OPRE 6301 Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names.

More information

Numerical Summarization of Data OPRE 6301

Numerical Summarization of Data OPRE 6301 Numerical Summarization of Data OPRE 6301 Motivation... In the previous session, we used graphical techniques to describe data. For example: While this histogram provides useful insight, other interesting

More information

Lecture 9: Measures of Central Tendency and Sampling Distributions

Lecture 9: Measures of Central Tendency and Sampling Distributions Lecture 9: Measures of Central Tendency and Sampling Distributions Assist. Prof. Dr. Emel YAVUZ DUMAN Introduction to Probability and Statistics İstanbul Kültür University Faculty of Engineering Outline

More information

Lecture Notes 1. Brief Review of Basic Probability

Lecture Notes 1. Brief Review of Basic Probability Probability Review Lecture Notes Brief Review of Basic Probability I assume you know basic probability. Chapters -3 are a review. I will assume you have read and understood Chapters -3. Here is a very

More information

sheng@mail.ncyu.edu.tw 1 Content Introduction Expectation and variance of continuous random variables Normal random variables Exponential random variables Other continuous distributions The distribution

More information

Statistics - Written Examination MEC Students - BOVISA

Statistics - Written Examination MEC Students - BOVISA Statistics - Written Examination MEC Students - BOVISA Prof.ssa A. Guglielmi 26.0.2 All rights reserved. Legal action will be taken against infringement. Reproduction is prohibited without prior consent.

More information

Statistical Intervals. Chapter 7 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

Statistical Intervals. Chapter 7 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage 7 Statistical Intervals Chapter 7 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Confidence Intervals The CLT tells us that as the sample size n increases, the sample mean X is close to

More information

Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X

Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X Week 6 notes : Continuous random variables and their probability densities WEEK 6 page 1 uniform, normal, gamma, exponential,chi-squared distributions, normal approx'n to the binomial Uniform [,1] random

More information

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce

More information

Bivariate Unit Normal. Lecture 19: Joint Distributions. Bivariate Unit Normal - Normalizing Constant. Bivariate Unit Normal, cont.

Bivariate Unit Normal. Lecture 19: Joint Distributions. Bivariate Unit Normal - Normalizing Constant. Bivariate Unit Normal, cont. Lecture 19: Joint Distributions Statistics 14 If X and Y have independent unit normal distributions then their joint distribution f (x, y) is given by f (x, y) φ(x)φ(y) c e 1 (x +y ) Colin Rundel April,

More information

MATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS

MATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS MATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS CONTENTS Sample Space Accumulative Probability Probability Distributions Binomial Distribution Normal Distribution Poisson Distribution

More information

Math 431 An Introduction to Probability. Final Exam Solutions

Math 431 An Introduction to Probability. Final Exam Solutions Math 43 An Introduction to Probability Final Eam Solutions. A continuous random variable X has cdf a for 0, F () = for 0 <

More information

EE 302 Division 1. Homework 5 Solutions.

EE 302 Division 1. Homework 5 Solutions. EE 32 Division. Homework 5 Solutions. Problem. A fair four-sided die (with faces labeled,, 2, 3) is thrown once to determine how many times a fair coin is to be flipped: if N is the number that results

More information

Exercises in Probability Theory Nikolai Chernov

Exercises in Probability Theory Nikolai Chernov Exercises in Probability Theory Nikolai Chernov All exercises (except Chapters 16 and 17) are taken from two books: R. Durrett, The Essentials of Probability, Duxbury Press, 1994 S. Ghahramani, Fundamentals

More information

Prof. Tesler. Math 186 and 283 Winter Prof. Tesler Poisson & Exponential Distributions Math 186 / Winter / 31

Prof. Tesler. Math 186 and 283 Winter Prof. Tesler Poisson & Exponential Distributions Math 186 / Winter / 31 Math 186: 4.2 Poisson Distribution: Counting Crossovers in Meiosis 4.2 Exponential and 4.6 Gamma Distributions: Distance Between Crossovers Math 283: Ewens & Grant 1.3.7, 4.1-4.2 Prof. Tesler Math 186

More information

6. Distribution and Quantile Functions

6. Distribution and Quantile Functions Virtual Laboratories > 2. Distributions > 1 2 3 4 5 6 7 8 6. Distribution and Quantile Functions As usual, our starting point is a random experiment with probability measure P on an underlying sample spac

More information

Fisher Information and Cramér-Rao Bound. 1 Fisher Information. Math 541: Statistical Theory II. Instructor: Songfeng Zheng

Fisher Information and Cramér-Rao Bound. 1 Fisher Information. Math 541: Statistical Theory II. Instructor: Songfeng Zheng Math 54: Statistical Theory II Fisher Information Cramér-Rao Bound Instructor: Songfeng Zheng In the parameter estimation problems, we obtain information about the parameter from a sample of data coming

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

More information

Math 576: Quantitative Risk Management

Math 576: Quantitative Risk Management Math 576: Quantitative Risk Management Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 4 Haijun Li Math 576: Quantitative Risk Management Week 4 1 / 22 Outline 1 Basics

More information

Probability Models for Continuous Random Variables

Probability Models for Continuous Random Variables Density Probability Models for Continuous Random Variables At right you see a histogram of female length of life. (Births and deaths are recorded to the nearest minute. The data are essentially continuous.)

More information

Random Variables and their Distributions

Random Variables and their Distributions Chapter 1 Random Variables and their Distributions 1.1 Random Variables Definition 1.1. A random variable X is a function that assigns one and only one numerical value to each outcome of an experiment,

More information

Answers to some even exercises

Answers to some even exercises Answers to some even eercises Problem - P (X = ) = P (white ball chosen) = /8 and P (X = ) = P (red ball chosen) = 7/8 E(X) = (P (X = ) + P (X = ) = /8 + 7/8 = /8 = /9 E(X ) = ( ) (P (X = ) + P (X = )

More information

6.4 Normal Distribution

6.4 Normal Distribution Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under

More information

Chapter 13. Vehicle Arrival Models : Count Introduction Poisson Distribution

Chapter 13. Vehicle Arrival Models : Count Introduction Poisson Distribution Chapter 13 Vehicle Arrival Models : Count 13.1 Introduction As already noted in the previous chapter that vehicle arrivals can be modelled in two interrelated ways; namely modelling how many vehicle arrive

More information

Statistics GCSE Higher Revision Sheet

Statistics GCSE Higher Revision Sheet Statistics GCSE Higher Revision Sheet This document attempts to sum up the contents of the Higher Tier Statistics GCSE. There is one exam, two hours long. A calculator is allowed. It is worth 75% of the

More information

Senior Secondary Australian Curriculum

Senior Secondary Australian Curriculum Senior Secondary Australian Curriculum Mathematical Methods Glossary Unit 1 Functions and graphs Asymptote A line is an asymptote to a curve if the distance between the line and the curve approaches zero

More information

Finite Markov Chains and Algorithmic Applications. Matematisk statistik, Chalmers tekniska högskola och Göteborgs universitet

Finite Markov Chains and Algorithmic Applications. Matematisk statistik, Chalmers tekniska högskola och Göteborgs universitet Finite Markov Chains and Algorithmic Applications Olle Häggström Matematisk statistik, Chalmers tekniska högskola och Göteborgs universitet PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE

More information

PHP 2510 Central limit theorem, confidence intervals. PHP 2510 October 20,

PHP 2510 Central limit theorem, confidence intervals. PHP 2510 October 20, PHP 2510 Central limit theorem, confidence intervals PHP 2510 October 20, 2008 1 Distribution of the sample mean Case 1: Population distribution is normal For an individual in the population, X i N(µ,

More information

Chapter 3: Discrete Random Variable and Probability Distribution. January 28, 2014

Chapter 3: Discrete Random Variable and Probability Distribution. January 28, 2014 STAT511 Spring 2014 Lecture Notes 1 Chapter 3: Discrete Random Variable and Probability Distribution January 28, 2014 3 Discrete Random Variables Chapter Overview Random Variable (r.v. Definition Discrete

More information

PROBABILITIES AND PROBABILITY DISTRIBUTIONS

PROBABILITIES AND PROBABILITY DISTRIBUTIONS Published in "Random Walks in Biology", 1983, Princeton University Press PROBABILITIES AND PROBABILITY DISTRIBUTIONS Howard C. Berg Table of Contents PROBABILITIES PROBABILITY DISTRIBUTIONS THE BINOMIAL

More information

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8.

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8. Random variables Remark on Notations 1. When X is a number chosen uniformly from a data set, What I call P(X = k) is called Freq[k, X] in the courseware. 2. When X is a random variable, what I call F ()

More information

3 Multiple Discrete Random Variables

3 Multiple Discrete Random Variables 3 Multiple Discrete Random Variables 3.1 Joint densities Suppose we have a probability space (Ω, F,P) and now we have two discrete random variables X and Y on it. They have probability mass functions f

More information

The Method of Least Squares

The Method of Least Squares 33 The Method of Least Squares KEY WORDS confidence interval, critical sum of squares, dependent variable, empirical model, experimental error, independent variable, joint confidence region, least squares,

More information

MT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo. 3 MT426 Notebook 3 3. 3.1 Definitions... 3. 3.2 Joint Discrete Distributions...

MT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo. 3 MT426 Notebook 3 3. 3.1 Definitions... 3. 3.2 Joint Discrete Distributions... MT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo c Copyright 2004-2012 by Jenny A. Baglivo. All Rights Reserved. Contents 3 MT426 Notebook 3 3 3.1 Definitions............................................

More information

Some continuous and discrete distributions

Some continuous and discrete distributions Some continuous and discrete distributions Table of contents I. Continuous distributions and transformation rules. A. Standard uniform distribution U[0, 1]. B. Uniform distribution U[a, b]. C. Standard

More information

University of California, Los Angeles Department of Statistics. Normal distribution

University of California, Los Angeles Department of Statistics. Normal distribution University of California, Los Angeles Department of Statistics Statistics 100A Instructor: Nicolas Christou Normal distribution The normal distribution is the most important distribution. It describes

More information

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?

More information

18 Poisson Process 18 POISSON PROCESS 196. A counting process is a random process N(t), t 0, such that. 1. N(t) is a nonnegative integer for each t;

18 Poisson Process 18 POISSON PROCESS 196. A counting process is a random process N(t), t 0, such that. 1. N(t) is a nonnegative integer for each t; 18 POISSON PROCESS 196 18 Poisson Process A counting process is a random process N(t), t 0, such that 1. N(t) is a nonnegative integer for each t;. N(t) is nondecreasing in t; and 3. N(t) is right-continuous.

More information

1. Consider an untested batch of memory chips that have a known failure rate of 8% (yield = 92%).

1. Consider an untested batch of memory chips that have a known failure rate of 8% (yield = 92%). eview of Introduction to Probability and Statistics Chris Mack, http://www.lithoguru.com/scientist/statistics/review.html omework #2 Solutions 1. Consider an untested batch of memory chips that have a

More information

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,

More information

Lecture.7 Poisson Distributions - properties, Normal Distributions- properties. Theoretical Distributions. Discrete distribution

Lecture.7 Poisson Distributions - properties, Normal Distributions- properties. Theoretical Distributions. Discrete distribution Lecture.7 Poisson Distributions - properties, Normal Distributions- properties Theoretical distributions are Theoretical Distributions 1. Binomial distribution 2. Poisson distribution Discrete distribution

More information

MAS108 Probability I

MAS108 Probability I 1 QUEEN MARY UNIVERSITY OF LONDON 2:30 pm, Thursday 3 May, 2007 Duration: 2 hours MAS108 Probability I Do not start reading the question paper until you are instructed to by the invigilators. The paper

More information

CA200 Quantitative Analysis for Business Decisions. File name: CA200_Section_04A_StatisticsIntroduction

CA200 Quantitative Analysis for Business Decisions. File name: CA200_Section_04A_StatisticsIntroduction CA200 Quantitative Analysis for Business Decisions File name: CA200_Section_04A_StatisticsIntroduction Table of Contents 4. Introduction to Statistics... 1 4.1 Overview... 3 4.2 Discrete or continuous

More information

10 BIVARIATE DISTRIBUTIONS

10 BIVARIATE DISTRIBUTIONS BIVARIATE DISTRIBUTIONS After some discussion of the Normal distribution, consideration is given to handling two continuous random variables. The Normal Distribution The probability density function f(x)

More information

Lecture 5 : The Poisson Distribution. Jonathan Marchini

Lecture 5 : The Poisson Distribution. Jonathan Marchini Lecture 5 : The Poisson Distribution Jonathan Marchini Random events in time and space Many experimental situations occur in which we observe the counts of events within a set unit of time, area, volume,

More information

Continuous Distributions

Continuous Distributions MAT 2379 3X (Summer 2012) Continuous Distributions Up to now we have been working with discrete random variables whose R X is finite or countable. However we will have to allow for variables that can take

More information

Renewal Theory. (iv) For s < t, N(t) N(s) equals the number of events in (s, t].

Renewal Theory. (iv) For s < t, N(t) N(s) equals the number of events in (s, t]. Renewal Theory Def. A stochastic process {N(t), t 0} is said to be a counting process if N(t) represents the total number of events that have occurred up to time t. X 1, X 2,... times between the events

More information

Chapter 6 Random Variables

Chapter 6 Random Variables Chapter 6 Random Variables Day 1: 6.1 Discrete Random Variables Read 340-344 What is a random variable? Give some examples. A numerical variable that describes the outcomes of a chance process. Examples:

More information

Lecture 8. Confidence intervals and the central limit theorem

Lecture 8. Confidence intervals and the central limit theorem Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of

More information