Lecture 8: Continuous random variables, expectation and variance

Size: px
Start display at page:

Download "Lecture 8: Continuous random variables, expectation and variance"

Transcription

1 Lecture 8: Continuous random variables, expectation and variance Lejla Batina Institute for Computing and Information Sciences Digital Security Version: spring 2012 Lejla Batina Version: spring 2012 Wiskunde 1 1 / 26

2 Outline Continuous Random Variables and Probability Distributions Lejla Batina Version: spring 2012 Wiskunde 1 2 / 26

3 This course: still to happen Lectures: Normal lectures this week Next week s schedule: Tuesday, 19-06, 13:45-14:30, last lecture + info about exams Tuesday, 19-06, 14:45-15:30, responsiecollege Thursday, 21-06, 8:45-10:30 (returning last 2 homeworks, see below) Homeworks: Homework 8: as usual, due Monday Homework 9 (bonus): posted on Wednesday 13-06, due Wednesday (12:00!) Examination: tentamen: Wednesday, 27-06, 8:30-10:30, HG hertentamen: Thursday, 09-08, 13:30-15:30, HG Lejla Batina Version: spring 2012 Wiskunde 1 3 / 26

4 Random variable Definition Let S be a sample space and A is an event from S. A random variable is a real function defined on a S, f : S R. A random variable that takes on a finite or a countably infinite number of values is called a discrete random variable, otherwise we have a non-discrete or continuous random variable. Lejla Batina Version: spring 2012 Wiskunde 1 4 / 26

5 Probability distribution Definition (Discrete probability distributions) Let X be a discrete random variable obtaining values x 1, x 2,..., to which we assign probabilities P(X = x k ) = f (x k ), k = 1, 2,.... The probability function (or probability distribution) is given by: P(X = x) = f (x); for x = x k we get f (x k ) and for x x k f (x) = 0. f (x) is a probability function if: 1 f (x) 0. 2 x f (x) = 1. Lejla Batina Version: spring 2012 Wiskunde 1 5 / 26

6 Distribution functions Definition For a random variable X, the (cumulative) distribution function is defined by: F (x) = P(X x) for x R. The distribution function F (x) has the following properties: F (x) F (y) if x y. lim x F (x) = 0 and lim x + F (x) = 1. lim h 0 +F (x + h) = F (x), x, i.e. F (x) is continuous from the right. Lejla Batina Version: spring 2012 Wiskunde 1 6 / 26

7 Distribution functions for discrete random variables Let X be a discrete random variable X, which takes on the values x 1, x 2,..., x n. Then: F (x) = P(X x) = u x f (u) = x i x p i, in more detail 0, < x < x 1, F (x) = f (x 1 ), x 1 x < x 2, f (x 1 ) + f (x 2 ), x 2 x < x 3,... f (x 1 ) + f (x 2 ) f (x n ), x n x <. Lejla Batina Version: spring 2012 Wiskunde 1 7 / 26

8 Example Example A coin is tossed twice, then a sample space is S = {HH, HT, TH, TT }, and X - number of heads. X f (x) 1/4 1/2 1/4 The distribution function F (x): 0, < x < 0, 1/4, 0 x < 1, F (x) = 3/4, 1 x < 2, 1, 2 x <. Lejla Batina Version: spring 2012 Wiskunde 1 8 / 26

9 Distribution functions for non-discrete random variables Definition (Distribution function for continuous random variables) A non-discrete random variable is continuous if its distribution function F can be represented as: F (x) = P(X x) = x f (u)du for < x <, where the function f has the following properties: f (x) 0, f (x)dx = 1. f is called the probability density function of the random variable X. df (x) It is evident that f (x) = dx and F (a) := P(X a) = a f (x)dx. P(x 1 < X x 2 ) = F (x 2 ) F (x 1 ) = x 2 x 1 f (x)dx, so the area under f (x) in the interval (x 1, x 2 ) represents the probability that the random variable X lies in the interval (x 1, x 2 ) as above. Lejla Batina Version: spring 2012 Wiskunde 1 9 / 26

10 Some properties Theorem 1 F (+ ) = 1 and F ( ) = 0 Proof: F (+ ) = P(X + ) = P(S) = 1. 2 F is a non-decreasing function of x so: x 1 < x 2 F (x 1 ) F (x 2 ). 3 If F (x 0 ) = 0 F (x) = 0, x x 0. 4 P(X > x) = 1 F (x) 5 F (x) is continuous from the right so F (x + ) = F (x). 6 P(x 1 < X x 2 ) = F (x 2 ) F (x 1 ). Lejla Batina Version: spring 2012 Wiskunde 1 10 / 26

11 Uniform distribution X is said to be uniformly distributed in (a, b), < a < b <, if its density function is: 1 f (x) = b a, a x b, 0, otherwise The distribution function of X is given by: 0, x < a, x a F (x) = b a, a x b, 1, x > b F (x) = x a f (x)dx = x a Also, f (x)dx = b a 1 b a dx = 1 1 b a b a x x a = x a dx = 1. b a. Lejla Batina Version: spring 2012 Wiskunde 1 11 / 26

12 Normal (Gaussian) distribution It is one of the most commonly used probability distribution for applications. When an experiment is repeated numerous times then the random variable representing the average or mean tends to have a normal distribution as the number of experiments becomes large. This fact is also known as the central limit theorem and it is very important for many statistical techniques. Many physical values follow this distribution e.g. heights, weights. Also often used in social sciences and for grades, errors, etc. Lejla Batina Version: spring 2012 Wiskunde 1 12 / 26

13 Normal distribution:definition Definition We say that X is a normal or Gaussian random variable with parameters µ and σ (and we write X N(µ, σ)) if its density function is given by: f (x) = 1 deviation. (x µ) 2 σ e 2σ 2 2Π The distribution function is then given by: F (x) = P(X x) = 1 σ 2Π, where µ and σ are the mean and standard (v µ)2 e 2σ 2 dv The integral cannot be computed exactly, so we use tables of cumulative probabilities for a special normal distribution to calculate the probabilities. Lejla Batina Version: spring 2012 Wiskunde 1 13 / 26

14 The normal distribution: source Wikipedia The parameter µ determines the location of (the axe of symmetry of) the distribution while σ determines the width of the curve. Lejla Batina Version: spring 2012 Wiskunde 1 14 / 26

15 Standardizing normal distribution N(0, 1) is often called the standard normal distribution. Theorem If X is a normal random variable with mean µ and standard deviation σ, then Z = X µ σ is a standard normal random variable. Lejla Batina Version: spring 2012 Wiskunde 1 15 / 26

16 Mathematical Expectation Definition For a discrete random variable X having the possible values x 1, x 2,..., x n the expectation of X is defined as: E(X ) = x 1 P(X = x 1 ) + x 2 P(X = x 2 ) x n P(X = x n ) = = n j=1 x j P(X = x j ). As a special case, if all the probabilities are equal, we get: E(X ) = x 1+x x n n, which is called the arithmetic mean of x 1, x 2,..., x n. For a continuous random variable X having density function f (x), the expectation of X is defined as: E(X ) = xf (x)dx provided that the integral converges. Lejla Batina Version: spring 2012 Wiskunde 1 16 / 26

17 History 1/2 The problem of points, also called the problem of division of the stakes: Consider a game of chance with two players who have equal chances of winning each round. The players contribute equally to a prize pot, and agree in advance that the first player to have won a certain number of rounds will collect the entire prize. What happens if the game is interrupted by external circumstances before either player has won? How does one then divide the pot fairly? Lejla Batina Version: spring 2012 Wiskunde 1 17 / 26

18 History 2/2 It is expected that the division should depend somehow on the number of rounds won by each player, such that a player who is close to winning gets a larger part of the pot. But the problem is not merely one of calculation; it also includes the explanation on a fair division. Lejla Batina Version: spring 2012 Wiskunde 1 18 / 26

19 Examples Example In a lottery there are 200 prizes of 5 Euros, 20 of 25 Euros, 5 of 100 Euros. Assuming that tickets will be issued and sold, what is a fair price to pay for a ticket. X - ran. var. denoting the amount of money to be won by a ticket X P(X = x) P(X = 5) = = 0.02 P(X = 25) = = P(X = 100) = = E(X ) = = 0.2, so a ticket should cost 20 cents. Lejla Batina Version: spring 2012 Wiskunde 1 19 / 26

20 Example (Cauchy distribution) Let X be a random variable with the following density function: f (x) =, < x <. C x 2 +1 Find the value of C. Find the probability that X 2 lies between 1 3 and 1. The condition is f (x)dx = 1. Then we have: f (x)dx = Cdx x 2 +1 = C lim B dx B B x 2 +1 = = C lim B arctan B B = C[π 2 ( π 2 )] = Cπ C = 1 π. When 1 3 x x 3 3 or 3 3 x 1. Then P( 1 3 x 2 1) = P( 1 x 3 3 ) + P( 3 3 x 1) = = 1 π dx x π dx x 2 +1 = 1 6. Lejla Batina Version: spring 2012 Wiskunde 1 20 / 26

21 Example A continuous random variable X has probability density function given by: { 2e 2x, x > 0, f (x) = Find E(X ). 0, x x0, E(X ) = xf (x)dx = 0 x2e 2x dx = 2 0 xe 2x dx = 2I 0. I = xe 2x dx = [u = x, du = dx, v = e 2x dx = 1 2 e 2x ] = = x 2 e 2x e 2x dx = x 2 e 2x 1 4 e 2x E(X ) = 2[ x 2 e 2x 1 4 e 2x ] 0 = 2[ ] = 1 2. Lejla Batina Version: spring 2012 Wiskunde 1 21 / 26

22 Some properties For X and Y random variables, we have: E(X + Y ) = E(X ) + E(Y ) E(αX ) = αe(x ), α R If X and Y are independent random variables, then: E(XY ) = E(X ) E(Y ). Lejla Batina Version: spring 2012 Wiskunde 1 22 / 26

23 Variance and standard deviation Definition (Variance) Let X be a random variable with mean µ. Then the value: σ 2 = Var(X ) = E[(X µ) 2 ] = n j=1 (x j µ) 2 f (x j ) represents the average square deviation of X around its mean. This value is called the variance of the random variable X. In the special case where all the probabilities are equal, we have: σ 2 = E[(x 1 µ) 2 +(x 2 µ) (x n µ) 2 ] n. For a continuous variable X with a density function f (x): σ 2 = (x µ)2 f (x)dx. The value σ = E[(X µ) 2 ] is called the standard deviation of X. The variance is a measure of the dispersion or scatter of the values (of the random variable considered) around the mean µ. Lejla Batina Version: spring 2012 Wiskunde 1 23 / 26

24 Theorems on Variance Theorem 1 Var(X ) = 0 X = C, C R. 2 Var(αX ) = α 2 Var(X ) 3 Var(X + C) = Var(X ) 4 Var(X ) = E(X 2 ) E(X ) 2 5 If X and Y are independent random variables then: Var(X + Y ) = VarX + VarY Proof of 4. Var(X ) = E[(X µ) 2 ] = E[X 2µX + µ 2 ] = E[X 2 ] 2µE[X ] + µ 2 = E[X 2 ] 2µ 2 + µ 2 = E[X 2 ] E[X ] 2. Lejla Batina Version: spring 2012 Wiskunde 1 24 / 26

25 Expectation and variance of the uniform distribution Example µ = xf (x)dx = b xdx a b a = 1 x 2 b a 2 b a = a+b 2. E(X 2 ) = x 2 f (x)dx = b a 2 +ab+b 2 3. a x 2 dx b a = 1 3(b a) x 3 b a = b3 a 3 3(b a) = Then it follows: Var(X ) = E(X 2 ) E(X ) 2 = a2 +ab+b (a2 + 2ab + b 2 ) = = 1 12 (a b)2. Lejla Batina Version: spring 2012 Wiskunde 1 25 / 26

26 Example Let Z = X µ σ. Find the expectation and variance of Z. E(Z) = E( X µ σ ) = 1 σ [E(X µ)] = 1 σ [E(X ) µ] = [E(X ) E(X )] = 0, since E(X ) = µ. = 1 σ Var(Z) = Var( X µ σ ) = 1 E[(X µ) 2 ] = 1, since σ 2 E[(X µ) 2 ] = σ 2. Lejla Batina Version: spring 2012 Wiskunde 1 26 / 26

Mathematical Expectation

Mathematical Expectation Mathematical Expectation Properties of Mathematical Expectation I The concept of mathematical expectation arose in connection with games of chance. In its simplest form, mathematical expectation is the

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

More information

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1]. Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real

More information

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,

More information

Lecture 6: Discrete & Continuous Probability and Random Variables

Lecture 6: Discrete & Continuous Probability and Random Variables Lecture 6: Discrete & Continuous Probability and Random Variables D. Alex Hughes Math Camp September 17, 2015 D. Alex Hughes (Math Camp) Lecture 6: Discrete & Continuous Probability and Random September

More information

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

More information

5. Continuous Random Variables

5. Continuous Random Variables 5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be

More information

Lecture 8. Confidence intervals and the central limit theorem

Lecture 8. Confidence intervals and the central limit theorem Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of

More information

Introduction to Probability

Introduction to Probability Introduction to Probability EE 179, Lecture 15, Handout #24 Probability theory gives a mathematical characterization for experiments with random outcomes. coin toss life of lightbulb binary data sequence

More information

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8.

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8. Random variables Remark on Notations 1. When X is a number chosen uniformly from a data set, What I call P(X = k) is called Freq[k, X] in the courseware. 2. When X is a random variable, what I call F ()

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

Chapter 5. Random variables

Chapter 5. Random variables Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like

More information

Probability and statistics; Rehearsal for pattern recognition

Probability and statistics; Rehearsal for pattern recognition Probability and statistics; Rehearsal for pattern recognition Václav Hlaváč Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics Center for Machine Perception

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 18. A Brief Introduction to Continuous Probability

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 18. A Brief Introduction to Continuous Probability CS 7 Discrete Mathematics and Probability Theory Fall 29 Satish Rao, David Tse Note 8 A Brief Introduction to Continuous Probability Up to now we have focused exclusively on discrete probability spaces

More information

Lecture 5: Mathematical Expectation

Lecture 5: Mathematical Expectation Lecture 5: Mathematical Expectation Assist. Prof. Dr. Emel YAVUZ DUMAN MCB1007 Introduction to Probability and Statistics İstanbul Kültür University Outline 1 Introduction 2 The Expected Value of a Random

More information

What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference

What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference 0. 1. Introduction and probability review 1.1. What is Statistics? What is Statistics? Lecture 1. Introduction and probability review There are many definitions: I will use A set of principle and procedures

More information

Random Variables. Chapter 2. Random Variables 1

Random Variables. Chapter 2. Random Variables 1 Random Variables Chapter 2 Random Variables 1 Roulette and Random Variables A Roulette wheel has 38 pockets. 18 of them are red and 18 are black; these are numbered from 1 to 36. The two remaining pockets

More information

Section 5.1 Continuous Random Variables: Introduction

Section 5.1 Continuous Random Variables: Introduction Section 5. Continuous Random Variables: Introduction Not all random variables are discrete. For example:. Waiting times for anything (train, arrival of customer, production of mrna molecule from gene,

More information

An Introduction to Basic Statistics and Probability

An Introduction to Basic Statistics and Probability An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random

More information

4.1 4.2 Probability Distribution for Discrete Random Variables

4.1 4.2 Probability Distribution for Discrete Random Variables 4.1 4.2 Probability Distribution for Discrete Random Variables Key concepts: discrete random variable, probability distribution, expected value, variance, and standard deviation of a discrete random variable.

More information

Lecture 3: Derivatives and extremes of functions

Lecture 3: Derivatives and extremes of functions Lecture 3: Derivatives and extremes of functions Lejla Batina Institute for Computing and Information Sciences Digital Security Version: spring 2011 Lejla Batina Version: spring 2011 Wiskunde 1 1 / 16

More information

MULTIVARIATE PROBABILITY DISTRIBUTIONS

MULTIVARIATE PROBABILITY DISTRIBUTIONS MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined

More information

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.

More information

Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X

Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X Week 6 notes : Continuous random variables and their probability densities WEEK 6 page 1 uniform, normal, gamma, exponential,chi-squared distributions, normal approx'n to the binomial Uniform [,1] random

More information

Data Modeling & Analysis Techniques. Probability & Statistics. Manfred Huber 2011 1

Data Modeling & Analysis Techniques. Probability & Statistics. Manfred Huber 2011 1 Data Modeling & Analysis Techniques Probability & Statistics Manfred Huber 2011 1 Probability and Statistics Probability and statistics are often used interchangeably but are different, related fields

More information

ST 371 (IV): Discrete Random Variables

ST 371 (IV): Discrete Random Variables ST 371 (IV): Discrete Random Variables 1 Random Variables A random variable (rv) is a function that is defined on the sample space of the experiment and that assigns a numerical variable to each possible

More information

Stat 704 Data Analysis I Probability Review

Stat 704 Data Analysis I Probability Review 1 / 30 Stat 704 Data Analysis I Probability Review Timothy Hanson Department of Statistics, University of South Carolina Course information 2 / 30 Logistics: Tuesday/Thursday 11:40am to 12:55pm in LeConte

More information

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?

More information

6.041/6.431 Spring 2008 Quiz 2 Wednesday, April 16, 7:30-9:30 PM. SOLUTIONS

6.041/6.431 Spring 2008 Quiz 2 Wednesday, April 16, 7:30-9:30 PM. SOLUTIONS 6.4/6.43 Spring 28 Quiz 2 Wednesday, April 6, 7:3-9:3 PM. SOLUTIONS Name: Recitation Instructor: TA: 6.4/6.43: Question Part Score Out of 3 all 36 2 a 4 b 5 c 5 d 8 e 5 f 6 3 a 4 b 6 c 6 d 6 e 6 Total

More information

Chapter 4 - Lecture 1 Probability Density Functions and Cumul. Distribution Functions

Chapter 4 - Lecture 1 Probability Density Functions and Cumul. Distribution Functions Chapter 4 - Lecture 1 Probability Density Functions and Cumulative Distribution Functions October 21st, 2009 Review Probability distribution function Useful results Relationship between the pdf and the

More information

Joint Exam 1/P Sample Exam 1

Joint Exam 1/P Sample Exam 1 Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question

More information

THE CENTRAL LIMIT THEOREM TORONTO

THE CENTRAL LIMIT THEOREM TORONTO THE CENTRAL LIMIT THEOREM DANIEL RÜDT UNIVERSITY OF TORONTO MARCH, 2010 Contents 1 Introduction 1 2 Mathematical Background 3 3 The Central Limit Theorem 4 4 Examples 4 4.1 Roulette......................................

More information

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is. Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,

More information

MAS108 Probability I

MAS108 Probability I 1 QUEEN MARY UNIVERSITY OF LONDON 2:30 pm, Thursday 3 May, 2007 Duration: 2 hours MAS108 Probability I Do not start reading the question paper until you are instructed to by the invigilators. The paper

More information

MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.

MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values. MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

More information

Normal distribution. ) 2 /2σ. 2π σ

Normal distribution. ) 2 /2σ. 2π σ Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a

More information

Example. A casino offers the following bets (the fairest bets in the casino!) 1 You get $0 (i.e., you can walk away)

Example. A casino offers the following bets (the fairest bets in the casino!) 1 You get $0 (i.e., you can walk away) : Three bets Math 45 Introduction to Probability Lecture 5 Kenneth Harris aharri@umich.edu Department of Mathematics University of Michigan February, 009. A casino offers the following bets (the fairest

More information

Math 425 (Fall 08) Solutions Midterm 2 November 6, 2008

Math 425 (Fall 08) Solutions Midterm 2 November 6, 2008 Math 425 (Fall 8) Solutions Midterm 2 November 6, 28 (5 pts) Compute E[X] and Var[X] for i) X a random variable that takes the values, 2, 3 with probabilities.2,.5,.3; ii) X a random variable with the

More information

Lecture Notes 1. Brief Review of Basic Probability

Lecture Notes 1. Brief Review of Basic Probability Probability Review Lecture Notes Brief Review of Basic Probability I assume you know basic probability. Chapters -3 are a review. I will assume you have read and understood Chapters -3. Here is a very

More information

Math 151. Rumbos Spring 2014 1. Solutions to Assignment #22

Math 151. Rumbos Spring 2014 1. Solutions to Assignment #22 Math 151. Rumbos Spring 2014 1 Solutions to Assignment #22 1. An experiment consists of rolling a die 81 times and computing the average of the numbers on the top face of the die. Estimate the probability

More information

Math 461 Fall 2006 Test 2 Solutions

Math 461 Fall 2006 Test 2 Solutions Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two

More information

Solution. Solution. (a) Sum of probabilities = 1 (Verify) (b) (see graph) Chapter 4 (Sections 4.3-4.4) Homework Solutions. Section 4.

Solution. Solution. (a) Sum of probabilities = 1 (Verify) (b) (see graph) Chapter 4 (Sections 4.3-4.4) Homework Solutions. Section 4. Math 115 N. Psomas Chapter 4 (Sections 4.3-4.4) Homework s Section 4.3 4.53 Discrete or continuous. In each of the following situations decide if the random variable is discrete or continuous and give

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 13. Random Variables: Distribution and Expectation

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 13. Random Variables: Distribution and Expectation CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 3 Random Variables: Distribution and Expectation Random Variables Question: The homeworks of 20 students are collected

More information

The Normal Distribution. Alan T. Arnholt Department of Mathematical Sciences Appalachian State University

The Normal Distribution. Alan T. Arnholt Department of Mathematical Sciences Appalachian State University The Normal Distribution Alan T. Arnholt Department of Mathematical Sciences Appalachian State University arnholt@math.appstate.edu Spring 2006 R Notes 1 Copyright c 2006 Alan T. Arnholt 2 Continuous Random

More information

4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions 4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

More information

ECE302 Spring 2006 HW5 Solutions February 21, 2006 1

ECE302 Spring 2006 HW5 Solutions February 21, 2006 1 ECE3 Spring 6 HW5 Solutions February 1, 6 1 Solutions to HW5 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in italics

More information

University of California, Los Angeles Department of Statistics. Random variables

University of California, Los Angeles Department of Statistics. Random variables University of California, Los Angeles Department of Statistics Statistics Instructor: Nicolas Christou Random variables Discrete random variables. Continuous random variables. Discrete random variables.

More information

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny and a nickel are flipped. You win $ if either

More information

Sums of Independent Random Variables

Sums of Independent Random Variables Chapter 7 Sums of Independent Random Variables 7.1 Sums of Discrete Random Variables In this chapter we turn to the important question of determining the distribution of a sum of independent random variables

More information

CA200 Quantitative Analysis for Business Decisions. File name: CA200_Section_04A_StatisticsIntroduction

CA200 Quantitative Analysis for Business Decisions. File name: CA200_Section_04A_StatisticsIntroduction CA200 Quantitative Analysis for Business Decisions File name: CA200_Section_04A_StatisticsIntroduction Table of Contents 4. Introduction to Statistics... 1 4.1 Overview... 3 4.2 Discrete or continuous

More information

PSTAT 120B Probability and Statistics

PSTAT 120B Probability and Statistics - Week University of California, Santa Barbara April 10, 013 Discussion section for 10B Information about TA: Fang-I CHU Office: South Hall 5431 T Office hour: TBA email: chu@pstat.ucsb.edu Slides will

More information

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 5 Solutions

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 5 Solutions Math 370/408, Spring 2008 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 5 Solutions About this problem set: These are problems from Course 1/P actuarial exams that I have collected over the

More information

Lecture 7: Continuous Random Variables

Lecture 7: Continuous Random Variables Lecture 7: Continuous Random Variables 21 September 2005 1 Our First Continuous Random Variable The back of the lecture hall is roughly 10 meters across. Suppose it were exactly 10 meters, and consider

More information

Statistics 100A Homework 8 Solutions

Statistics 100A Homework 8 Solutions Part : Chapter 7 Statistics A Homework 8 Solutions Ryan Rosario. A player throws a fair die and simultaneously flips a fair coin. If the coin lands heads, then she wins twice, and if tails, the one-half

More information

Ch. 13.2: Mathematical Expectation

Ch. 13.2: Mathematical Expectation Ch. 13.2: Mathematical Expectation Random Variables Very often, we are interested in sample spaces in which the outcomes are distinct real numbers. For example, in the experiment of rolling two dice, we

More information

Math 431 An Introduction to Probability. Final Exam Solutions

Math 431 An Introduction to Probability. Final Exam Solutions Math 43 An Introduction to Probability Final Eam Solutions. A continuous random variable X has cdf a for 0, F () = for 0 <

More information

Statistics 100A Homework 7 Solutions

Statistics 100A Homework 7 Solutions Chapter 6 Statistics A Homework 7 Solutions Ryan Rosario. A television store owner figures that 45 percent of the customers entering his store will purchase an ordinary television set, 5 percent will purchase

More information

AMS 5 CHANCE VARIABILITY

AMS 5 CHANCE VARIABILITY AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and

More information

E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

More information

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers)

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) B Bar graph a diagram representing the frequency distribution for nominal or discrete data. It consists of a sequence

More information

Chapter 5. Discrete Probability Distributions

Chapter 5. Discrete Probability Distributions Chapter 5. Discrete Probability Distributions Chapter Problem: Did Mendel s result from plant hybridization experiments contradicts his theory? 1. Mendel s theory says that when there are two inheritable

More information

Elementary Statistics and Inference. Elementary Statistics and Inference. 17 Expected Value and Standard Error. 22S:025 or 7P:025.

Elementary Statistics and Inference. Elementary Statistics and Inference. 17 Expected Value and Standard Error. 22S:025 or 7P:025. Elementary Statistics and Inference S:05 or 7P:05 Lecture Elementary Statistics and Inference S:05 or 7P:05 Chapter 7 A. The Expected Value In a chance process (probability experiment) the outcomes of

More information

Decision Making Under Uncertainty. Professor Peter Cramton Economics 300

Decision Making Under Uncertainty. Professor Peter Cramton Economics 300 Decision Making Under Uncertainty Professor Peter Cramton Economics 300 Uncertainty Consumers and firms are usually uncertain about the payoffs from their choices Example 1: A farmer chooses to cultivate

More information

Lecture 10: Depicting Sampling Distributions of a Sample Proportion

Lecture 10: Depicting Sampling Distributions of a Sample Proportion Lecture 10: Depicting Sampling Distributions of a Sample Proportion Chapter 5: Probability and Sampling Distributions 2/10/12 Lecture 10 1 Sample Proportion 1 is assigned to population members having a

More information

Probability Theory. Florian Herzog. A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T..

Probability Theory. Florian Herzog. A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T.. Probability Theory A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T.. Florian Herzog 2013 Probability space Probability space A probability space W is a unique triple W = {Ω, F,

More information

Unit 4 The Bernoulli and Binomial Distributions

Unit 4 The Bernoulli and Binomial Distributions PubHlth 540 4. Bernoulli and Binomial Page 1 of 19 Unit 4 The Bernoulli and Binomial Distributions Topic 1. Review What is a Discrete Probability Distribution... 2. Statistical Expectation.. 3. The Population

More information

Lecture 13: Martingales

Lecture 13: Martingales Lecture 13: Martingales 1. Definition of a Martingale 1.1 Filtrations 1.2 Definition of a martingale and its basic properties 1.3 Sums of independent random variables and related models 1.4 Products of

More information

Lesson 20. Probability and Cumulative Distribution Functions

Lesson 20. Probability and Cumulative Distribution Functions Lesson 20 Probability and Cumulative Distribution Functions Recall If p(x) is a density function for some characteristic of a population, then Recall If p(x) is a density function for some characteristic

More information

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4) Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

More information

Statistics 100A Homework 3 Solutions

Statistics 100A Homework 3 Solutions Chapter Statistics 00A Homework Solutions Ryan Rosario. Two balls are chosen randomly from an urn containing 8 white, black, and orange balls. Suppose that we win $ for each black ball selected and we

More information

Probability & Probability Distributions

Probability & Probability Distributions Probability & Probability Distributions Carolyn J. Anderson EdPsych 580 Fall 2005 Probability & Probability Distributions p. 1/61 Probability & Probability Distributions Elementary Probability Theory Definitions

More information

MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables

MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides,

More information

Lecture 3: Continuous distributions, expected value & mean, variance, the normal distribution

Lecture 3: Continuous distributions, expected value & mean, variance, the normal distribution Lecture 3: Continuous distributions, expected value & mean, variance, the normal distribution 8 October 2007 In this lecture we ll learn the following: 1. how continuous probability distributions differ

More information

Math/Stats 342: Solutions to Homework

Math/Stats 342: Solutions to Homework Math/Stats 342: Solutions to Homework Steven Miller (sjm1@williams.edu) November 17, 2011 Abstract Below are solutions / sketches of solutions to the homework problems from Math/Stats 342: Probability

More information

ECE302 Spring 2006 HW3 Solutions February 2, 2006 1

ECE302 Spring 2006 HW3 Solutions February 2, 2006 1 ECE302 Spring 2006 HW3 Solutions February 2, 2006 1 Solutions to HW3 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in

More information

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i ) Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (1903-1987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll

More information

ISyE 6761 Fall 2012 Homework #2 Solutions

ISyE 6761 Fall 2012 Homework #2 Solutions 1 1. The joint p.m.f. of X and Y is (a) Find E[X Y ] for 1, 2, 3. (b) Find E[E[X Y ]]. (c) Are X and Y independent? ISE 6761 Fall 212 Homework #2 Solutions f(x, ) x 1 x 2 x 3 1 1/9 1/3 1/9 2 1/9 1/18 3

More information

Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Practice Test, 1/28/2008 (with solutions)

Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Practice Test, 1/28/2008 (with solutions) Math 370, Actuarial Problemsolving Spring 008 A.J. Hildebrand Practice Test, 1/8/008 (with solutions) About this test. This is a practice test made up of a random collection of 0 problems from past Course

More information

Law of Large Numbers. Alexandra Barbato and Craig O Connell. Honors 391A Mathematical Gems Jenia Tevelev

Law of Large Numbers. Alexandra Barbato and Craig O Connell. Honors 391A Mathematical Gems Jenia Tevelev Law of Large Numbers Alexandra Barbato and Craig O Connell Honors 391A Mathematical Gems Jenia Tevelev Jacob Bernoulli Life of Jacob Bernoulli Born into a family of important citizens in Basel, Switzerland

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 5. Life annuities. Extract from: Arcones Manual for the SOA Exam MLC. Spring 2010 Edition. available at http://www.actexmadriver.com/ 1/114 Whole life annuity A whole life annuity is a series of

More information

RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. DISCRETE RANDOM VARIABLES.. Definition of a Discrete Random Variable. A random variable X is said to be discrete if it can assume only a finite or countable

More information

Example: Find the expected value of the random variable X. X 2 4 6 7 P(X) 0.3 0.2 0.1 0.4

Example: Find the expected value of the random variable X. X 2 4 6 7 P(X) 0.3 0.2 0.1 0.4 MATH 110 Test Three Outline of Test Material EXPECTED VALUE (8.5) Super easy ones (when the PDF is already given to you as a table and all you need to do is multiply down the columns and add across) Example:

More information

Important Probability Distributions OPRE 6301

Important Probability Distributions OPRE 6301 Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names.

More information

Recursive Estimation

Recursive Estimation Recursive Estimation Raffaello D Andrea Spring 04 Problem Set : Bayes Theorem and Bayesian Tracking Last updated: March 8, 05 Notes: Notation: Unlessotherwisenoted,x, y,andz denoterandomvariables, f x

More information

Statistics 100A Homework 4 Solutions

Statistics 100A Homework 4 Solutions Problem 1 For a discrete random variable X, Statistics 100A Homework 4 Solutions Ryan Rosario Note that all of the problems below as you to prove the statement. We are proving the properties of epectation

More information

A Tutorial on Probability Theory

A Tutorial on Probability Theory Paola Sebastiani Department of Mathematics and Statistics University of Massachusetts at Amherst Corresponding Author: Paola Sebastiani. Department of Mathematics and Statistics, University of Massachusetts,

More information

2. Discrete random variables

2. Discrete random variables 2. Discrete random variables Statistics and probability: 2-1 If the chance outcome of the experiment is a number, it is called a random variable. Discrete random variable: the possible outcomes can be

More information

VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA

VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA Csilla Csendes University of Miskolc, Hungary Department of Applied Mathematics ICAM 2010 Probability density functions A random variable X has density

More information

( ) is proportional to ( 10 + x)!2. Calculate the

( ) is proportional to ( 10 + x)!2. Calculate the PRACTICE EXAMINATION NUMBER 6. An insurance company eamines its pool of auto insurance customers and gathers the following information: i) All customers insure at least one car. ii) 64 of the customers

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

More information

4 Sums of Random Variables

4 Sums of Random Variables Sums of a Random Variables 47 4 Sums of Random Variables Many of the variables dealt with in physics can be expressed as a sum of other variables; often the components of the sum are statistically independent.

More information

Mathematics (Project Maths)

Mathematics (Project Maths) 2010. M128 Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination Mathematics (Project Maths) Paper 2 Ordinary Level Monday 14 June Morning 9:30 12:00 300 marks Examination

More information

Feb 7 Homework Solutions Math 151, Winter 2012. Chapter 4 Problems (pages 172-179)

Feb 7 Homework Solutions Math 151, Winter 2012. Chapter 4 Problems (pages 172-179) Feb 7 Homework Solutions Math 151, Winter 2012 Chapter Problems (pages 172-179) Problem 3 Three dice are rolled. By assuming that each of the 6 3 216 possible outcomes is equally likely, find the probabilities

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 5. Life annuities Extract from: Arcones Fall 2009 Edition, available at http://www.actexmadriver.com/ 1/60 (#24, Exam M, Fall 2005) For a special increasing whole life annuity-due on (40), you

More information

Chapter 7 Probability

Chapter 7 Probability 7-8: Probability and Statistics Mat Dr. Firoz Chapter 7 Probability Definition: Probability is a real valued set function P that assigns to each event A in the sample space S a number A), called the probability

More information

M2S1 Lecture Notes. G. A. Young http://www2.imperial.ac.uk/ ayoung

M2S1 Lecture Notes. G. A. Young http://www2.imperial.ac.uk/ ayoung M2S1 Lecture Notes G. A. Young http://www2.imperial.ac.uk/ ayoung September 2011 ii Contents 1 DEFINITIONS, TERMINOLOGY, NOTATION 1 1.1 EVENTS AND THE SAMPLE SPACE......................... 1 1.1.1 OPERATIONS

More information

Pr(X = x) = f(x) = λe λx

Pr(X = x) = f(x) = λe λx Old Business - variance/std. dev. of binomial distribution - mid-term (day, policies) - class strategies (problems, etc.) - exponential distributions New Business - Central Limit Theorem, standard error

More information

16. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION

16. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION 6. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION It is sometimes difficult to directly compute probabilities for a binomial (n, p) random variable, X. We need a different table for each value of

More information

8. THE NORMAL DISTRIBUTION

8. THE NORMAL DISTRIBUTION 8. THE NORMAL DISTRIBUTION The normal distribution with mean μ and variance σ 2 has the following density function: The normal distribution is sometimes called a Gaussian Distribution, after its inventor,

More information

Statistics and Random Variables. Math 425 Introduction to Probability Lecture 14. Finite valued Random Variables. Expectation defined

Statistics and Random Variables. Math 425 Introduction to Probability Lecture 14. Finite valued Random Variables. Expectation defined Expectation Statistics and Random Variables Math 425 Introduction to Probability Lecture 4 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan February 9, 2009 When a large

More information