Weather Data for Building Energy Analysis

Size: px
Start display at page:

Download "Weather Data for Building Energy Analysis"

Transcription

1 AUTODESK GREEN BUILDING STUDIO WHITE PAPER Weather Data for Building Energy Analysis By Stuart Malkin, Meteorologist Software Development Manager Autodesk, Inc. Overview Autodesk Green Building Studio provides a complete year of weather data for design and building energy analysis. The data set is in a user friendly and binary DOE2 ready format and includes meteorological variables of dry bulb temperature, dew point temperature, relative humidity, wind speed and wind direction, direct normal radiation, global and diffuse horizontal radiation, and total sky cover, among others. With 55,000+ locations at a spatial resolution of approximately 20 km, a GBS virtual weather station is no further than 14 km (8.8 miles) from any given project within the contiguous 48 states of the United States. This whitepaper discusses the benefits of using Green Building Studio (GBS) weather data as well as information about the models used to generate the data set, and provides a comparison of the GBS data set to actual observations at several locations within the United States. Finally, the whitepaper provides guidance in choosing a weather station for energy analysis. Benefits Currently, using the Typical Meteorological Year (TMY2) weather data set provides only 231 locations. Almost all TMY2 locations are situated at large airports and may not represent the weather at your building. For example, the nearest TMY2 weather station is 23 miles from the city center of Washington, DC, while a GBS virtual weather station is within 4 miles of the center. The map of California and Nevada below shows the density of the weather data locations. The yellow points represent Climate Server locations (~2000 in view), while the red dots represent TMY2 locations (17 in view). 1

2 Copyright and (p) Microsoft Corporation and/or its suppliers. All rights reserved Autodesk, Inc. All rights reserved. The Green Building Studio web service automatically generates several weather graphs and reports, saving you time and expense in preparing for the climate study portion of your design process. Most of these graphs and reports are customizable too, providing you with site specific results instantly. The graphs below showing an annual wind rose and ambient temperature are just two examples of the many custom graphs available. 2

3 Architects and building engineers need to increasingly pay attention to designing for changing climatic conditions. Using older data does not capture changing conditions and puts designers at risk. The graph below shows how cooling degree days (CDD) have been increasing in Salt Lake City (SLC) over time. The red bars represent anomalies from normal for the years , while the blue line denotes the 10 year running mean anomaly. The 10 year running average has increased approximately 20% above normal. Using older data sets such as TMY2 does not capture changing conditions such as what is occurring in Salt Lake City and throughout the world. Normal CDD ( ): 1084 Data provided by National Weather Forecast Office, Salt Lake City, UT About Autodesk Green Building Studio Weather Data The GBS weather data includes 55,000 + virtual weather station, 231 TMY2 stations, and 16 California Climate Zone (CCZ) stations. GBS virtual station data was derived using two weather models the Rapid Update Cycle (RUC) and Mesoscale Meteorological Model version 5 (MM5). RUC current conditions (analysis fields) were used for the bulk of hourly data in Because RUC is an operational model where no effort was made to make up for model failure or to correct errors, MM5 was used to fill in the four gaps that occurred in Rapid Update Cycle (RUC) The Rapid Update Cycle (RUC) model is a NOAA/NCEP operational weather prediction system comprised primarily of a numerical forecast model and an analysis and assimilation system to initialize the model. The model was developed to serve users needing frequently updated short-range weather forecasts, including those in the US aviation community and US severe weather forecasting community. RUC runs at the highest frequency of any forecast model at NCEP, assimilating recent observation to provide hourly updates of current conditions (analyses) and short-range forecasts. The GBS virtual station data set uses the current condition update at the surface for each hour. The current condition field is generated using an optimal interpolation (OI) analysis to assimilate observations and satellite data. The current condition update is an analysis field using the previous 1 hour forecast and current observations to correct the forecast. This method provides an hourly update of conditions very close to actual observations and 3

4 provides a numerical stable field for the model to provide rapidly updated forecasts. Observations come from a variety of sources. These sources of observations and data include surface reporting stations and buoys, commercial aircraft, wind profilers, rawinsondes, dropwinsondes, Radio Acoustic Sounding System (RASS), Velocity-Azimuth Display (VAD) winds from Doppler radar, GOES, GPS, and SSM/I satellite data. OI spatially interpolates meteorological observations to generate an analysis field. OI includes a quality control check on the residuals between observations and the analysis field. At a given observation point, if the estimated and measured observation differ by more than a prescribed amount, further checks determine whether the observation or one if its neighbors is erroneous. If the observation is determined to be erroneous, it is dropped from the analysis (Benjamin et al, 2004). For more information on RUC data assimilation, see For more information on RUC visit the RUC home page at Mesoscale Model version 5 (MM5) In 2004, there were four periods of missing RUC data. Eight hours were missing on February 28, four hours were missing on March 8, nine hours were missing on July 3, and 5 hours were missing on July 14. MM5 was used to fill these gaps. MM5 is a limited-area, nonhydrostatic, terrain-following sigma-coordinate model designed to simulate or predict mesoscale atmospheric circulation. It has been developed at Penn State and NCAR as a community mesoscale model and is continuously being improved by contributions from users at several universities and government laboratories. A nested domain with a grid spacing of 20 km provided a similar domain as the RUC model. Unlike RUC analysis, MM5 simulation output provides a true forecast. In order to match the output variables from MM5 as close as possible to those from RUC, a Land Surface Model (LSM) soil model had to be used. Please see for more information about MM5. For a detailed description of the MM5 model, see (Grell et al, 1994). Comparison to Observations Hourly comparisons of Dry Bulb Temperature between GBS virtual stations and observations for various locations within the United States are shown below. Observation stations were chosen based on their availability of data, data completeness, and geographic location compared to GBS virtual stations. Figure 1 shows the observation locations chosen for this discussion mapped with the RUC domain and terrain elevation. Approximate location of observation stations in discussion are shown as the violet dots. 4

5 Figure 1 Locations of observations in discussion plotted with the RUC Domain and terrain elevation of the 20-km Contour elevation is 200 m (adapted from Benjamin et al, 2004). Sacramento Executive Airport, CA (WBAN 23232) and Stillwater, Oklahoma (WBAN and 53927) were chosen as inland observation stations away from the influence of large water bodies. The Sacramento site at an elevation of 17 feet is approximately 2.3 km (1.4 miles) from the nearest GBS virtual station which has a similar elevation of 39 feet. In comparison, the Stillwater sites were 6.8 miles (10.9 km) or more from the nearest GBS virtual station as shown in figure 2. The distance between the Stillwater observations and the nearest virtual GBS station represents a worst case scenario in terms of distance between a project location and a GBS virtual station. A GBS virtual station will be no further than approximately 14 km from any project location in the contiguous United States. The elevations of the Stillwater stations are similar to the nearest GBS virtual stations (890 feet for Stillwater and 919, 978, 932, and 1001 feet respectively GBS virtual stations labeled GBS_04R20_156091, GBS_04R20_155091, GBS_04R20_156092, GBS_04R20_ in Figure 2). 5

6 Figure 2 Shows location of two colocated surface observations near Stillwater, OK (marked as the green building) and the location of four GBS virtual stations (GBS_04R20_15609, GBS_04R20_155091, GBS_04R20_155092, GBS_04R20_156092) Sacramento dry bulb hourly temperature for 2004 shows nearly linear fit match in figure 3 (slope of 1.03 and an intercept of with a total of 8544 paired samples). The R-squared value of.96 indicates that the GBS virtual station dry bulb data can explain changes in the observations 96% of the time. Missing hours not used in the regression were due to missing observational data (216 hours). 6

7 Figure 3 Linear Regression comparing dry bulb temperature observations at Sacramento Executive Airport to that of the closest GBS virtual station (GBS_04R20_049116). The regression result at Stillwater, Oklahoma was similar to the Sacramento case. Three analyses were performed to investigate if there was a large influence on the distance of a GBS virtual station tracking the observational data. The first analysis used the average between the two co-located observation stations in Stillwater and compared that to the closest GBS virtual station (labeled GBS_04R20_ in figure 2). The second analysis compared the average of the two co-located observation stations and the four GBS virtual stations using an inverse distance weighting scheme. Finally, a comparison was made of the two co-located observation stations and the average of all four GBS virtual stations, giving them equal weight. Because all three analyses produced almost identical results to each other, only the regression of the observations against the closest station is shown below in Figure 4. With an R-squared value of.97, the GBS virtual station dry bulb data explains changes in the observations 97% of the time for the entire year (no missing observations). 7

8 Figure 4 Linear regression comparing dry bulb temperature observations at Stillwater, OK (two co-located stations) to that of the closest GBS virtual station (GBS_04R20_156091). As an example of how the GBS virtual station tracks dry bulb observation at Stillwater, which is 6.9 miles (10.9 km) away, figure 5 shows an hourly time series of both trends for a ten day period (April 8-18, 2004). This period during the spring was chosen because of great variability in the temperature (temperature ranged from approximately 32 F 86 F). Large temperature swings are typical of a large diurnal cycle and frontal passages during this time of year in the area. Qualitatively, the GBS virtual station data and the Stillwater data match well on an hour-by-hour basis. There were two short periods where there was a noticeable difference (between hour 6 and 12 on April 11 and hours 8 through 6 on April 13-14). However, the two sets of data follow the same trend and do not differ by more than 7 F at any given hour during these brief events. 8

9 Figure 5 Time series plot of dry bulb temperature for Stillwater, OK (purple diamonds) and the closest GBS virtual station (green triangle) for April 8-10, Oakland Metropolitan Airport (WBAN 23230), and JFK, International Airport (WBAN 94789) were chosen because they represent sites whose climate is moderated by the Pacific and Atlantic, respectively. The GBS virtual station for Oakland is approximately 2 miles from the observation at the airport. While Oakland airport is near sea level, the GBS virtual station is at an average elevation of 502 feet. Because RUC uses a slope envelope topography that has a resolution of approximately 20 km, the elevation at a particular point represents an average topographical height and slope within a 20 km x 20 km box (Benjamin et al, 2004). Thus the elevation of 502 feet is an averaged elevation within the grid. The GBS virtual station for JFK International is approximately 4 miles northwest of the airport observation station. The elevations of JFK International and the closest GBS virtual station are 16 feet and 39 feet, respectively. The regression of observations compared to GBS virtual stations are shown in Figure 6 for both Oakland, Metropolitan and JFK International. 9

10 Figure 6 (a) Linear regression comparing dry bulb temperature observations at Oakland Metropolitan Airport, CA to that of the closest GBS virtual station (GBS_04R20_045112). The data from Oakland Metropolitan were reported to the nearest degree Celsius, which gives the data a columnar appearance. (b) Linear regression comparing dry bulb temperature observations at JFK International Airport, NY, to that of the closest GBS virtual station (GBS_04R20_256124). The regression at Oakland (figure 6(a)) has an R-squared value of.90 indicating the GBS virtual station dry bulb data explains changes in the observations 90% of the time for the entire year. While this value is not as strong as the nearly perfectly linear fit of Sacramento, Stillwater, and JFK International, it is nonetheless a good linear fit of the data to actual observations. Possible reasons for a less than linear fit may be related to the terrain and land use being resolved to 20 km, the density of observations affecting the RUC analyses fields, and the reporting of dry bulb temperature to the nearest degree Celsius. Oakland Metropolitan Airport sits on the eastern edge of the San Francisco Bay and has complex terrain. The elevation ranges from sea level to over 1400 ft within 5 miles to the east. Thus the elevation, shape of the slopes, and the boundary between the bay and land may have effect the RUC analysis field. In addition, the network of observations on the west coast near the Pacific is generally poorer than inland areas. While RUC ingests observations coming from ships, airplanes, and other observations as the present themselves in real-time, the number of surface stations is limited. Thus the RUC analysis field may also be affected by less dense set of observations near the coast. Finally, the fit may be affected the by the fact that Oakland Metropolitan dry bulb temperature is reported to the nearest degree Celsius, which is apparent by the columnar appearance of the data in figure 6(a). The regression at JFK International (figure 6(b)) has a slightly better linear fit than the other inland stations mentioned above (R-squared value of.98). Thus the GBS virtual station represents actual dry bulb temperature observations very well over the entire year. Which Weather Station Do I Choose? How does one decide on which weather station to choose for energy analysis? While there is no one-size fits all answer for every situation, there are several guidelines one should consider when making this decision. The most important factor to consider is distance. The closer a weather station is to a project location, the more representative the data will be. This is especially important in an area that 10

11 may have complex terrain or microclimates. The GBS weather data set offers a complete year of weather data for energy analysis at an approximate 20 km resolution. Representative data will be within 14 km or less of a project location. As shown in figure 7, the GBS web service maps and reports the distance of closest set of GBS virtual stations, TMY2 Stations, and California Climate Zone stations to help you decide. Another factor to consider is the elevation of your project. The project elevation and the weather station elevation should be similar. It would inappropriate to choose a weather station that sits on top of a mountain peak or even on the other side of a mountain if the project location sits in a valley. In addition, to mapping and reporting distances, the GBS Web Service enables you to view the locations of available weather stations in a terrain, satellite, or hybrid view through the Google map interface. This feature will show topographical and land use features that you can use to help you decide on an appropriate weather station. Land use is also another important factor to consider. Is your project next to a large body of water, which may moderate the local climate? In this case, an inland weather station would probably not represent your local project s weather. The mapping program in the GBS web service also helps you choose the closest weather station that may represent your location based on visible land and water features. Finally, the GBS web service mapping program automatically calculates degree days and design conditions for each weather station. Figure 7 also shows an example of the Washington, DC area with Cooling Design Conditions for various design thresholds. This information can be useful in determining if the station represents the weather you expect in the location. Or if you want to choose a station that has either hotter or colder extremes than you expect, you can determine this by looking at the design conditions and degree days. Figure 7 The GBS Web Service includes a map view that lets you see locations of weather stations, distances, land and water features, and automatically calculates design conditions and degree days. Because no weather data set is perfect, the Green Building Studio web service gives you flexibility in choosing the appropriate weather. While we have confidence that the GBS 11

12 weather data set emulates nearby observations, there may be areas near coastlines and complex topography that may not be as representative. Sources Benjamin, S. G, Ve nyi, D. D., Weygandt, S. S., Brundage, K. J., Brown, J. M., Grell, G. A., Kim, D., Schwartz, B. E., Smirnova, T. G., Smith, T. L., Manikin, G. S, An Hourly Assimilation Forecast Cycle: The RUC, Monthly Weather Review 132, Grell, G. A., Dudhia, J., Stauffer, D. R., A Description of the Fifth Generation Penn State/NCAR Mesoscale Model (MM5), NCAR Technical Note NCAR/TN STR, 138 pp. Autodesk and Autodesk Green Building Studio are either registered trademarks or trademarks of Autodesk, Inc., in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product offerings and specifications at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document Autodesk, Inc. All rights reserved. 12

NOAA to Provide Enhanced Frost Forecast Information to Improve Russian River Water Management

NOAA to Provide Enhanced Frost Forecast Information to Improve Russian River Water Management NOAA to Provide Enhanced Frost Forecast Information to Improve Russian River Water Management David W. Reynolds Meteorologist in Charge (Retired) National Weather Service Forecast Office San Francisco

More information

Cloud/Hydrometeor Initialization in the 20-km RUC Using GOES Data

Cloud/Hydrometeor Initialization in the 20-km RUC Using GOES Data WORLD METEOROLOGICAL ORGANIZATION COMMISSION FOR BASIC SYSTEMS OPEN PROGRAMMME AREA GROUP ON INTEGRATED OBSERVING SYSTEMS EXPERT TEAM ON OBSERVATIONAL DATA REQUIREMENTS AND REDESIGN OF THE GLOBAL OBSERVING

More information

6.9 A NEW APPROACH TO FIRE WEATHER FORECASTING AT THE TULSA WFO. Sarah J. Taylor* and Eric D. Howieson NOAA/National Weather Service Tulsa, Oklahoma

6.9 A NEW APPROACH TO FIRE WEATHER FORECASTING AT THE TULSA WFO. Sarah J. Taylor* and Eric D. Howieson NOAA/National Weather Service Tulsa, Oklahoma 6.9 A NEW APPROACH TO FIRE WEATHER FORECASTING AT THE TULSA WFO Sarah J. Taylor* and Eric D. Howieson NOAA/National Weather Service Tulsa, Oklahoma 1. INTRODUCTION The modernization of the National Weather

More information

Project Title: Quantifying Uncertainties of High-Resolution WRF Modeling on Downslope Wind Forecasts in the Las Vegas Valley

Project Title: Quantifying Uncertainties of High-Resolution WRF Modeling on Downslope Wind Forecasts in the Las Vegas Valley University: Florida Institute of Technology Name of University Researcher Preparing Report: Sen Chiao NWS Office: Las Vegas Name of NWS Researcher Preparing Report: Stanley Czyzyk Type of Project (Partners

More information

P3.8 INTEGRATING A DOPPLER SODAR WITH NUCLEAR POWER PLANT METEOROLOGICAL DATA. Thomas E. Bellinger

P3.8 INTEGRATING A DOPPLER SODAR WITH NUCLEAR POWER PLANT METEOROLOGICAL DATA. Thomas E. Bellinger P3.8 INTEGRATING A DOPPLER SODAR WITH NUCLEAR POWER PLANT METEOROLOGICAL DATA Thomas E. Bellinger Illinois Emergency Management Agency Springfield, Illinois 1. INTRODUCTION A Doppler sodar owned by the

More information

Cloud Model Verification at the Air Force Weather Agency

Cloud Model Verification at the Air Force Weather Agency 2d Weather Group Cloud Model Verification at the Air Force Weather Agency Matthew Sittel UCAR Visiting Scientist Air Force Weather Agency Offutt AFB, NE Template: 28 Feb 06 Overview Cloud Models Ground

More information

Financing Community Wind

Financing Community Wind Financing Community Wind Wind Data and Due Diligence What is the Project's Capacity Factor? Community Wind Energy 2006 March 8, 2006 Mark Ahlstrom mark@windlogics.com Slide 1 The Need for Wind Assessment

More information

Southern AER Atmospheric Education Resource

Southern AER Atmospheric Education Resource Southern AER Atmospheric Education Resource Vol. 9 No. 5 Spring 2003 Editor: Lauren Bell In this issue: g Climate Creations exploring mother nature s remote control for weather and Climate. g Crazy Climate

More information

SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES

SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF SIXTH GRADE WATER WEEK 1. PRE: Evaluating components of the water cycle. LAB: Experimenting with porosity and permeability.

More information

2.8 Objective Integration of Satellite, Rain Gauge, and Radar Precipitation Estimates in the Multisensor Precipitation Estimator Algorithm

2.8 Objective Integration of Satellite, Rain Gauge, and Radar Precipitation Estimates in the Multisensor Precipitation Estimator Algorithm 2.8 Objective Integration of Satellite, Rain Gauge, and Radar Precipitation Estimates in the Multisensor Precipitation Estimator Algorithm Chandra Kondragunta*, David Kitzmiller, Dong-Jun Seo and Kiran

More information

IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS

IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS M. J. Mueller, R. W. Pasken, W. Dannevik, T. P. Eichler Saint Louis University Department of Earth and

More information

Chapter 3: Weather Map. Weather Maps. The Station Model. Weather Map on 7/7/2005 4/29/2011

Chapter 3: Weather Map. Weather Maps. The Station Model. Weather Map on 7/7/2005 4/29/2011 Chapter 3: Weather Map Weather Maps Many variables are needed to described weather conditions. Local weathers are affected by weather pattern. We need to see all the numbers describing weathers at many

More information

Wind resources map of Spain at mesoscale. Methodology and validation

Wind resources map of Spain at mesoscale. Methodology and validation Wind resources map of Spain at mesoscale. Methodology and validation Martín Gastón Edurne Pascal Laura Frías Ignacio Martí Uxue Irigoyen Elena Cantero Sergio Lozano Yolanda Loureiro e-mail:mgaston@cener.com

More information

How Do Oceans Affect Weather and Climate?

How Do Oceans Affect Weather and Climate? How Do Oceans Affect Weather and Climate? In Learning Set 2, you explored how water heats up more slowly than land and also cools off more slowly than land. Weather is caused by events in the atmosphere.

More information

2. The map below shows high-pressure and low-pressure weather systems in the United States.

2. The map below shows high-pressure and low-pressure weather systems in the United States. 1. Which weather instrument has most improved the accuracy of weather forecasts over the past 40 years? 1) thermometer 3) weather satellite 2) sling psychrometer 4) weather balloon 6. Wind velocity is

More information

Basic Climatological Station Metadata Current status. Metadata compiled: 30 JAN 2008. Synoptic Network, Reference Climate Stations

Basic Climatological Station Metadata Current status. Metadata compiled: 30 JAN 2008. Synoptic Network, Reference Climate Stations Station: CAPE OTWAY LIGHTHOUSE Bureau of Meteorology station number: Bureau of Meteorology district name: West Coast State: VIC World Meteorological Organization number: Identification: YCTY Basic Climatological

More information

Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF

Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF 3 Working Group on Verification and Case Studies 56 Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF Bogdan Alexandru MACO, Mihaela BOGDAN, Amalia IRIZA, Cosmin Dănuţ

More information

Application of Numerical Weather Prediction Models for Drought Monitoring. Gregor Gregorič Jožef Roškar Environmental Agency of Slovenia

Application of Numerical Weather Prediction Models for Drought Monitoring. Gregor Gregorič Jožef Roškar Environmental Agency of Slovenia Application of Numerical Weather Prediction Models for Drought Monitoring Gregor Gregorič Jožef Roškar Environmental Agency of Slovenia Contents 1. Introduction 2. Numerical Weather Prediction Models -

More information

Activity 8 Drawing Isobars Level 2 http://www.uni.edu/storm/activities/level2/index.shtml

Activity 8 Drawing Isobars Level 2 http://www.uni.edu/storm/activities/level2/index.shtml Activity 8 Drawing Isobars Level 2 http://www.uni.edu/storm/activities/level2/index.shtml Objectives: 1. Students will be able to define and draw isobars to analyze air pressure variations. 2. Students

More information

Validation n 2 of the Wind Data Generator (WDG) software performance. Comparison with measured mast data - Flat site in Northern France

Validation n 2 of the Wind Data Generator (WDG) software performance. Comparison with measured mast data - Flat site in Northern France Validation n 2 of the Wind Data Generator (WDG) software performance Comparison with measured mast data - Flat site in Northern France Mr. Tristan Fabre* La Compagnie du Vent, GDF-SUEZ, Montpellier, 34967,

More information

Chapter 3: Weather Map. Station Model and Weather Maps Pressure as a Vertical Coordinate Constant Pressure Maps Cross Sections

Chapter 3: Weather Map. Station Model and Weather Maps Pressure as a Vertical Coordinate Constant Pressure Maps Cross Sections Chapter 3: Weather Map Station Model and Weather Maps Pressure as a Vertical Coordinate Constant Pressure Maps Cross Sections Weather Maps Many variables are needed to described dweather conditions. Local

More information

Geography affects climate.

Geography affects climate. KEY CONCEPT Climate is a long-term weather pattern. BEFORE, you learned The Sun s energy heats Earth s surface unevenly The atmosphere s temperature changes with altitude Oceans affect wind flow NOW, you

More information

7613-1 - Page 1. Weather Unit Exam Pre-Test Questions

7613-1 - Page 1. Weather Unit Exam Pre-Test Questions Weather Unit Exam Pre-Test Questions 7613-1 - Page 1 Name: 1) Equal quantities of water are placed in four uncovered containers with different shapes and left on a table at room temperature. From which

More information

Fire Weather Index: from high resolution climatology to Climate Change impact study

Fire Weather Index: from high resolution climatology to Climate Change impact study Fire Weather Index: from high resolution climatology to Climate Change impact study International Conference on current knowledge of Climate Change Impacts on Agriculture and Forestry in Europe COST-WMO

More information

A system of direct radiation forecasting based on numerical weather predictions, satellite image and machine learning.

A system of direct radiation forecasting based on numerical weather predictions, satellite image and machine learning. A system of direct radiation forecasting based on numerical weather predictions, satellite image and machine learning. 31st Annual International Symposium on Forecasting Lourdes Ramírez Santigosa Martín

More information

AIRCRAFT PERFORMANCE Pressure Altitude And Density Altitude

AIRCRAFT PERFORMANCE Pressure Altitude And Density Altitude Performance- Page 67 AIRCRAFT PERFORMANCE Pressure Altitude And Density Altitude Pressure altitude is indicated altitude corrected for nonstandard pressure. It is determined by setting 29.92 in the altimeter

More information

Developing sub-domain verification methods based on Geographic Information System (GIS) tools

Developing sub-domain verification methods based on Geographic Information System (GIS) tools APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED U.S. Army Research, Development and Engineering Command Developing sub-domain verification methods based on Geographic Information System (GIS) tools

More information

As a minimum, the report must include the following sections in the given sequence:

As a minimum, the report must include the following sections in the given sequence: 5.2 Limits for Wind Generators and Transformer Substations In cases where the noise impact at a Point of Reception is composed of combined contributions due to the Transformer Substation as well as the

More information

Armenian State Hydrometeorological and Monitoring Service

Armenian State Hydrometeorological and Monitoring Service Armenian State Hydrometeorological and Monitoring Service Offenbach 1 Armenia: IN BRIEF Armenia is located in Southern Caucasus region, bordering with Iran, Azerbaijan, Georgia and Turkey. The total territory

More information

South Africa. General Climate. UNDP Climate Change Country Profiles. A. Karmalkar 1, C. McSweeney 1, M. New 1,2 and G. Lizcano 1

South Africa. General Climate. UNDP Climate Change Country Profiles. A. Karmalkar 1, C. McSweeney 1, M. New 1,2 and G. Lizcano 1 UNDP Climate Change Country Profiles South Africa A. Karmalkar 1, C. McSweeney 1, M. New 1,2 and G. Lizcano 1 1. School of Geography and Environment, University of Oxford. 2. Tyndall Centre for Climate

More information

How To Forecast Solar Power

How To Forecast Solar Power Forecasting Solar Power with Adaptive Models A Pilot Study Dr. James W. Hall 1. Introduction Expanding the use of renewable energy sources, primarily wind and solar, has become a US national priority.

More information

Weather Help - NEXRAD Radar Maps. Base Reflectivity

Weather Help - NEXRAD Radar Maps. Base Reflectivity Weather Help - NEXRAD Radar Maps Base Reflectivity Base Reflectivity Severe Thunderstorm/Torna do Watch Areas 16 levels depicted with colors from dark green (very light) to red (extreme) that indicate

More information

Ongoing Development and Testing of Generalized Cloud Analysis Package within GSI for Initializing Rapid Refresh

Ongoing Development and Testing of Generalized Cloud Analysis Package within GSI for Initializing Rapid Refresh Preprints, 13 th Conf. on Aviation, Range and Aerospace Meteorology. January 2008, New Orleans, LA, Amer. Meteor. Soc. 7.4 Ongoing Development and Testing of Generalized Cloud Analysis Package within GSI

More information

Monsoon Variability and Extreme Weather Events

Monsoon Variability and Extreme Weather Events Monsoon Variability and Extreme Weather Events M Rajeevan National Climate Centre India Meteorological Department Pune 411 005 rajeevan@imdpune.gov.in Outline of the presentation Monsoon rainfall Variability

More information

USING SIMULATED WIND DATA FROM A MESOSCALE MODEL IN MCP. M. Taylor J. Freedman K. Waight M. Brower

USING SIMULATED WIND DATA FROM A MESOSCALE MODEL IN MCP. M. Taylor J. Freedman K. Waight M. Brower USING SIMULATED WIND DATA FROM A MESOSCALE MODEL IN MCP M. Taylor J. Freedman K. Waight M. Brower Page 2 ABSTRACT Since field measurement campaigns for proposed wind projects typically last no more than

More information

How To Find Out If The Winds From The Oak Ridge Site Are Calm

How To Find Out If The Winds From The Oak Ridge Site Are Calm EVALUATING THE WIND DATA FROM THE AUTOMATED SURFACE OBSERVING SYSTEM IN OAK RIDGE, TENNESSEE - IS KOQT THE CALMEST SITE IN THE US? Thomas E. Bellinger, CCM Y-12 National Security Complex Oak Ridge, Tennessee

More information

Weather patterns for sailing in Weymouth Bay & Portland Harbour:

Weather patterns for sailing in Weymouth Bay & Portland Harbour: Weather patterns for sailing in Weymouth Bay & Portland Harbour: Analysis for the 2012 Olympic Games Louisa Ververs Institute for Atmospheric & Climate Science (IACETH) ETH Zürich verversl@student.ethz.ch

More information

ROAD WEATHER AND WINTER MAINTENANCE

ROAD WEATHER AND WINTER MAINTENANCE Road Traffic Technology ROAD WEATHER AND WINTER MAINTENANCE METIS SSWM WMi ROAD WEATHER STATIONS ADVANCED ROAD WEATHER INFORMATION SYSTEM MAINTENANCE DECISION SUPPORT SYSTEM WINTER MAINTENANCE PERFORMANCE

More information

Chapter 5: Working with contours

Chapter 5: Working with contours Introduction Contoured topographic maps contain a vast amount of information about the three-dimensional geometry of the land surface and the purpose of this chapter is to consider some of the ways in

More information

What Drives the Consumer Price Index? Joshua Klick, Bureau of Labor Statistics, Washington DC

What Drives the Consumer Price Index? Joshua Klick, Bureau of Labor Statistics, Washington DC What Drives the Consumer Price Index? Joshua Klick, Bureau of Labor Statistics, Washington DC ABSTRACT The Consumer Price Index (CPI) is widely referenced as a measure of health for the US economy. Users

More information

Studying Topography, Orographic Rainfall, and Ecosystems (STORE)

Studying Topography, Orographic Rainfall, and Ecosystems (STORE) Studying Topography, Orographic Rainfall, and Ecosystems (STORE) Basic Lesson 3: Using Microsoft Excel to Analyze Weather Data: Topography and Temperature Introduction This lesson uses NCDC data to compare

More information

Integrating WAsP and GIS Tools for Establishing Best Positions for Wind Turbines in South Iraq

Integrating WAsP and GIS Tools for Establishing Best Positions for Wind Turbines in South Iraq Integrating WAsP and GIS Tools for Establishing Best Positions for Wind Turbines in South Iraq S.M. Ali Remote Sensing Research Unit, College of Science, Univ. of Baghdad, Baghdad, Iraq deanoffice {at}

More information

Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations

Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations S. C. Xie, R. T. Cederwall, and J. J. Yio Lawrence Livermore National Laboratory Livermore, California M. H. Zhang

More information

CHARACTERISTICS OF DEEP GPS SIGNAL FADING DUE TO IONOSPHERIC SCINTILLATION FOR AVIATION RECEIVER DESIGN

CHARACTERISTICS OF DEEP GPS SIGNAL FADING DUE TO IONOSPHERIC SCINTILLATION FOR AVIATION RECEIVER DESIGN CHARACTERISTICS OF DEEP GPS SIGNAL FADING DUE TO IONOSPHERIC SCINTILLATION FOR AVIATION RECEIVER DESIGN Jiwon Seo, Todd Walter, Tsung-Yu Chiou, and Per Enge Stanford University ABSTRACT Aircraft navigation

More information

Very High Resolution Arctic System Reanalysis for 2000-2011

Very High Resolution Arctic System Reanalysis for 2000-2011 Very High Resolution Arctic System Reanalysis for 2000-2011 David H. Bromwich, Lesheng Bai,, Keith Hines, and Sheng-Hung Wang Polar Meteorology Group, Byrd Polar Research Center The Ohio State University

More information

LEARNING THE LANDFORMS Grade Level: Third Presented by: Elizabeth Turcott, Endeavor Charter Academy, Springfield, Michigan Length of Unit: 14 lessons

LEARNING THE LANDFORMS Grade Level: Third Presented by: Elizabeth Turcott, Endeavor Charter Academy, Springfield, Michigan Length of Unit: 14 lessons LEARNING THE LANDFORMS Grade Level: Third Presented by: Elizabeth Turcott, Endeavor Charter Academy, Springfield, Michigan Length of Unit: 14 lessons I. ABSTRACT This unit develops an understanding of

More information

Studying Topography, Orographic Rainfall, and Ecosystems (STORE)

Studying Topography, Orographic Rainfall, and Ecosystems (STORE) Studying Topography, Orographic Rainfall, and Ecosystems (STORE) Introduction Basic Lesson 2: Using ArcGIS Explorer to Analyze the Connection between Topography and Rainfall This lesson introduces Geographical

More information

4.3. David E. Rudack*, Meteorological Development Laboratory Office of Science and Technology National Weather Service, NOAA 1.

4.3. David E. Rudack*, Meteorological Development Laboratory Office of Science and Technology National Weather Service, NOAA 1. 43 RESULTS OF SENSITIVITY TESTING OF MOS WIND SPEED AND DIRECTION GUIDANCE USING VARIOUS SAMPLE SIZES FROM THE GLOBAL ENSEMBLE FORECAST SYSTEM (GEFS) RE- FORECASTS David E Rudack*, Meteorological Development

More information

Estimation of satellite observations bias correction for limited area model

Estimation of satellite observations bias correction for limited area model Estimation of satellite observations bias correction for limited area model Roger Randriamampianina Hungarian Meteorological Service, Budapest, Hungary roger@met.hu Abstract Assimilation of satellite radiances

More information

Development of an Integrated Data Product for Hawaii Climate

Development of an Integrated Data Product for Hawaii Climate Development of an Integrated Data Product for Hawaii Climate Jan Hafner, Shang-Ping Xie (PI)(IPRC/SOEST U. of Hawaii) Yi-Leng Chen (Co-I) (Meteorology Dept. Univ. of Hawaii) contribution Georgette Holmes

More information

Wind Resource Assessment for BETHEL, ALASKA Date last modified: 2/21/2006 Compiled by: Mia Devine

Wind Resource Assessment for BETHEL, ALASKA Date last modified: 2/21/2006 Compiled by: Mia Devine 813 W. Northern Lights Blvd. Anchorage, AK 99503 Phone: 907-269-3000 Fax: 907-269-3044 www.akenergyauthority.org Wind Resource Assessment for BETHEL, ALASKA Date last modified: 2/21/2006 Compiled by: Mia

More information

EVALUATING SOLAR ENERGY PLANTS TO SUPPORT INVESTMENT DECISIONS

EVALUATING SOLAR ENERGY PLANTS TO SUPPORT INVESTMENT DECISIONS EVALUATING SOLAR ENERGY PLANTS TO SUPPORT INVESTMENT DECISIONS Author Marie Schnitzer Director of Solar Services Published for AWS Truewind October 2009 Republished for AWS Truepower: AWS Truepower, LLC

More information

Air Masses and Fronts

Air Masses and Fronts Air Masses and Fronts Air Masses The weather of the United States east of the Rocky Mountains is dominated by large masses of air that travel south from the wide expanses of land in Canada, and north from

More information

Towards assimilating IASI satellite observations over cold surfaces - the cloud detection aspect

Towards assimilating IASI satellite observations over cold surfaces - the cloud detection aspect Towards assimilating IASI satellite observations over cold surfaces - the cloud detection aspect Tuuli Perttula, FMI + Thanks to: Nadia Fourrié, Lydie Lavanant, Florence Rabier and Vincent Guidard, Météo

More information

6.4 THE SIERRA ROTORS PROJECT, OBSERVATIONS OF MOUNTAIN WAVES. William O. J. Brown 1 *, Stephen A. Cohn 1, Vanda Grubiši 2, and Brian Billings 2

6.4 THE SIERRA ROTORS PROJECT, OBSERVATIONS OF MOUNTAIN WAVES. William O. J. Brown 1 *, Stephen A. Cohn 1, Vanda Grubiši 2, and Brian Billings 2 6.4 THE SIERRA ROTORS PROJECT, OBSERVATIONS OF MOUNTAIN WAVES William O. J. Brown 1 *, Stephen A. Cohn 1, Vanda Grubiši 2, and Brian Billings 2 1 National Center for Atmospheric Research, Boulder, Colorado.

More information

The Wind Integration National Dataset (WIND) toolkit

The Wind Integration National Dataset (WIND) toolkit The Wind Integration National Dataset (WIND) toolkit EWEA Wind Power Forecasting Workshop, Rotterdam December 3, 2013 Caroline Draxl NREL/PR-5000-60977 NREL is a national laboratory of the U.S. Department

More information

WEATHER THEORY Temperature, Pressure And Moisture

WEATHER THEORY Temperature, Pressure And Moisture WEATHER THEORY Temperature, Pressure And Moisture Air Masses And Fronts Weather Theory- Page 77 Every physical process of weather is a result of a heat exchange. The standard sea level temperature is 59

More information

APPENDIX C - Florida Energy Code Standard Reference Design Auto-Generation Tests

APPENDIX C - Florida Energy Code Standard Reference Design Auto-Generation Tests REM/Rate v15 Review 9/22/14 Purpose This document includes the results of limited testing and verification of the REM/Rate v15.0 software submitted as a simulation tool for demonstrating compliance with

More information

What Causes Climate? Use Target Reading Skills

What Causes Climate? Use Target Reading Skills Climate and Climate Change Name Date Class Climate and Climate Change Guided Reading and Study What Causes Climate? This section describes factors that determine climate, or the average weather conditions

More information

Temperature and Humidity

Temperature and Humidity Temperature and Humidity Overview Water vapor is a very important gas in the atmosphere and can influence many things like condensation and the formation of clouds and rain, as well as how hot or cold

More information

Improved diagnosis of low-level cloud from MSG SEVIRI data for assimilation into Met Office limited area models

Improved diagnosis of low-level cloud from MSG SEVIRI data for assimilation into Met Office limited area models Improved diagnosis of low-level cloud from MSG SEVIRI data for assimilation into Met Office limited area models Peter N. Francis, James A. Hocking & Roger W. Saunders Met Office, Exeter, U.K. Abstract

More information

RE: James vs. ABC Company Greentown, NJ D/A: February 20, 2011

RE: James vs. ABC Company Greentown, NJ D/A: February 20, 2011 PO Box 7100 Hackettstown, NJ 07840 Phone: 1 800 427 3456 Fax: 908-850-8664 http://www.weatherworksinc.com June 16, 2012 Attn: John Doe Law Offices of John Doe 123 Fourth Street Smithtown, NJ 04506 RE:

More information

VOLATILITY AND DEVIATION OF DISTRIBUTED SOLAR

VOLATILITY AND DEVIATION OF DISTRIBUTED SOLAR VOLATILITY AND DEVIATION OF DISTRIBUTED SOLAR Andrew Goldstein Yale University 68 High Street New Haven, CT 06511 andrew.goldstein@yale.edu Alexander Thornton Shawn Kerrigan Locus Energy 657 Mission St.

More information

Shortcomings and Limitations in Analytical Tools and Methods of Provision of Operational Agrometeorological Services

Shortcomings and Limitations in Analytical Tools and Methods of Provision of Operational Agrometeorological Services Shortcomings and Limitations in Analytical Tools and Methods of Provision of Operational Agrometeorological Services Jeffrey Andresen Michigan State University East Lansing, Michigan Abstract Improvements

More information

DATA VISUALIZATION GABRIEL PARODI STUDY MATERIAL: PRINCIPLES OF GEOGRAPHIC INFORMATION SYSTEMS AN INTRODUCTORY TEXTBOOK CHAPTER 7

DATA VISUALIZATION GABRIEL PARODI STUDY MATERIAL: PRINCIPLES OF GEOGRAPHIC INFORMATION SYSTEMS AN INTRODUCTORY TEXTBOOK CHAPTER 7 DATA VISUALIZATION GABRIEL PARODI STUDY MATERIAL: PRINCIPLES OF GEOGRAPHIC INFORMATION SYSTEMS AN INTRODUCTORY TEXTBOOK CHAPTER 7 Contents GIS and maps The visualization process Visualization and strategies

More information

EXPLANATION OF WEATHER ELEMENTS AND VARIABLES FOR THE DAVIS VANTAGE PRO 2 MIDSTREAM WEATHER STATION

EXPLANATION OF WEATHER ELEMENTS AND VARIABLES FOR THE DAVIS VANTAGE PRO 2 MIDSTREAM WEATHER STATION EXPLANATION OF WEATHER ELEMENTS AND VARIABLES FOR THE DAVIS VANTAGE PRO 2 MIDSTREAM WEATHER STATION The Weather Envoy consists of two parts: the Davis Vantage Pro 2 Integrated Sensor Suite (ISS) and the

More information

Weather Radar Basics

Weather Radar Basics Weather Radar Basics RADAR: Radio Detection And Ranging Developed during World War II as a method to detect the presence of ships and aircraft (the military considered weather targets as noise) Since WW

More information

Plotting Earthquake Epicenters an activity for seismic discovery

Plotting Earthquake Epicenters an activity for seismic discovery Plotting Earthquake Epicenters an activity for seismic discovery Tammy K Bravo Anne M Ortiz Plotting Activity adapted from: Larry Braile and Sheryl Braile Department of Earth and Atmospheric Sciences Purdue

More information

Spatial Tools for Wildland Fire Management Planning

Spatial Tools for Wildland Fire Management Planning Spatial Tools for Wildland Fire Management Planning M A. Finney USDA Forest Service, Fire Sciences Laboratory, Missoula MT, USA Abstract Much of wildland fire planning is inherently spatial, requiring

More information

GEOENGINE MSc in Geomatics Engineering (Master Thesis) Anamelechi, Falasy Ebere

GEOENGINE MSc in Geomatics Engineering (Master Thesis) Anamelechi, Falasy Ebere Master s Thesis: ANAMELECHI, FALASY EBERE Analysis of a Raster DEM Creation for a Farm Management Information System based on GNSS and Total Station Coordinates Duration of the Thesis: 6 Months Completion

More information

Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula

Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula Mansour Almazroui Center of Excellence for Climate Change Research (CECCR) King Abdulaziz University, Jeddah, Saudi Arabia E-mail:

More information

Investigation 6: What happens when plates collide?

Investigation 6: What happens when plates collide? Tectonics Investigation 6: Teacher Guide Investigation 6: What happens when plates collide? In this activity, students will use the distribution of earthquakes and volcanoes in a Web GIS to learn about

More information

Sample Pages. Free E-mail Newsletter Sign up Today! Learn Through Experience

Sample Pages. Free E-mail Newsletter Sign up Today! Learn Through Experience Learn Through Experience Sample Pages Sample pages from this product are provided for evaluation purposes. The entire product is available for purchase at www.socialstudies.com or www.teachinteract.com

More information

Higher Education Enrollment Marketing

Higher Education Enrollment Marketing Higher Education Enrollment Marketing THE IMPACT OF DISTANCE ON INQUIRY GENERATION CAMPAIGNS: How Custom GeoTargeting Can Produce Efficiencies sparkroom.com Contents Summary... 3 Targeting Students...

More information

This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air. 2. Processes that cause instability and cloud development

This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air. 2. Processes that cause instability and cloud development Stability & Cloud Development This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air 2. Processes that cause instability and cloud development Stability & Movement A rock,

More information

SHOALS Toolbox: Software to Support Visualization and Analysis of Large, High-Density Data Sets

SHOALS Toolbox: Software to Support Visualization and Analysis of Large, High-Density Data Sets SHOALS Toolbox: Software to Support Visualization and Analysis of Large, High-Density Data Sets by Jennifer M. Wozencraft, W. Jeff Lillycrop, and Nicholas C. Kraus PURPOSE: The Coastal and Hydraulics Engineering

More information

The relationships between Argo Steric Height and AVISO Sea Surface Height

The relationships between Argo Steric Height and AVISO Sea Surface Height The relationships between Argo Steric Height and AVISO Sea Surface Height Phil Sutton 1 Dean Roemmich 2 1 National Institute of Water and Atmospheric Research, New Zealand 2 Scripps Institution of Oceanography,

More information

Using Google Earth to Explore Plate Tectonics

Using Google Earth to Explore Plate Tectonics Using Google Earth to Explore Plate Tectonics Laurel Goodell, Department of Geosciences, Princeton University, Princeton, NJ 08544 laurel@princeton.edu Inspired by, and borrows from, the GIS-based Exploring

More information

David P. Ruth* Meteorological Development Laboratory Office of Science and Technology National Weather Service, NOAA Silver Spring, Maryland

David P. Ruth* Meteorological Development Laboratory Office of Science and Technology National Weather Service, NOAA Silver Spring, Maryland 9.9 TRANSLATING ADVANCES IN NUMERICAL WEATHER PREDICTION INTO OFFICIAL NWS FORECASTS David P. Ruth* Meteorological Development Laboratory Office of Science and Technology National Weather Service, NOAA

More information

REGIONAL CLIMATE AND DOWNSCALING

REGIONAL CLIMATE AND DOWNSCALING REGIONAL CLIMATE AND DOWNSCALING Regional Climate Modelling at the Hungarian Meteorological Service ANDRÁS HORÁNYI (horanyi( horanyi.a@.a@met.hu) Special thanks: : Gabriella Csima,, Péter Szabó, Gabriella

More information

World Water and Climate Atlas

World Water and Climate Atlas International Water Management Institute World Water and Climate Atlas Direct access to water and climate data improves agricultural planning The IWMI World Water and Climate Atlas provides rapid access

More information

CGC1D1: Interactions in the Physical Environment Factors that Affect Climate

CGC1D1: Interactions in the Physical Environment Factors that Affect Climate Name: Date: Day/Period: CGC1D1: Interactions in the Physical Environment Factors that Affect Climate Chapter 12 in the Making Connections textbook deals with Climate Connections. Use pages 127-144 to fill

More information

Can latent heat release have a negative effect on polar low intensity?

Can latent heat release have a negative effect on polar low intensity? Can latent heat release have a negative effect on polar low intensity? Ivan Føre, Jon Egill Kristjansson, Erik W. Kolstad, Thomas J. Bracegirdle and Øyvind Sætra Polar lows: are intense mesoscale cyclones

More information

How do I measure the amount of water vapor in the air?

How do I measure the amount of water vapor in the air? How do I measure the amount of water vapor in the air? Materials 2 Centigrade Thermometers Gauze Fan Rubber Band Tape Overview Water vapor is a very important gas in the atmosphere and can influence many

More information

Climate and Weather. This document explains where we obtain weather and climate data and how we incorporate it into metrics:

Climate and Weather. This document explains where we obtain weather and climate data and how we incorporate it into metrics: OVERVIEW Climate and Weather The climate of the area where your property is located and the annual fluctuations you experience in weather conditions can affect how much energy you need to operate your

More information

--------------------------------------------------------------------------------------------------------------------- Technical Support Document

--------------------------------------------------------------------------------------------------------------------- Technical Support Document --------------------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------------------------

More information

Low Level Windshear Alert System (LLWAS) An integral part of the U.S. FAA Wind-shear safety program

Low Level Windshear Alert System (LLWAS) An integral part of the U.S. FAA Wind-shear safety program Low Level Windshear Alert System (LLWAS) An integral part of the U.S. FAA Wind-shear safety program Low-level windshear is a hazard to aircraft in the airport runway corridors. With Climatronics LLWAS,

More information

Educator s Guide to Learning about Mexico Using Google Earth

Educator s Guide to Learning about Mexico Using Google Earth Educator s Guide to Learning about Mexico Using Google Earth Overview: Students will research the physical features of Mexico using Google Earth to learn about Mexico s oceans, gulfs, bays, lagoons, rivers,

More information

An Operational Local Data Integration System (LDIS) at WFO Melbourne

An Operational Local Data Integration System (LDIS) at WFO Melbourne 1. Introduction An Operational Local Data Integration System (LDIS) at WFO Melbourne Peter F. Blottman, Scott M. Spratt, David W. Sharp, and Anthony J. Cristaldi III WFO Melbourne, FL Jonathan L. Case

More information

J3.3 AN END-TO-END QUALITY ASSURANCE SYSTEM FOR THE MODERNIZED COOP NETWORK

J3.3 AN END-TO-END QUALITY ASSURANCE SYSTEM FOR THE MODERNIZED COOP NETWORK J3.3 AN END-TO-END QUALITY ASSURANCE SYSTEM FOR THE MODERNIZED COOP NETWORK Christopher A. Fiebrich*, Renee A. McPherson, Clayton C. Fain, Jenifer R. Henslee, and Phillip D. Hurlbut Oklahoma Climatological

More information

Basics of weather interpretation

Basics of weather interpretation Basics of weather interpretation Safety at Sea Seminar, April 2 nd 2016 Dr. Gina Henderson Oceanography Dept., USNA ghenders@usna.edu Image source: http://earthobservatory.nasa.gov/naturalhazards/view.php?id=80399,

More information

MODEL ANALYSES AND GUIDANCE (MAG) WEB APPLICATION

MODEL ANALYSES AND GUIDANCE (MAG) WEB APPLICATION MODEL ANALYSES AND GUIDANCE (MAG) WEB APPLICATION MAG User s Manual (Documentation Version 3.10) April 2016 Prepared by: Systems Integration Branch/Software Development Team NCEP Central Operations NOAA

More information

Application Note - How to Design a SolarEdge System Using PVsyst

Application Note - How to Design a SolarEdge System Using PVsyst March 2015 Application Note - How to Design a SolarEdge System Using PVsyst As of version 5.20, PVsyst - the PV system design software - supports the design of SolarEdge systems. This application note

More information

New, Unique, and Dedicated dataset for the Global Atlas

New, Unique, and Dedicated dataset for the Global Atlas WFES 2014 EUDP Global Wind Atlas: New, Unique, and Dedicated dataset for the Global Atlas Presented by Jake Badger EUDP is a Danish fund for development and demonstration projects from the Danish Energy

More information

Applying MapCalc Map Analysis Software

Applying MapCalc Map Analysis Software Applying MapCalc Map Analysis Software Using MapCalc s Shading Manager for Displaying Continuous Maps: The display of continuous data, such as elevation, is fundamental to a grid-based map analysis package.

More information

IBM Big Green Innovations Environmental R&D and Services

IBM Big Green Innovations Environmental R&D and Services IBM Big Green Innovations Environmental R&D and Services Smart Weather Modelling Local Area Precision Forecasting for Weather-Sensitive Business Operations (e.g. Smart Grids) Lloyd A. Treinish Project

More information

GPS accuracy: Hand-held versus RTK

GPS accuracy: Hand-held versus RTK GPS accuracy GPS accuracy: Hand-held versus RTK Kevin W. Hall, Joanna K. Cooper, and Don C. Lawton ABSTRACT Source and receiver points for seismic lines recorded during the geophysics field school near

More information

VOCALS-CUpEx: The Chilean Upwelling Experiment

VOCALS-CUpEx: The Chilean Upwelling Experiment VOCALS-CUpEx: The Chilean Upwelling Experiment René D. Garreaud 1, José Rutllant 1,2, Ricardo Muñoz 1, David Rahn 1, Marcel Ramos 2 and Dante Figueroa 3 (1) Department of Geophysics, Universidad de Chile;

More information

Tides and Water Levels

Tides and Water Levels Tides and Water Levels What are Tides? Tides are one of the most reliable phenomena in the world. As the sun rises in the east and the stars come out at night, we are confident that the ocean waters will

More information

SITE SPECIFIC WEATHER ANALYSIS REPORT

SITE SPECIFIC WEATHER ANALYSIS REPORT SAMPLE FLOOD ANALYSIS REPORT SITE SPECIFIC WEATHER ANALYSIS REPORT PREPARED FOR: Law Offices of Oliver Wendell Douglas Oliver Wendell Douglas PREPARED BY: November 29, 2007 CASE REFERENCE: Arnold Ziffel

More information