Business Statistics. Lecture 8: More Hypothesis Testing


 Lydia Moody
 2 years ago
 Views:
Transcription
1 Business Statistics Lecture 8: More Hypothesis Testing 1
2 Goals for this Lecture Review of ttests Additional hypothesis tests Twosample tests Paired tests 2
3 The Basic Idea of Hypothesis Testing Start with a theory or hypothesis For example, m = Collect some data Ask: How unusual is it to see this data if the null hypothesis is true? If it s unusual, reject the null hypothesis If not, fail to reject the null Remember, determine the hypothesis to be tested before looking before looking at the data 3
4 It All Ties Back to the Empirical Rule 68% 95% Z If we hypothesize that the data come from a N(0,1) distribution, how unusual an observation must we see to reject our hypothesis? It depends on the alternative hypothesis 4
5 For Example, a Twosided Test Null: The mean is equal to zero (H 0 : m = 0) Alternative: The mean is not equal to zero (H a : m 0) If the rejection criterion is pvalue < 0.05, we reject if our observation is greater than 1.96 or less than 1.96: 68% 95% Z 5
6 In JMP JMP computes the probability of seeing data as extreme or more extreme under various alternate hypotheses You have to choose the appropriate pvalue Then compare the JMP pvalue to 0.05 Smaller: reject the null Larger: fail to reject the null Output is in terms of rescaled tscores Using t distribution comes from using s to estimate s 6
7 Conducting the Test in JMP With one continuous variable, Analyze > Distribution > red triangle > Test Mean Type in the mean to be tested ( Specify Hypothesized Mean ) If population ( true ) standard deviation known, enter it This will be a ztest If you leave it blank, JMP does a ttest It uses s to estimate s 7
8 Back to the Paint Case (primer.jmp) A More Complicated Question: Suppose we are less interested in the value of 1.2 and more interested in whether processes a and b have the same mean Null hypothesis Means are the same: m a  m b = 0 Alternative hypothesis Means are different: m a  m b 0 8
9 Solution: Twosample ttest Process a Mean = m x X SD = s x X 1, X 2,, X n Random Samples Process b Mean = m y SD = s y Y 1, Y 2,, Y m Y Two sample ttest assumes Xs and Ys are independent 9
10 Results of Two Sample ttest What do you think the test statistic is? How should we rescale the test statistic? What does the pvalue represent? 10
11 Null Hypothesis: m x  m y = 0 Test Statistic: Fact: since X and Y are independent: So Var Twosample ttest X Y ( X Y ) Var ( X ) Var ( Y ) 2 2 s s x y n m 2 s s x SE( X Y ) n m 2 y 11
12 Rescaled Test Statistic Test statistic: X Y Estimated standard error: s n 2 x x s n 2 y y Rescaled test statistic: t X Y s n 2 x x 0 s n 2 y y 12
13 For some test statistic T where m and s are not known, compute where Remember: Rescaling t T m m * is the hypothesized true value s T is the sample standard error of the statistic T s T * 13
14 Onesample and Twosample Tests In a onesample test of, choose m* Then T =, so the test statistic is In a twosample test, you re often testing whether the means are equal T = t t X * * T m X m s. d.( T) s. e.( X ) X Y, and the test statistic is * T m ( X Y ) 0 ( X Y ) s. d.( T) s. e.( X Y ) s. e.( X Y ) 14
15 Equal Variances? We must estimate s x and s y If s x = s y then we can get a better estimate Remember: Sample variance for a single sample: s 2 n 1 1 Average squared deviation from the mean n ( x j j x 1 ) 2 Sample mean Deviations from sample mean 15
16 Different Means But Similar SD Remember, SD is calculated using differences from the mean Each group can have very different mean but standard deviations can be similar
17 More Bang for the Buck Pooled estimate of sample variance: Sample mean for process a Sample mean for process b s 2 p n 2 m 2 ( x ) ( ) 1 j x y j j 1 j y ( n 1) ( m 1) Average squared deviation from different means Used two degrees of freedom, n+m2 left over Pooled estimate buys you more df Weighted average of 2 s x and s 2 y 17
18 Conducting the Test in JMP Need two variables: one continuous and one categorical (denoting group) Then: Analyze > Fit Y by X (continuous variable is the Y and categorical the X) > red triangle > Means/Anova/Pooled t See the t Test part of the output 18
19 Case: Taste Testing Teas Small taste test of teas (taste.jmp) 16 panelists in a focus group Each tasted two formulations of a prepackaged iced tea Rated them on a scale of 1 (excellent) to 7 (really bad) Company wants to know if there is a difference in ratings between the two formulations 19
20 An Initial Evaluation Twosample ttest on taste.jmp: Is there a significant difference? 20
21 Taste Case: Any Difference? Unless SD s vastly different (factor of 2), the equal variance assumption no big deal 21
22 Independence Assumption Very Important Independence assumption for two sample ttest is violated Good news: there is an alternate test that can do even better Paired ttest assumes two observations taken for each unit in the sample Observations on the same unit likely to be more similar than obs ns on different units Here same person tasted each formulation 22
23 Paired ttest Looks at Differences x 1 y 1 =d 1 x 2 y 2 =d 2. x n y n =d n Calculate differences for each observation Calculate sample mean and SD of differences Do a one sample ttest for differences: H 0 : mean difference is zero H a : mean difference is not 0 23
24 Paired ttest in JMP Use Analyze > Matched Pairs Two variables, paired by row: 24
25 Results: Paired ttest in JMP Mean Difference is same as two sample test SE is smaller why?? 25
26 Heuristic: Why Pairing Helps When x j and y j vary together then y j will be big when x j is big Since x j & y j tend to be close together, x j y j is smaller than when X and Y independent Math: When X and Y are not independent then Var( X Y ) Var( X ) Var( Y ) 2 Cov( X, Y ) Cov or covariance measures linear dependence between two variables 26
27 It Helps in this Case Because People first have a like or dislike for tea Their ratings of the formulations are relative to this overall opinion of tea Taking the difference removes the person effect Tend to dislike tea Taste Taste 2 Tend to like tea 27
28 Independence vs. Dependence X X x j y j is horizontal distance to the y=x line x j y j is smaller (typically) in the right hand plot 28
29 Case: Sales Force Comparison Newly merged pharmaceutical company (PharmSal.jmp) Two sales forces ( BW & GL ), one from each of the merged companies 20 sales districts are the same Sales reps divided into these districts Sell essentially the same drugs Management wants to know if one sales force outperforms the other 29
30 Sales by Division Sales BW GL Division Quantiles Level Minimum 10% 25% Median 75% 90% Maximum BW GL
31 TwoSample ttest Results Sales BW GL Under the independence assumption, we conclude that there is no difference in the means But are they independent? Division 31
32 The Sales Forces Are Dependent Dependence occurs by sales district: 32
33 Paired ttest Comparison Which sales force is doing better? 33
34 More Complicated Tests There are even more complicated tests you can do E.G., test for equal variance You re never going to remember all the steps for each test anyway Let the computer do it for you 34
35 Terminology Onesided vs. twosided Comes from the statement of the alternative hypothesis Are you calculating the pvalue using one tail or two? Onesample vs. twosample Comes from the type of data and the question you are answering Are you testing a mean or a difference between means? 35
36 Which Test? How many populations are sampled? One: onesample test Two: read on Are observations in first sample independent of observations in second sample? Yes: twosample ttest No: paired ttest Big Clue: Paired ttest needs two observations from each unit Unequal sample sizes 2 sample test Equal sample sizes you have to decide 36
37 Hypothesis Tests in the Computer Age Know the null and alternative hypotheses Have some idea of what test statistics you would look at Let the computer figure out how to rescale them Let the computer figure out the pvalue pvalues are always interpreted the same way 37
38 What we have learned so far Descriptive Statistics Probability Inference for a population mean Confidence intervals Hypothesis testing Onesample test of the mean Twosample tests Paired tests 38
Chapter 7 Appendix. Inference for Distributions with Excel, JMP, Minitab, SPSS, CrunchIt!, R, and TI83/84 Calculators
Chapter 7 Appendix Inference for Distributions with Excel, JMP, Minitab, SPSS, CrunchIt!, R, and TI83/84 Calculators Inference for the Mean of a Population Excel t Confidence Interval for Mean Confidence
More informationTHE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7.
THERE ARE TWO WAYS TO DO HYPOTHESIS TESTING WITH STATCRUNCH: WITH SUMMARY DATA (AS IN EXAMPLE 7.17, PAGE 236, IN ROSNER); WITH THE ORIGINAL DATA (AS IN EXAMPLE 8.5, PAGE 301 IN ROSNER THAT USES DATA FROM
More informationLAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
More informationDo the following using Mintab (1) Make a normal probability plot for each of the two curing times.
SMAM 314 Computer Assignment 4 1. An experiment was performed to determine the effect of curing time on the comprehensive strength of concrete blocks. Two independent random samples of 14 blocks were prepared
More informationMath 62 Statistics Sample Exam Questions
Math 62 Statistics Sample Exam Questions 1. (10) Explain the difference between the distribution of a population and the sampling distribution of a statistic, such as the mean, of a sample randomly selected
More informationLesson 1: Comparison of Population Means Part c: Comparison of Two Means
Lesson : Comparison of Population Means Part c: Comparison of Two Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis
More informationExample for testing one population mean:
Today: Sections 13.1 to 13.3 ANNOUNCEMENTS: We will finish hypothesis testing for the 5 situations today. See pages 586587 (end of Chapter 13) for a summary table. Quiz for week 8 starts Wed, ends Monday
More informationHypothesis tests: the ttests
Hypothesis tests: the ttests Introduction Invariably investigators wish to ask whether their data answer certain questions that are germane to the purpose of the investigation. It is often the case that
More informationHypothesis Testing hypothesis testing approach formulation of the test statistic
Hypothesis Testing For the next few lectures, we re going to look at various test statistics that are formulated to allow us to test hypotheses in a variety of contexts: In all cases, the hypothesis testing
More informationIntroduction. Hypothesis Testing. Hypothesis Testing. Significance Testing
Introduction Hypothesis Testing Mark Lunt Arthritis Research UK Centre for Ecellence in Epidemiology University of Manchester 13/10/2015 We saw last week that we can never know the population parameters
More informationT adult = 96 T child = 114.
Homework Solutions Do all tests at the 5% level and quote pvalues when possible. When answering each question uses sentences and include the relevant JMP output and plots (do not include the data in your
More informationChapter 2 Probability Topics SPSS T tests
Chapter 2 Probability Topics SPSS T tests Data file used: gss.sav In the lecture about chapter 2, only the OneSample T test has been explained. In this handout, we also give the SPSS methods to perform
More informationGood luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name:
Glo bal Leadership M BA BUSINESS STATISTICS FINAL EXAM Name: INSTRUCTIONS 1. Do not open this exam until instructed to do so. 2. Be sure to fill in your name before starting the exam. 3. You have two hours
More informationTesting: is my coin fair?
Testing: is my coin fair? Formally: we want to make some inference about P(head) Try it: toss coin several times (say 7 times) Assume that it is fair ( P(head)= ), and see if this assumption is compatible
More informationTwoSample TTest from Means and SD s
Chapter 07 TwoSample TTest from Means and SD s Introduction This procedure computes the twosample ttest and several other twosample tests directly from the mean, standard deviation, and sample size.
More informationClass 19: Two Way Tables, Conditional Distributions, ChiSquare (Text: Sections 2.5; 9.1)
Spring 204 Class 9: Two Way Tables, Conditional Distributions, ChiSquare (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the
More informationUnit 24 Hypothesis Tests about Means
Unit 24 Hypothesis Tests about Means Objectives: To recognize the difference between a paired t test and a twosample t test To perform a paired t test To perform a twosample t test A measure of the amount
More informationIn Chapter 2, we used linear regression to describe linear relationships. The setting for this is a
Math 143 Inference on Regression 1 Review of Linear Regression In Chapter 2, we used linear regression to describe linear relationships. The setting for this is a bivariate data set (i.e., a list of cases/subjects
More informationThe Basics of a Hypothesis Test
Overview The Basics of a Test Dr Tom Ilvento Department of Food and Resource Economics Alternative way to make inferences from a sample to the Population is via a Test A hypothesis test is based upon A
More informationThe calculations lead to the following values: d 2 = 46, n = 8, s d 2 = 4, s d = 2, SEof d = s d n s d n
EXAMPLE 1: Paired ttest and tinterval DBP Readings by Two Devices The diastolic blood pressures (DBP) of 8 patients were determined using two techniques: the standard method used by medical personnel
More informationGeneral Method: Difference of Means. 3. Calculate df: either WelchSatterthwaite formula or simpler df = min(n 1, n 2 ) 1.
General Method: Difference of Means 1. Calculate x 1, x 2, SE 1, SE 2. 2. Combined SE = SE1 2 + SE2 2. ASSUMES INDEPENDENT SAMPLES. 3. Calculate df: either WelchSatterthwaite formula or simpler df = min(n
More informationInferences About Differences Between Means Edpsy 580
Inferences About Differences Between Means Edpsy 580 Carolyn J. Anderson Department of Educational Psychology University of Illinois at UrbanaChampaign Inferences About Differences Between Means Slide
More informationMONT 107N Understanding Randomness Solutions For Final Examination May 11, 2010
MONT 07N Understanding Randomness Solutions For Final Examination May, 00 Short Answer (a) (0) How are the EV and SE for the sum of n draws with replacement from a box computed? Solution: The EV is n times
More informationUnit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
More informationModule 5 Hypotheses Tests: Comparing Two Groups
Module 5 Hypotheses Tests: Comparing Two Groups Objective: In medical research, we often compare the outcomes between two groups of patients, namely exposed and unexposed groups. At the completion of this
More informationPaired vs. 2 sample comparisons. Comparing means. Paired comparisons allow us to account for a lot of extraneous variation.
Comparing means! Tests with one categorical and one numerical variable Paired vs. sample comparisons! Goal: to compare the mean of a numerical variable for different groups. Paired comparisons allow us
More informationComparing Means in Two Populations
Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we
More informationChapter 8 Hypothesis Tests. Chapter Table of Contents
Chapter 8 Hypothesis Tests Chapter Table of Contents Introduction...157 OneSample ttest...158 Paired ttest...164 TwoSample Test for Proportions...169 TwoSample Test for Variances...172 Discussion
More informationTwosample ttests.  Independent samples  Pooled standard devation  The equal variance assumption
Twosample ttests.  Independent samples  Pooled standard devation  The equal variance assumption Last time, we used the mean of one sample to test against the hypothesis that the true mean was a particular
More informationTwoSample TTests Assuming Equal Variance (Enter Means)
Chapter 4 TwoSample TTests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one or twosided twosample ttests when the variances of
More informationTwosample hypothesis testing, II 9.07 3/16/2004
Twosample hypothesis testing, II 9.07 3/16/004 Small sample tests for the difference between two independent means For twosample tests of the difference in mean, things get a little confusing, here,
More informationNCSS Statistical Software
Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, twosample ttests, the ztest, the
More informationInferential Statistics
Inferential Statistics Sampling and the normal distribution Zscores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are
More informationOnesample normal hypothesis Testing, paired ttest, twosample normal inference, normal probability plots
1 / 27 Onesample normal hypothesis Testing, paired ttest, twosample normal inference, normal probability plots Timothy Hanson Department of Statistics, University of South Carolina Stat 704: Data Analysis
More informationStatistics II Final Exam  January Use the University stationery to give your answers to the following questions.
Statistics II Final Exam  January 2012 Use the University stationery to give your answers to the following questions. Do not forget to write down your name and class group in each page. Indicate clearly
More informationFactors affecting online sales
Factors affecting online sales Table of contents Summary... 1 Research questions... 1 The dataset... 2 Descriptive statistics: The exploratory stage... 3 Confidence intervals... 4 Hypothesis tests... 4
More informationMCQ TESTING OF HYPOTHESIS
MCQ TESTING OF HYPOTHESIS MCQ 13.1 A statement about a population developed for the purpose of testing is called: (a) Hypothesis (b) Hypothesis testing (c) Level of significance (d) Teststatistic MCQ
More informationHypothesis Testing Level I Quantitative Methods. IFT Notes for the CFA exam
Hypothesis Testing 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction... 3 2. Hypothesis Testing... 3 3. Hypothesis Tests Concerning the Mean... 10 4. Hypothesis Tests
More informationBIOSTATISTICS QUIZ ANSWERS
BIOSTATISTICS QUIZ ANSWERS 1. When you read scientific literature, do you know whether the statistical tests that were used were appropriate and why they were used? a. Always b. Mostly c. Rarely d. Never
More informationRecall this chart that showed how most of our course would be organized:
Chapter 4 OneWay ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical
More informationTwosample hypothesis testing, I 9.07 3/09/2004
Twosample hypothesis testing, I 9.07 3/09/2004 But first, from last time More on the tradeoff between Type I and Type II errors The null and the alternative: Sampling distribution of the mean, m, given
More informationSections 4.54.7: TwoSample Problems. Paired ttest (Section 4.6)
Sections 4.54.7: TwoSample Problems Paired ttest (Section 4.6) Examples of Paired Differences studies: Similar subjects are paired off and one of two treatments is given to each subject in the pair.
More informationSPSS on two independent samples. Two sample test with proportions. Paired ttest (with more SPSS)
SPSS on two independent samples. Two sample test with proportions. Paired ttest (with more SPSS) State of the course address: The Final exam is Aug 9, 3:30pm 6:30pm in B9201 in the Burnaby Campus. (One
More informationOnce saved, if the file was zipped you will need to unzip it. For the files that I will be posting you need to change the preferences.
1 Commands in JMP and Statcrunch Below are a set of commands in JMP and Statcrunch which facilitate a basic statistical analysis. The first part concerns commands in JMP, the second part is for analysis
More informationStatistics 104: Section 7
Statistics 104: Section 7 Section Overview Reminders Comments on Midterm Common Mistakes on Problem Set 6 Statistical Week in Review Comments on Midterm Overall, the midterms were good with one notable
More informationTwoSample TTests Allowing Unequal Variance (Enter Difference)
Chapter 45 TwoSample TTests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one or twosided twosample ttests when no assumption
More informationRegression Analysis: A Complete Example
Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty
More informationName: Date: Use the following to answer questions 34:
Name: Date: 1. Determine whether each of the following statements is true or false. A) The margin of error for a 95% confidence interval for the mean increases as the sample size increases. B) The margin
More information3.4 Statistical inference for 2 populations based on two samples
3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted
More informationAn example ANOVA situation. 1Way ANOVA. Some notation for ANOVA. Are these differences significant? Example (Treating Blisters)
An example ANOVA situation Example (Treating Blisters) 1Way ANOVA MATH 143 Department of Mathematics and Statistics Calvin College Subjects: 25 patients with blisters Treatments: Treatment A, Treatment
More informationEXST SAS Lab Lab #9: Twosample ttests
EXST700X Lab Spring 014 EXST SAS Lab Lab #9: Twosample ttests Objectives 1. Input a CSV file (data set #1) and do a onetailed twosample ttest. Input a TXT file (data set #) and do a twotailed twosample
More informationThe ChiSquare Distributions
MATH 183 The ChiSquare Distributions Dr. Neal, WKU The chisquare distributions can be used in statistics to analyze the standard deviation " of a normally distributed measurement and to test the goodness
More informationHypothesis testing S2
Basic medical statistics for clinical and experimental research Hypothesis testing S2 Katarzyna Jóźwiak k.jozwiak@nki.nl 2nd November 2015 1/43 Introduction Point estimation: use a sample statistic to
More informationHypothesis Test for Mean Using Given Data (Standard Deviation Knownztest)
Hypothesis Test for Mean Using Given Data (Standard Deviation Knownztest) A hypothesis test is conducted when trying to find out if a claim is true or not. And if the claim is true, is it significant.
More informationChapter 8 Introduction to Hypothesis Testing
Chapter 8 Student Lecture Notes 81 Chapter 8 Introduction to Hypothesis Testing Fall 26 Fundamentals of Business Statistics 1 Chapter Goals After completing this chapter, you should be able to: Formulate
More informationStatistiek I. ttests. John Nerbonne. CLCG, Rijksuniversiteit Groningen. John Nerbonne 1/35
Statistiek I ttests John Nerbonne CLCG, Rijksuniversiteit Groningen http://wwwletrugnl/nerbonne/teach/statistieki/ John Nerbonne 1/35 ttests To test an average or pair of averages when σ is known, we
More informationNull and Alternative Hypotheses. Lecture # 3. Steps in Conducting a Hypothesis Test (Cont d) Steps in Conducting a Hypothesis Test
Lecture # 3 Significance Testing Is there a significant difference between a measured and a standard amount (that can not be accounted for by random error alone)? aka Hypothesis testing H 0 (null hypothesis)
More informationStat 371, Cecile Ane Practice problems Midterm #2, Spring 2012
Stat 371, Cecile Ane Practice problems Midterm #2, Spring 2012 The first 3 problems are taken from previous semesters exams, with solutions at the end of this document. The other problems are suggested
More informationModule 7: Hypothesis Testing I Statistics (OA3102)
Module 7: Hypothesis Testing I Statistics (OA3102) Professor Ron Fricker Naval Postgraduate School Monterey, California Reading assignment: WM&S chapter 10.110.5 Revision: 212 1 Goals for this Module
More informationData Analysis Tools. Tools for Summarizing Data
Data Analysis Tools This section of the notes is meant to introduce you to many of the tools that are provided by Excel under the Tools/Data Analysis menu item. If your computer does not have that tool
More informationNCSS Statistical Software
Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, twosample ttests, the ztest, the
More informationOneWay Analysis of Variance
Spring, 000   Administrative Items OneWay Analysis of Variance Midterm Grades. Makeup exams, in general. Getting help See me today :0 or Wednesday from :0. Send an email to stine@wharton. Visit
More informationAn Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10 TWOSAMPLE TESTS
The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 130) Spring Semester 011 Chapter 10 TWOSAMPLE TESTS Practice
More informationt Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon
ttests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com
More informationMind on Statistics. Chapter 13
Mind on Statistics Chapter 13 Sections 13.113.2 1. Which statement is not true about hypothesis tests? A. Hypothesis tests are only valid when the sample is representative of the population for the question
More information2 Sample ttest (unequal sample sizes and unequal variances)
Variations of the ttest: Sample tail Sample ttest (unequal sample sizes and unequal variances) Like the last example, below we have ceramic sherd thickness measurements (in cm) of two samples representing
More informationSimple Linear Regression
Inference for Regression Simple Linear Regression IPS Chapter 10.1 2009 W.H. Freeman and Company Objectives (IPS Chapter 10.1) Simple linear regression Statistical model for linear regression Estimating
More informationTwosample inference: Continuous data
Twosample inference: Continuous data Patrick Breheny April 5 Patrick Breheny STA 580: Biostatistics I 1/32 Introduction Our next two lectures will deal with twosample inference for continuous data As
More information1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
More informationProvide an appropriate response. Solve the problem. Determine the null and alternative hypotheses for the proposed hypothesis test.
Provide an appropriate response. 1) Suppose that x is a normally distributed variable on each of two populations. Independent samples of sizes n1 and n2, respectively, are selected from the two populations.
More informationCase l: Watchdog, Inc: Keeping hospitals honest
Case l: Watchdog, Inc: Keeping hospitals honest Insurance companies hire independent firms like Watchdog, Inc to review their hospital bills. They pay Watchdog a percentage of the overcharges it finds.
More informationThe scatterplot indicates a positive linear relationship between waist size and body fat percentage:
STAT E150 Statistical Methods Multiple Regression Three percent of a man's body is essential fat, which is necessary for a healthy body. However, too much body fat can be dangerous. For men between the
More informationAMS 5 HYPOTHESIS TESTING
AMS 5 HYPOTHESIS TESTING Hypothesis Testing Was it due to chance, or something else? Decide between two hypotheses that are mutually exclusive on the basis of evidence from observations. Test of Significance
More informationTtest in SPSS Hypothesis tests of proportions Confidence Intervals (End of chapter 6 material)
Ttest in SPSS Hypothesis tests of proportions Confidence Intervals (End of chapter 6 material) Definition of pvalue: The probability of getting evidence as strong as you did assuming that the null hypothesis
More informationLecture 28: Chapter 11, Section 1 Categorical & Quantitative Variable Inference in Paired Design
Lecture 28: Chapter 11, Section 1 Categorical & Quantitative Variable Inference in Paired Design Inference for Relationships: 2 Approaches CatQuan Relationship: 3 Designs Inference for Paired Design Paired
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Sample Practice problems  chapter 121 and 2 proportions for inference  Z Distributions Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide
More informationChapter 9: Comparison of Paired Samples
STAT503 Lecture Notes: Chapter 9 1 Chapter 9: Comparison of Paired Samples November 2, 2009 9.1 Introduction Observations occur in pairs such as: as identical twins, two observations on the same individual
More informationChapter 11: Two Variable Regression Analysis
Department of Mathematics Izmir University of Economics Week 1415 20142015 In this chapter, we will focus on linear models and extend our analysis to relationships between variables, the definitions
More informationHypothesis Testing. Hypothesis Testing CS 700
Hypothesis Testing CS 700 1 Hypothesis Testing! Purpose: make inferences about a population parameter by analyzing differences between observed sample statistics and the results one expects to obtain if
More information7 Hypothesis testing  one sample tests
7 Hypothesis testing  one sample tests 7.1 Introduction Definition 7.1 A hypothesis is a statement about a population parameter. Example A hypothesis might be that the mean age of students taking MAS113X
More informationSolutions 7. Review, one sample ttest, independent twosample ttest, binomial distribution, standard errors and onesample proportions.
Solutions 7 Review, one sample ttest, independent twosample ttest, binomial distribution, standard errors and onesample proportions. (1) Here we debunk a popular misconception about confidence intervals
More informationHypothesis Testing. Dr. Bob Gee Dean Scott Bonney Professor William G. Journigan American Meridian University
Hypothesis Testing Dr. Bob Gee Dean Scott Bonney Professor William G. Journigan American Meridian University 1 AMU / BonTech, LLC, JourniTech Corporation Copyright 2015 Learning Objectives Upon successful
More informationDescriptive Statistics
Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize
More informationChi Square for Contingency Tables
2 x 2 Case Chi Square for Contingency Tables A test for p 1 = p 2 We have learned a confidence interval for p 1 p 2, the difference in the population proportions. We want a hypothesis testing procedure
More information1 Confidence intervals
Math 143 Inference for Means 1 Statistical inference is inferring information about the distribution of a population from information about a sample. We re generally talking about one of two things: 1.
More informationConfidence Intervals for the Mean. Single Sample and Paired Samples t tests
Confidence Intervals for the Mean Single Sample and Paired Samples t tests Dr. J. Kyle Roberts Southern Methodist University Simmons School of Education and Human Development Department of Teaching and
More informationTutorial 5: Hypothesis Testing
Tutorial 5: Hypothesis Testing Rob Nicholls nicholls@mrclmb.cam.ac.uk MRC LMB Statistics Course 2014 Contents 1 Introduction................................ 1 2 Testing distributional assumptions....................
More informationChapter 5 Analysis of variance SPSS Analysis of variance
Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means Oneway ANOVA To test the null hypothesis that several population means are equal,
More informationSTATISTICS 151 SECTION 1 FINAL EXAM MAY
STATISTICS 151 SECTION 1 FINAL EXAM MAY 2 2009 This is an open book exam. Course text, personal notes and calculator are permitted. You have 3 hours to complete the test. Personal computers and cellphones
More informationEcon 424/Amath 462 Hypothesis Testing in the CER Model
Econ 424/Amath 462 Hypothesis Testing in the CER Model Eric Zivot July 23, 2013 Hypothesis Testing 1. Specify hypothesis to be tested 0 : null hypothesis versus. 1 : alternative hypothesis 2. Specify significance
More informationData Analysis. Lecture Empirical Model Building and Methods (Empirische Modellbildung und Methoden) SS Analysis of Experiments  Introduction
Data Analysis Lecture Empirical Model Building and Methods (Empirische Modellbildung und Methoden) Prof. Dr. Dr. h.c. Dieter Rombach Dr. Andreas Jedlitschka SS 2014 Analysis of Experiments  Introduction
More informationPointBiserial and Biserial Correlations
Chapter 302 PointBiserial and Biserial Correlations Introduction This procedure calculates estimates, confidence intervals, and hypothesis tests for both the pointbiserial and the biserial correlations.
More informationBiostatistics Lab Notes
Biostatistics Lab Notes Page 1 Lab 1: Measurement and Sampling Biostatistics Lab Notes Because we used a chance mechanism to select our sample, each sample will differ. My data set (GerstmanB.sav), looks
More informationChapter 7: Simple linear regression Learning Objectives
Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) 
More information12: Analysis of Variance. Introduction
1: Analysis of Variance Introduction EDA Hypothesis Test Introduction In Chapter 8 and again in Chapter 11 we compared means from two independent groups. In this chapter we extend the procedure to consider
More informationChapter 1112 1 Review
Chapter 1112 Review Name 1. In formulating hypotheses for a statistical test of significance, the null hypothesis is often a statement of no effect or no difference. the probability of observing the data
More informationThe Paired ttest and Hypothesis Testing. John McGready Johns Hopkins University
This work is licensed under a Creative Commons AttributionNonCommercialShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this
More informationIndependent t Test (Comparing Two Means)
Independent t Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent ttest when to use the independent ttest the use of SPSS to complete an independent
More information3. Nonparametric methods
3. Nonparametric methods If the probability distributions of the statistical variables are unknown or are not as required (e.g. normality assumption violated), then we may still apply nonparametric tests
More informationFundamental Probability and Statistics
Fundamental Probability and Statistics "There are known knowns. These are things we know that we know. There are known unknowns. That is to say, there are things that we know we don't know. But there are
More information