# EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3. OUTCOME 3 - MAGNETISM and INDUCTION

Save this PDF as:

Size: px
Start display at page:

Download "EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3. OUTCOME 3 - MAGNETISM and INDUCTION"

## Transcription

1 EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 3 - MAGNETISM and INDUCTION 3 Understand the principles and properties of magnetism Magnetic field: magnetic field patterns e.g. flux, flux density (B), magnetomotive force (m.m.f) and field strength (H), permeability, B/H curves and loops; ferromagnetic materials; reluctance; magnetic screening; hysteresis Electromagnetic induction: principles e.g. induced electromotive force (e.m.f), eddy currents, self and mutual inductance; applications (electric motor/generator e.g. series and shunt motor/generator; transformer e.g. primary and secondary current and voltage ratios); application of Faraday s and Lenz s laws This outcome requires knowledge of alternating current so it might make sense if you study outcome 4 before outcome 3. D.J.Dunn 1

2 1. MAGNETISM 1.1 PERMANENT MAGNET A permanent magnet produces a magnetic field with lines of magnetism running from North to South. This is a three dimensional field with the lines radiating out in all directions. In two dimensions, these lines may be traced out with a needle compass or by spreading iron filings around the magnet. The diagram shows a typical pattern. When two magnets are placed close as shown, opposite poles attract and like poles repel. Only certain materials are magnetic, mainly those containing iron. It is thought that the molecules themselves are like magnets and line up along the length of the magnet in a pattern of N S N S... If this is broken up by hammering or heating, the permanent magnetism is lost. 1.2 ELECTRO-MAGNETISM CURRENT CONVENTION In the following work you should be aware of the following convention for indicating the direction of an electric current. When a cross section through a conductor is carrying current away from you, a cross is used. When the current is coming towards you, a dot is used. This should be seen as an arrow or dart. Moving away you see the tail feathers as a cross. Coming towards you, you see the point as a dot. MAGNETIC FIELD AROUND A CONDUCTOR When a current flows in a conductor, a magnetic field is produced and the lines of magnetism are concentric circles around the cross section as shown. The direction may be found with a compass needle. The direction of the lines is determined by the CORK SCREW RULE. Point your finger in the direction of the current and turn your hand clockwise as though doing up a screw. The rotation is the direction of the magnetic flux. Consider the resulting magnetic field when two conductors are placed parallel to each other. When the current is in opposite directions, the field is concentrated in the space between them. When the current is in the same direction, the lines join up. Lines of magnetism do not flow easily in the opposite direction to each other and take an easier route by joining up. D.J.Dunn 2

3 Now consider what happens when a conductor is wound into a coil. Taking a cross section we see that the current is always flowing into the page on top and out on the bottom. The circular lines of magnetism join up to form a pattern very similar to the bar magnet. This may be switched off or reversed by reversing the current. This is the way an electro-magnetic field is created. This affect is used in solenoids and magnetic cranes. SOLENOIDS A solenoid is a coil with an iron plunger inside it. When current flows in the coil, the plunger becomes magnetised and tries to move out of the coil. If a spring is used to resist the movement, the distance moved is directly proportional to the current in the coil. Solenoids are used in relays where they operate an electric switch. They are also used in hydraulic and pneumatic valves to move the valve element. CRANES When the coil is energised with current a powerful magnetic field is created and this is concentrated by the iron core and attracts any iron. It is useful for lifting iron and for sorting iron from nonmagnetic materials. 2. MAGNETIC CIRCUIT 2.1 FLUX AND FLUX DENSITY The magnetic field is more correctly known as the magnetic flux and has the symbol or Φ. It is measured in units called the Weber (Wb). In the iron part of the magnet, the flux flows through a cross section of area A. The flux per unit cross sectional area is called the flux density and has a symbol B. The unit is the Weber/m 2 or Tesla (T). - flux (Wb) B flux density (T) B = /A D.J.Dunn 3

4 2.2 MAGNETIC CIRCUIT Note that the flux is assumed to have a direction North to South on the outside but South to North on the inside. The poles of a magnet are Red for North and Blue for South. The flux flowing on the outside has an indeterminate cross section and length but flux flowing in a magnetic core has a definite cross sectional area and length and this is important in the next section. In the horse shoe magnet shown in the next example, the flux runs through the iron and then jumps across the air gap. The flux is concentrated in the gap and the gap has a definite cross sectional area and length. WORKED EXAMPLE No. 1 The flux flowing through a horse shoe magnet is 0.16 Wb. The cross sectional area of the gap is 200 mm 2. Calculate the flux density in the gap. = 0.16 Wb A = 200 x 10-6 m 2. B = /A = 0.16/200 x 10-6 = 800 Tesla In the following work, it is useful to think of a magnetic flux created by a coil wound on a ring (toroid) of magnetic material as shown. This ring forms a complete circuit of uniform cross sectional area A and length l. In the simple electric circuit shown, the current flowing depends on the voltage V and the resistance R. In the magnetic circuit, a flux flows. The strength of the flux depends on the coil and this property is called the MAGNETO MOTIVE FORCE (m.m.f.). This is equivalent (analogous) to the voltage. We need a property equivalent to resistance to describe how easy it is for the flux to flow. This property is called RELUCTANCE. Electrical resistance depends on a property of the material called the conductivity (or resistivity). Different materials have different electrical resistance (Silver is the best but copper is very good). In the same way, the reluctance of a material depends on a property called the PERMEABILITY (iron is good but there are even better materials). D.J.Dunn 4

5 2.3 MAGNETO MOTIVE FORCE m.m.f. The m.m.f. is created by the current flowing in the coil. It is directly proportional to the current I and the number of turns of the coil T. m.m.f. = I T The units are Ampere Turns (A T) Permanent magnets have a theoretical m.m.f to explain the permanent flux. In order to understand magneto motive force, we need to study the closely related topic of magnetising force next. 2.4 MAGNETISING FORCE H The toroid in the previous section formed a complete ring of uniform cross section. The length l is the mean circumference of the ring. The magnetising force is defined as the m.m.f. divided by l. H = I T/ l The units are Ampere turns per metre. WORKED EXAMPLE No. 2 A coil is wound on a toroid core 50 mm mean diameter. There are 500 turns. Calculate the m.m.f. and the Magnetising force when a current of 2 A is applied. m.m.f. = I T = 2 x 500 = 1000 Ampere Turns l = circumference = πd = π x 0.05 = m H = m.m.f./ l = 1000/0.157 = AT/m 2.5 RELATIONSHIP BETWEEN B AND H The toroid has a uniform cross sectional area A so the flux density is simply B = /A. The flux and hence flux density depends on the m.m.f. and hence the magnetising force. For any coil it is found that B/H = constant. Here it gets a bit difficult because unless the material is magnetic, the flux will flow through the air and the length of the magnetic circuit is not apparent. It has been found that for a simple coil with no core at all (a complete vacuum), the constant is x 10-7 and this is called the ABSOLUTE PERMEABILITY OF FREE SPACE and has a symbol o. If a magnetic material such as iron is placed inside the coil, the constant increases. The ratio by which the constant increases is called the RELATIVE PERMEABILITY AND has a symbol r. It follows that: B/H = o r It is difficult to apply this to a simple coil as the length of the magnetic circuit is not obvious unless the coil is wound on a magnetic material to produce a circuit. Suppose our circuit is the simple toroid again. For the electric analogy we have Ohm s Law V/I = R By analogy, in the magnetic circuit m.m.f/ = reluctance Substitute B = /A and H = m.m.f./ l into the equation above and l /(A m.m.f.) = o r Rearrange and m.m.f/ = l /(A o r ) = Reluctance Reluctance = l /A o r The units are A T/Wb D.J.Dunn 5

6 WORKED EXAMPLE No. 3 In example No.2 the magnetic core has a relative permeability of 300. Calculate the reluctance, the flux and the flux density. The cross sectional area of the core is 50 mm 2. Reluctance = l /A o r = /(50 x 10-6 x x 10-7 x 300) = 8.33 x 10 6 AT/Wb m.m.f/ = reluctance = m.m.f. / reluctance = 1000/8.33 x 10 6 = 120 x 10-6 Wb B = /A = 120 x 10-6 /50 x 10-6 ) = 2.4 T CHECK WITH B = o r H = x 10-7 x 300 x = 2.4 T 2.6 B H GRAPHS For non-magnetic materials r is always about 1.0. For magnetic materials, the relative permeability r is not constant as implied previously and B is not directly proportional to H. This is not a major problem as manufacturers produce the information in the form of a B H graph and we can find the values of one if the other is known. A typical graph is shown below. Typically, the value of B increase directly with H when the values of I are small but when the values of H become large, B becomes constant. When B is constant, the magnetic core is said to be SATURATED. D.J.Dunn 6

7 WORKED EXAMPLE No. 4 Using the B H graph, determine (i) the value of H when B = 0.6 for cast iron and (ii) the value of B when H = 6000 AT/m for mild steel sheet. (i) H = 2800 AT/m (ii) B = 1.7 Tesla WORKED EXAMPLE No. 5 The toroidal coil shown has 50 turns and the mean circumference is 250 mm. The diameter of the circular cross section is 10 mm. The relative permeability is 700. Calculate the current needed to produce a flux of Wb in the core. Reluctance = l /A o r = 0.25( x 10-7 x 700 x x ) Reluctance = Ampere Turns/Wb mmf = x reluctance = x = Ampere Turns mmf = IT hence I = /50 = A SELF ASSESSMENT EXERCISE No The diagram shows a coil wound on a toroid. Determine the following. (i) The m.m.f. (320 Ampere Turns) (ii) The flux. (1.675 x 10-4 Wb) (iii) The flux density. (3.35 T) (iv) The magnetising force. (5333 Ampere Turns/metre) A = 50 mm 2 l = 60 mm T = 80 Turns r = 500 I = 4 Amps 2. The diagram shows a coil wound on a ring core. Determine the current which produces a flux of 800 Wb. (8.5 Amps) Material Cast Steel core. A = 500 mm 2 l = 0.4 m T = 200 Turns D.J.Dunn 7

8 2.7 NON UNIFORM MAGNETIC CIRCUITS This section is for those wanting some more advanced knowledge on the subject. Consider a magnetic core as shown with six different sections. One of these is the air gap. The flux is generated by the coil producing the m.m.f. and driven through all six sections in series. Each section has a length, area and relative permeability so each has reluctance. The analogous electric circuit is six resistors in series. The solution of problems involves finding the reluctance of each section and adding them to find the overall reluctance. As the next example shows, it is probably simpler to calculate the m.m.f. required to drive the flux through each section and add them up WORKED EXAMPLE No. 6 The toroid shown has two air gaps of 0.5 mm width as shown. Determine the current which produces a flux of 800 Wb. Material - Mild steel core. A = 500 mm 2 at all points. l = 0.4 m T = 200 Turns B = /A = 800 x 10-6 /500 x 10-6 = 1.6 Tesla at all points. We have two reluctances, the steel sections form one and the air gaps the other. First solve the m.m.f. required to drive the flux through the steel sections taking l = 0.4 From the B - H graph H = Ampere Turns/ metre for the steel. mmf = H l = x 0.4 = 1280 Ampere Turns Now repeat for the air gap. This time we use the relationship B/H = o r to solve H. The total length is 1 mm. For air r = 1 o = x 10-7 B/H = o r = x 10-7 x 1 and B is the same value of 1.6 Tesla H = B/ x 10-7 = x 10 6 Ampere turns/metre l = 1 mm m.m.f. = H l = x 10 6 x = 1274 ampere Turns Total m.m.f. = = 2554 Ampere Turns m.m.f. = I T hence I = m.m.f./t = 2554/200 = Amperes. D.J.Dunn 8

9 SELF ASSESSMENT EXERCISE No A coil is wound on a cast iron core. The core is 300 mm long and 600 mm 2 cross sectional area with an air gap of 10 mm. There are 5000 turns and flux in the core is 500 Wb. Calculate the current flowing in the coil. (1.8 Amperes) 2. A coil is wound on a ferrite ring 80 mm long and 100 mm 2 cross sectional area with two air gaps of 0.8 mm. There are 400 turns and flux in the core is 90 Wb. μ r for ferrite is Calculate the current flowing in the coil. (2.959 Amperes) 2.8 HYSTERESIS Hysteresis is a phenomenon associated with magnetic materials that are capable of being permanently magnetised. When the magnetic flux is created by a coil carrying a direct current, the material becomes permanently magnetised. If the current is reversed, the material becomes permanently magnetised in the opposite direction. The problem arises when the current is alternating so that it reverses at regular intervals (50 times a second for mains frequency). Consider a coil wound on an iron core. Follow the process described on the B H curve. A current is applied and a flux is produced. If the current is gradually increased and the values of B are plotted against H we get a B - H graph from 1 to 2. At point 2, a further increase in current does not produce an increase in B and the core is said to be saturated. If the current is switched off at this point the iron core will remain magnetised and form a permanent magnet. If the current is gradually reduced from its maximum value and we continue to plot B against H we will get the graph 2 to 3. At point 3 the current is zero but we now have a flux because the core is magnetised in one direction and forms a permanent magnet. In order to reduce the magnetic flux to zero, we must apply a negative current and this takes the graph to point 4. Continuing to increase the current in the negative direction increases the flux in a negative direction (N and S poles are reversed) and the graph 4 to 5 is obtained. At this point the iron is magnetised in the opposite direction to before. If the current is reduced back to zero the graph 5 to 6 is obtained and at point 6 the current is again zero but there is a permanent flux opposite in direction to before. If the current is now increased in the positive direction again the flux will be reduced to zero at point 7 and then increases positively back to point 2. If we continue to alternate the current plus and minus (i.e. apply a.c.) the B - H graph will follow the loop 2,3,4,5,6,7,2 over and over again. This loop illustrates the HYSTERESIS EFFECT. Hysteresis may be defined as a process where a graph takes a different path for increasing and decreasing values. The hysteresis loop on a B - H graph is the result of the iron being permanently magnetised first in one direction and then the other. The area enclosed by the loop represents energy being lost. This is why an iron core gets hot when ac is applied to the coil. This is important in transformers where part of the heat generated is due to this effect. D.J.Dunn 9

10 3. FORCE ON A CONDUCTOR - MOTOR PRINCIPLE 3.1 FORCE A major discovery leading to the invention of the electric motor was that a conductor placed in a magnetic field experiences a force when current flows in it. Consider a conductor placed in a gap between the poles of a magnet. When current passes through the conductor, we have two magnetic fields, the circular lines around the conductor and the parallel lines between the poles. The lines of magnetism between the north and south poles would rather pass over the top of the conductor because both lines are in the same direction on top. The lines behave like elastic bands and force the conductor down. If the direction of either the current or the magnetic field is reversed, the force will act up. The force on the conductor is directly proportional to the current I, the magnetic flux density B and the length l of the conductor within the flux.this is the important equation for the force on a conductor. F = B l I 3.2 TORQUE ON A LOOP This principle may be used to produce a simple electric motor. Consider a single loop coil placed in the magnetic field as shown. The current flows into one side and out of the other. This produces a downwards force on one side and an upwards force on the other at a radius R. This produces a torque on the coil of T = F R. This will make the loop rotate and but when it turns 90 o the radius is zero and the torque is zero so it will stop. If we reverse the current as it passes the 90 o position the torque will continue to make it rotate. Switching the direction of the current every half rotation will produce continuous rotation. This can be done with a split ring as shown. The design is further improved by using several loops and switching the current to the one in the horizontal position all the time. The split ring becomes a commutator with many segments. Each pair of segments is connected to a loop and each pair in turn becomes connected to the brushes as it rotates. D.J.Dunn 10

11 3.3 MOVING COIL METER Modern instruments for measuring electric current are electronic with digital indication. The moving coil instrument uses the motor principle to indicate current and although not now used, the same principle is used in many other forms of electromechanical equipment. The loop or coil rotates only 90 o and rotation is governed by a spring. The loop is connected to a pointer which moves on a scale. The movement is directly proportional to current in the coil. SELF ASSESSMENT EXERCISE No The diagram shows a conductor 60 mm long carrying 12 Amperes in a flux of density 1.2 Tesla. Calculate the force acting on it and determine the direction of the force. (0.864 N to right) 2. The diagram shows a conductor 80 mm long carrying 5 Amperes in a flux of density 0.2 Tesla. Calculate the force acting on it and the direction in which it moves. (0.08 N to left) D.J.Dunn 11

12 4. THE GENERAL PRINCIPLES OF D.C. MOTORS The motor principle describe in the preceding work must be turned into a practical design. Usually there are several loops arranged on a ROTOR as shown in the cross section. The magnets are placed in the housing or STATOR. The current is supplied to the loops within the magnetic field causing the rotor to move. As a new loop enters the magnetic field the current is switched to it to keep the rotation going. This may be done with a COMMUTATOR and BRUSHES but it can be done electronically. The magnetic poles may be permanent magnets but in more powerful motors they are electromagnets with a coils wound on the poles called the FIELD WINDINGS. The stator and rotor form a magnetic circuit and the flux crosses the loops on the armature as shown. The strength of the magnetic flux can be changed by changing the current. The rotor in the diagram would be called the ARMATURE. In a basic D.C. motor, current has to be supplied to the field windings to produce the magnetic flux. Current must be supplied to the armature to produce the torque. The basic circuit for a motor is shown. Note the brushes used to contact armature. TERMINOLOGY USED I a = armature Current V = Supply voltage E a = EMF at the armature. R a = resistance of the armature coils. E a = V - I a R a If the armature windings were perfect conductors then E a = V I f = Field current T = Torque N = rotor speed in rev/s There are various ways of arranging the field windings and armature but the two most common ways are in SERIES and as a SHUNT. SERIES MOTOR In this case, the field winding is in series with the armature. The same current flows through the armature and the field winding. The mechanical power of any rotor is P = 2 NT The electric power of any rotor is ideally P = E a I a Equating and rearranging we see that T = E a I a /2 N If the electric power is constant, E a I a are constant so T = Constant /N This means that for a constant electrical power the speed would increase as the load is removed and decrease as the load increases as shown by the graph. DISADVANTAGE At low torque (no load conditions) the motor is liable to over speed and become damaged. ADVANTAGE At low speed there is a high torque (starting torque) which is ideal for servo applications. D.J.Dunn 12

13 SHUNT MOTOR In this case the field winding is connected in parallel with the armature as shown. The field current is constant so flux cannot be changed except by changing the supply voltage. E a = V - I a R a It can be shown that T = C 1 - C 2 N C 1 and C 2 are constants. This shows that at zero speed the starting torque is C 1 and as speed increases, the torque drops off. The ideal Torque - Speed characteristic is as shown. In reality the line is curved down due to other effects not considered. WORKED EXAMPLE No. 7 A D.C. motor is shunt wound and is supplied with 400 V. The armature resistance is 1.2 and the field winding has a resistance of 300. When running with a torque of 70 Nm, the motor takes 19 Amps. Determine the speed of the motor assuming the electrical power is converted into mechanical power with 100% efficiency. The field is connected across the supply. The current taken by the field winding is I f = 400/300 = amp The current taken by the armature is hence = A E a = V - I a R a = x 1.2 = V Electric power converted into mechanical power = E a I a = x = 6692 Watts Assuming the conversion process is 100% the Mechanical power = 6692 W 2 NT = 6692 N = 6692/(2 T) = 6692/(2 x 70) = rev/s or rev/min WORKED EXAMPLE No. 8 It is observed that the same motor as in the previous example has a torque of 105 Nm when it stalls. Assuming the torque speed relationship is linear of the form T = C 1 - C 2 N determine the constants c1 and C2. When N = 0, T = C 1 = 105Nm When N = rev/s, T = 70 = C 2 (15.21) hence C 2 = 2.3 Nm s/rev D.J.Dunn 13

14 5 THE GENERATOR PRINCIPLE 5.1 COIL AND MAGNET Discoveries by people like Oersted and Faraday established that an electric current can be generated by moving a conductor relative to a magnetic field so that it cuts the lines of flux. This is best demonstrated by inserting a magnet into a coil as shown. The magnet is inserted in the coil and all the flux cuts across the turns of the conductor at 90 o and induces an e.m.f. An e.m.f. is generated only when the magnet is moved. Changing the direction of movement changes the polarity of the e.m.f. 5.2 CONDUCTOR CROSSING A UNIFORM FLUX We will come back to the coil later. Now consider a conductor crossing a flux as shown. As it moves a voltage is generated in it. If current is produced then the voltage will be reduced slightly by the resistance of the conductor. The ELECTRO MOTIVE FORCE or E.M.F. is the theoretical voltage as though the conductor had no resistance and this is denoted with the symbol e. Note that e is used for e.m.f. when the values are instantaneous and changing. E is used for a constant value. The E.M.F. is directly proportional to the flux density B, the velocity v and the length of the conductor within the flux l. It follows that the e.m.f. is given by: e = B l v 5.3 FLEMING S RIGHT HAND RULE This is the generator equation. The direction of the current generated is found from Fleming s Right Hand Rule. Point the index finger of your right hand in the direction of the flux (North to South). Point your thumb in the direction of the velocity. Bend over the second finger and it points the direction of the current. D.J.Dunn 14

15 5.4 CONSTRUCTION OF GENERATOR A simple generator may be constructed exactly the same as the simple motor. Instead of passing current into the loop, the loop is made to rotate and a voltage is generated across the end of the loop. The current flowing from the terminals is governed by the resistance connected between them (e.g. the resistance of a light bulb). The voltage generated is directly proportional to the angle of the loop to the flux θ. The output voltage is given by V = V max Sin V max is the maximum voltage and is the angle of rotation. The simple generator shown produces alternating current which is sinusoidal in form. If the coil is connected to a split ring, the polarity is reversed every half revolution and the output is a direct current consisting of half sinusoidal waves. The e.m.f. is generated in the armature and the current is tapped off through brushes. If many coils are used with a commutator, the output can be made into a constant DC form. The diagram below shows a schematic of the generator with a load across the terminals. The armature resistance represents the resistance of the coil. The ideal voltage generated is E but when a current I flows, the terminal voltage is given by V = E - I R a D.J.Dunn 15

16 SELF ASSESSMENT EXERCISE No The diagram shows a conductor moving through a flux. The length is 80 mm and the flux density is 2 Tesla. The velocity is 12 m/s. Calculate the emf produced and the direction of the current. (1.92 V into the page) 2. The diagram shows a conductor moving through a flux. The length is 100 mm and the flux density is 1.8 Tesla. The velocity is 2 m/s. Calculate the emf produced and the direction of the current. (0.36 V out of page) D.J.Dunn 16

17 6. ELECTRO-MAGNETIC INDUCTION In order to understand this topic fully, you need to understand differential calculus and the basics of alternating current theory so the theory is cut down and kept as simple as possible. You will find a fuller version of this tutorial on the web site E.M.F. GENERATED IN A COIL Consider the case of a magnet being moved into a coil as discussed earlier. The generator principle applies and in this case we can say that the e.m.f generated depends on the number of turns on the coil n and the relative velocity of the magnet. We know that when a current flows in a coil, a magnetic flux is generated. If we generate a current we also generate a magnetic field in the coil and this will produce a force of repulsion between the magnet and the coil so that mechanical work has to be done to move the magnet. This is the source of the energy produced in the current. 6.2 INDUCTORS and BACK E.M.F. Any coil of wire is an inductor. A coil made specifically for an electric circuit is called an inductor. The diagram shows the symbols for one with an air core and one with a magnetic core. An ideal Inductor has no affect on direct current. In reality they have a small resistance in the copper wire. When alternating current is applied, electro-magnetic induction produces a reaction. Inductors and capacitors are examples of REACTIVE components because their properties are affected by the frequency of the current flowing through it. Resistors are not affected and are called PASSIVE. Consider a coil in which alternating current is flowing. The current produces an alternating magnetic flux. The alternating flux cuts across the coil and generates an e.m.f. that is opposite in sense to the applied voltage. This is called the back e.m.f. This opposes the flow of the applied current (Lenz's Law) and a minus sign is used in Faraday s law. The back e.m.f. is hence: e = - n x rate of change of flux The applied voltage must be equal and opposite. This means that even though there is no resistance in the coil, a voltage is required to make alternating current flow. This voltage depends on the rate of change and hence the frequency. This is not resistance it is called REACTANCE. Without theory it can be shown that : e = - L x rate of change of current L is a property called the Inductance and the units are called Henries (H). The base unit is very large and mh or H is more common. It can further be shown that : L = o r An 2 / l D.J.Dunn 17

18 This is a theoretical formula for the inductance of a coil. A is the cross sectional area of the core and l the length of the inductor. The problem with a coil as shown above is that half of the flux is in the core and half in the air outside so we cannot calculate L easily unless the core is a ring. WORKED EXAMPLE No. 9 An inductor is made by winding 1500 turns on a ring. The mean circumference is 250 mm and the ring has a circular cross section 25 mm diameter. The core material has a relative permeability of 420. Determine the inductance given o = 12.5 x A current is made to vary in the coil at 300 A/s. Calculate the back e.m.f. L = o r An 2 / l A = x /4 = x 10-6 m 2. l = 0.25 m L = 12.5 x 10-7 x 420 x x 10-6 x /0.25 = 2.33 Henries e = - L x rate of change of current = x 300 == -700 Volts 6.3. ENERGY STORED IN AN INDUCTOR Suppose the current in an inductor is increased uniformly from 0 to I Amps in time t seconds. The rate of change of current is constant and equal to I/t. The e.m.f. required is L I/t Remember that Electric Power is volts x Current. The power grows from P = 0 to P = V I in time t. The energy stored is the mean power x time and the mean is half the maximum. Energy = V I t/2 Substitute V = LI/t and the energy stored is Energy = L I 2 /2 SELF ASSESSMENT EXERCISE No An inductor is wound on a toroid 50 mm mean diameter and a round cross section 10 mm diameter. There are 300 turns and the relative permeability is 500. Calculate the inductance. (28 mh) 2. Calculate the energy stored in an inductor of value 1.7 H when 5 Amps flow. 3. An inductor stores 5 Joules when 2 A flow in it. Calculate the inductance value. (21.25 J) (2.5 H) D.J.Dunn 18

19 7. TRANSFORMERS 7.1 DESCRIPTION Transformers are devices for changing alternating voltages and currents. The types of transformers vary from very large to very small. Very large ones are used for transforming the a.c. power generated at a power station to and from a high voltage grid. Smaller ones are used to transform the mains voltage down to a useable level such as 12 V for use in electronic equipment. These have largely been replaced by modern electronic devices that are much smaller, lighter and cheaper. In other areas of electronics such as radio receivers, small transformers working at high frequencies are common. 7.2 PERFECT TRANSFORMER A perfect transformer has two coils placed in close proximity to each other. An alternating voltage is applied to one coil called the primary winding and this produces an alternating magnetic flux. The flux cuts the turns of the second coil (called the secondary winding) and generates an e.m.f. at the same frequency. If the secondary voltage is smaller than the primary we have a step down transformer. If the voltage is larger we have a step up transformer. D.J.Dunn 19

20 In order to make all the flux cut both windings, they are either wound on a core that forms a closed loop or wound very close to each other. In this event, the ratio of the voltages is in direct proportion to the number of turns on each winding such that: V 1 /V 2 = N 1 /N 2 In the ideal transformer, the electric power going in at the primary would be the same as the power coming out of the secondary. In this case: P 1 = V 1 I 1 = P 2 = V 2 I 2 Hence V 1 / V 2 = I 2 / I 1 = N 1 /N 2 Note that if the voltage is stepped up, the current is stepped down and vice versa. 7.3 REAL TRANSFORMERS Real transformers are affected by energy losses. These fall into two main groups -CORE LOSS and COIL LOSS CORE LOSS Large power transformers have iron cores and these become hot and lose energy because of HYSTERESIS and EDDY CURRENTS. The core losses are near constant and are not affected by the current flowing in the coils. Hysteresis was explained earlier and heats up the iron core of a transformer and this is an energy lost. EDDY CURRENTS The alternating flux generates electricity in the magnetic core material. As this is a short circuit, random currents flow in the material and dissipate energy as heat due to the electrical resistance. In order to reduce this, larger transformers have cores made from laminate iron sheets and each layer is insulated from each other. SCREENING Transformers (and other induction devices) may produce very strong electro-magnetic fields. These should be contained by placing a screen around them in the form of some kind of iron container COIL LOSSES RESISTANCE The losses in the primary and secondary coils are due to the Ohmic resistance of the copper windings. Energy is lost in the form of heat. These losses are best calculated with the formula I 2 R and so they increase as the square of the current. There areother losses which are not discussed here. EFFICIENCY η In simple terms the efficiency of a transformer is the ratio of the Power in top the power out but this is complicated by the power factor of the load. The primary is referred to as 1 and the secondary as 2. η Power Out P2 Power In P η (I 2 2 R 2 1 P2 P copper loss core 2 2 I2R 2 x PF) copper loss core loss loss The copper loss is I 2 2 R 2 + I 1 2 R 1 D.J.Dunn 20

21 WORKED EXAMPLE No. 10 A 5/1 step down transformer has a full load secondary current of 20 A 500V. The primary winding has 800 Turns. Assuming ideal conditions determine the following. (i) The number of turns on the secondary coil. (ii) The voltage and current in the primary winding. N 2 = N 1 /5 = 800/5 = 160 turns N1 I I1 4 A N I V 1 = 5V 2 = 5 x 500 = 2500 V If the transformer has losses due to a secondary resistance of 0.3 Ω and no other losses, determine the efficiency of the transformer. Power loss in the secondary = I 2 R = 20 2 x 0.3 = 120 W Ideal Power input = V 2 I 2 = 20 x 500 = 10 kw Actual Power out = = 9880 W Ideal Power Input = 10 kw Power Out 9880 η or 98.8% Power In SELF ASSESSMENT EXERCISE No A simple high frequency transformer with negligible losses is required to transform 0.05 V rms to 1 V rms. The primary has 10 turns. How many turns should the secondary have? (200) 2. An ideal step down transformer must change 240 V rms into 12 V rms. The secondary winding has 20 turns and produces 5 A. Assuming ideal conditions determine the following. (i) The number of turns on the primary coil. (400) (ii) The current in the primary winding. (0.25 A) (iii)the efficiency if the 15 W are lost in the secondary winding. (75 %) D.J.Dunn 21

### Chapter 14 Magnets and

Chapter 14 Magnets and Electromagnetism How do magnets work? What is the Earth s magnetic field? Is the magnetic force similar to the electrostatic force? Magnets and the Magnetic Force! We are generally

### 2. TRANSFORMERS. The main learning objectives for this chapter are listed below. Use equivalent circuits to determine voltages and currents.

. TRANSFORMERS Transformers are commonly used in applications which require the conversion of AC voltage from one voltage level to another. There are two broad categories of transformers: electronic transformers,

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 1 - D.C. CIRCUITS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME - D.C. CIRCUITS Be able to use circuit theory to determine voltage, current and resistance in direct

### 2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

Extra Questions - 2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux

### Question Bank. 1. Electromagnetism 2. Magnetic Effects of an Electric Current 3. Electromagnetic Induction

1. Electromagnetism 2. Magnetic Effects of an Electric Current 3. Electromagnetic Induction 1. Diagram below shows a freely suspended magnetic needle. A copper wire is held parallel to the axis of magnetic

### Electric Engineering II EE 326 Lecture 4 & 5

Electric Engineering II EE 326 Lecture 4 & 5 Transformers ١ Transformers Electrical transformers have many applications: Step up voltages (for electrical energy transmission with

### Experiment 1 The DC Machine

Experiment 1 The DC Machine ECEN 4517 R. W. Erickson and D. Maksimovic The purpose of this experiment is to become familiar with operating principles, equivalent circuit models, and basic characteristics

### 1. Title Electrical fundamentals II (Mechanics Repair and Maintenance)

1. Title Electrical fundamentals II (Mechanics Repair and Maintenance) 2. Code EMAMBG429A 3. Range The knowledge is needed for a wide range of aircraft repair and maintenance works,e.g. applicable to aircrafts,

### 1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

### Revision Calcs. 1. The flux produced by a magnet is 10mWb. Determine the flux density if the area of the pole is 250 mm 2

EMA Revision Calcs Miller College Revision Calcs Revision Calcs 1. The flux produced by a magnet is 10mWb. Determine the flux density if the area of the pole is 250 mm 2 2. For the magnet in the previous

### ELET 4143 Electrical Machines and Controls

ELET 4143 Electrical Machines and Controls Electromagnetism Spring 2008 Energy in an Inductor A coils stores in its magnetic field when it carries a current I The energy is given by: W = ½ L I 2 W = Energy

### * Self-inductance * Mutual inductance * Transformers. PPT No. 32

* Self-inductance * Mutual inductance * Transformers PPT No. 32 Inductance According to Faraday s Electromagnetic Induction law, induction of an electromotive force occurs in a circuit by varying the magnetic

### And in un-magnetized state, the molecular magnets are arranged randomly.

MAGNETISM A magnet is a piece of metal that attracts other metals. It has two poles i.e. North Pole and South Pole A pole This is a point or an area in a magnet where the attractive power seems to be concentrated.

### Experiment A5. Hysteresis in Magnetic Materials

HYSTERESIS IN MAGNETIC MATERIALS A5 1 Experiment A5. Hysteresis in Magnetic Materials Objectives This experiment illustrates energy losses in a transformer by using hysteresis curves. The difference betwen

### MAGNETISM MAGNETISM. Principles of Imaging Science II (120)

Principles of Imaging Science II (120) Magnetism & Electromagnetism MAGNETISM Magnetism is a property in nature that is present when charged particles are in motion. Any charged particle in motion creates

### Chap 21. Electromagnetic Induction

Chap 21. Electromagnetic Induction Sec. 1 - Magnetic field Magnetic fields are produced by electric currents: They can be macroscopic currents in wires. They can be microscopic currents ex: with electrons

### DIRECT CURRENT GENERATORS

DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle

### Physics Notes for Class 12 Chapter 4 Moving Charges and Magnetrism

1 P a g e Physics Notes for Class 12 Chapter 4 Moving Charges and Magnetrism Oersted s Experiment A magnetic field is produced in the surrounding of any current carrying conductor. The direction of this

### Chapter 23 Magnetic Flux and Faraday s Law of Induction

Chapter 23 Magnetic Flux and Faraday s Law of Induction 23.1 Induced EMF 23.2 Magnetic Flux 23.3 Faraday s Law of Induction 23.4 Lenz s Law 23.5 Mechanical Work and Electrical Energy 23.6 Generators and

### rd Class / AC Machines Dr. Inaam Ibrahim

3 rd Class / AC Machines Dr. Inaam Ibrahim 1 1. Introduction Induction Motors The induction motor derives its name from the fact that ac voltages are induced in the rotor circuit by the rotating magnetic

### Electrical Machines. Electrical Engineering. for

Electrical Machines for Electrical Engineering By www.thegateacademy.com Syllabus Syllabus for Electrical Machines Single Phase Transformer: Equivalent Circuit, Phasor Diagram, Open Circuit and Short Circuit

### INSTRUMENTATION AND CONTROL TUTORIAL 2 ELECTRIC ACTUATORS

INSTRUMENTATION AND CONTROL TUTORIAL 2 ELECTRIC ACTUATORS This is a stand alone tutorial on electric motors and actuators. The tutorial is of interest to any student studying control systems and in particular

### Chapter 19 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles

Chapter 19 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles repel each other and unlike poles attract each other Similar

### Name: Date: Regents Physics Mr. Morgante UNIT 4B Magnetism

Name: Regents Physics Date: Mr. Morgante UNIT 4B Magnetism Magnetism -Magnetic Force exists b/w charges in motion. -Similar to electric fields, an X stands for a magnetic field line going into the page,

### APPLICATION NOTE - 018

APPLICATION NOTE - 018 Power Transformers Background Power Transformers are used within an AC power distribution systems to increase or decrease the operating voltage to achieve the optimum transmission

### AP Physics C Chapter 23 Notes Yockers Faraday s Law, Inductance, and Maxwell s Equations

AP Physics C Chapter 3 Notes Yockers Faraday s aw, Inductance, and Maxwell s Equations Faraday s aw of Induction - induced current a metal wire moved in a uniform magnetic field - the charges (electrons)

### Level 2 Physics: Demonstrate understanding of electricity and electromagnetism

Level 2 Physics: Demonstrate understanding of electricity and electromagnetism Static Electricity: Uniform electric field, electric field strength, force on a charge in an electric field, electric potential

### GENERATORS AND MOTORS

GENERATORS AND MOTORS A device that converts mechanical energy (energy of motion windmills, turbines, nuclear power, falling water, or tides) into electrical energy is called an electric generator. The

### Chapter 5 TRANSFORMERS

Chapter 5 TRANSFORMERS Objective Understand the transformer nameplate Describe the basic construction features of a transformer. Explain the relationship between voltage, current, impedance, and power

### INTRODUCTION SELF INDUCTANCE. Introduction. Self inductance. Mutual inductance. Transformer. RLC circuits. AC circuits

Chapter 13 INDUCTANCE Introduction Self inductance Mutual inductance Transformer RLC circuits AC circuits Magnetic energy Summary INTRODUCTION Faraday s important contribution was his discovery that achangingmagneticflux

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC

### Inductors. AC Theory. Module 3

Module 3 AC Theory What you ll learn in Module 3. Section 3.1 Electromagnetic Induction. Magnetic Fields around Conductors. The Solenoid. Section 3.2 Inductance & Back e.m.f. The Unit of Inductance. Factors

### Chapter 4. Magnetic Materials and Circuits

Chapter 4 Magnetic Materials and Circuits Objectives List six characteristics of magnetic field. Understand the right-hand rule for current and magnetic fluxes. Define magnetic flux, flux density, magnetomotive

### Chapter 11. Inductors. Objectives

Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive

### The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this

### Lesson 11 Faraday s Law of Induction

Lesson 11 Faraday s Law of Induction Lawrence B. Rees 006. You may make a single copy of this document for personal use without written permission. 11.0 Introduction In the last lesson, we introduced Faraday

### Chapter 22: Electric motors and electromagnetic induction

Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on

### MAGNETISM AND ELECTRICITY

MAGNETISM AND ELECTRICITY Magnetism is a natural phenomenon first documented by the Greeks who observed that a naturally occurring substance, magnetite would attract pieces of iron. Later on, the Chinese

### 6. ELECTROMAGNETIC INDUCTION

6. ELECTROMAGNETIC INDUCTION Questions with answers 1. Name the phenomena in which a current induced in coil due to change in magnetic flux linked with it. Answer: Electromagnetic Induction 2. Define electromagnetic

### Physics 12 Study Guide: Electromagnetism Magnetic Forces & Induction. Text References. 5 th Ed. Giancolli Pg

Objectives: Text References 5 th Ed. Giancolli Pg. 588-96 ELECTROMAGNETISM MAGNETIC FORCE AND FIELDS state the rules of magnetic interaction determine the direction of magnetic field lines use the right

### DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR

1 DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Constructional details Types of rotors EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR PART A 1.

### Physics 1214 Chapter 21: Electromagnetic Induction 02/15

Physics 1214 Chapter 21: Electromagnetic Induction 02/15 1 Induction Experiments emf or electromotive force: (from Chapter 19) the influence that moves charge from lower to higher potential. induced current:

### PHYSICS 212 INDUCED VOLTAGES AND INDUCTANCE WORKBOOK ANSWERS

PHYSICS 212 CHAPTER 20 INDUCED VOLTAGES AND INDUCTANCE WORKOOK ANSWERS STUDENT S FULL NAME (y placing your name above and submitting this for credit you are affirming this to be predominantly your own

### AC Motors Synchronous and Asynchronous

EEE 2015 ELECTRICS Electromechanical systems For energy conversion between electrical and mechanical forms, electromechanical devices are developed, which can be divided into three categories: 1. Transducers

### Chapter 20.1 Induced EMF and magnetic flux

Chapter 20.1 nduced EMF and magnetic flux Electric current gives rise to magnetic fields Can a magnetic field give rise to a current? Michael Faraday 1791-1867 The answer is yes as discovered by Michael

### MOTIONLESS ELECTRIC GENERATOR DESIGN BASED ON PERMANENT MAGNETS AND MAGNETIC AMPLIFIER

12/28/2009 MOTIONLESS ELECTRIC GENERATOR DESIGN BASED ON PERMANENT MAGNETS AND MAGNETIC AMPLIFIER FEDERALLY SPONSOR RESEARCH Not Applicable BACKGROUND - Field [0001] This application relates to motionless

### Extra Questions - 1. 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A

Extra Questions - 1 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A 2. A current of 500mA flows in a resistance of 12Ω. What power is dissipated

### Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).

INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes

### MAGNETIC EFFECTS OF ELECTRIC CURRENT

CHAPTER 13 MAGNETIC EFFECT OF ELECTRIC CURRENT In this chapter, we will study the effects of electric current : 1. Hans Christian Oersted (1777-1851) Oersted showed that electricity and magnetism are related

### Chapter 14 Magnets and Electromagnetism

Chapter 14 Magnets and Electromagnetism Magnets and Electromagnetism In the 19 th century experiments were done that showed that magnetic and electric effects were just different aspect of one fundamental

### I d s r ˆ. However, this law can be difficult to use. If there. I total enclosed by. carrying wire using Ampere s Law B d s o

Physics 241 Lab: Solenoids http://bohr.physics.arizona.edu/~leone/ua/ua_spring_2010/phys241lab.html Name: Section 1: 1.1. A current carrying wire creates a magnetic field around the wire. This magnetic

### Inductive and Magnetic Sensors

Chapter 12 Inductive and Magnetic Sensors 12.1 Inductive Sensors A number of the actuators developed in previous chapters depend on the variation of reluctance with changes in angle or displacement. Since

### Name: Lab Partner: Section: The purpose of this lab is to study induction. Faraday s law of induction and Lenz s law will be explored.

Chapter 8 Induction - Faraday s Law Name: Lab Partner: Section: 8.1 Purpose The purpose of this lab is to study induction. Faraday s law of induction and Lenz s law will be explored. 8.2 Introduction It

### Magnetic Forces and Magnetic Fields

1 Magnets Magnets are metallic objects, mostly made out of iron, which attract other iron containing objects (nails) etc. Magnets orient themselves in roughly a north - south direction if they are allowed

### Motor Fundamentals. DC Motor

Motor Fundamentals Before we can examine the function of a drive, we must understand the basic operation of the motor. It is used to convert the electrical energy, supplied by the controller, to mechanical

### Open circuit and short circuit tests on single phase transformer

1 Aim Experiment No: 2 Open circuit and short circuit tests on single phase transformer To understand the basic working principle of a transformer. To obtain the equivalent circuit parameters from OC and

### Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road, New Delhi , Ph. : ,

1 EMI & AC 1. Derive an expression for the impendance of a coil in AC ciruit. A current of 1.1 A flows through a coil when connected to a 110 V DC. When 110 V AC of 50 Hz is applied to the same coil, only

### Chapter 9: Ideal Transformer. 10/9/2003 Electromechanical Dynamics 1

Chapter 9: Ideal Transformer 10/9/003 Electromechanical Dynamics 1 Introduction Transformers are one of the most useful electrical devices provides a change in voltage and current levels provides galvanic

### Chapter 4: DC Generators

Chapter 4: DC Generators Creating an AC Voltage The voltage produced in a DC generator is inherently AC and only becomes DC after rectification Consider an AC generator, consisting of a coil on the rotor

### PPT No. 26. Uniformly Magnetized Sphere in the External Magnetic Field. Electromagnets

PPT No. 26 Uniformly Magnetized Sphere in the External Magnetic Field Electromagnets Uniformly magnetized sphere in external magnetic field The Topic Uniformly magnetized sphere in external magnetic field,

### Objectives for the standardized exam

III. ELECTRICITY AND MAGNETISM A. Electrostatics 1. Charge and Coulomb s Law a) Students should understand the concept of electric charge, so they can: (1) Describe the types of charge and the attraction

### ALTERNATING CURRENTS

ALTERNATING CURRENTS VERY SHORT ANSWER QUESTIONS Q-1. What is the SI unit of? Q-2. What is the average value of alternating emf over one cycle? Q-3. Does capacitor allow ac to pass through it? Q-4. What

### Principles and Working of DC and AC machines

BITS Pilani Dubai Campus Principles and Working of DC and AC machines Dr Jagadish Nayak Constructional features BITS Pilani Dubai Campus DC Generator A generator consists of a stationary portion called

### Chapter 21 Electromagnetic Induction and Faraday s Law

Lecture PowerPoint Chapter 21 Physics: Principles with Applications, 6 th edition Giancoli Chapter 21 Electromagnetic Induction and Faraday s Law 2005 Pearson Prentice Hall This work is protected by United

### DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.

DC Generators DC generators are widely used to produce a DC voltage. The amount of voltage produced depends on a variety of factors. EO 1.5 LIST the three conditions necessary to induce a voltage into

### Electromagnetic Induction

Electromagnetic Induction PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html previously: electric currents generate magnetic field. If a current

### SCS 139 II.3 Induction and Inductance

SCS 139 II.3 Induction and Inductance Dr. Prapun Suksompong prapun@siit.tu.ac.th L d dt di L dt B 1 Office Hours: Library (Rangsit) Mon 16:20-16:50 BKD 3601-7 Wed 9:20-11:20 Review + New Fact Review Force

### BASIC ENGINEERING II. Part A ELECTRICAL ENGINEERING. Prepared by Dr.R.Jegatheesan Professor, EEE Dept.

BASC ENGNEERNG Part A ELECTRCAL ENGNEERNG Prepared by Dr.R.Jegatheesan Professor, EEE Dept. AC & DC circuits Circuit parameters, Ohms law, Kirchhoff s laws. Average and RMS values, concept of phasor representation.

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 2 - CAPACITANCE

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 2 - CAPACITANCE 2 Understand the concepts of capacitance and determine capacitance values in DC circuits

### The Effects of Airgap Flux Density on Permanent Magnet Brushless Servo Motor Design

The Effects of Airgap Flux Density on Permanent Magnet Brushless Servo Motor Design Lowell Christensen VP Engineering TruTech Specialty Motors Magnetics 2013 Orlando Florida Feb 8 & 9, 2013 This presentation

### 13 ELECTRIC MOTORS. 13.1 Basic Relations

13 ELECTRIC MOTORS Modern underwater vehicles and surface vessels are making increased use of electrical actuators, for all range of tasks including weaponry, control surfaces, and main propulsion. This

### Motors and Generators

Motors and Generators Electro-mechanical devices: convert electrical energy to mechanical motion/work and vice versa Operate on the coupling between currentcarrying conductors and magnetic fields Governed

### Induction and Inductance

Induction and Inductance How we generate E by B, and the passive component inductor in a circuit. 1. A review of emf and the magnetic flux. 2. Faraday s Law of Induction 3. Lentz Law 4. Inductance and

### Coil Testing in a Manufacturing Environment

Coil Testing in a Manufacturing Environment by Anthony Pretto, International Electro-Magnetics, Inc. Quality control is an integral part of any manufacturing process. As a part of that process, it is important

### Chapter 20. Magnetic Induction Changing Magnetic Fields yield Changing Electric Fields

Chapter 20 Magnetic Induction Changing Magnetic Fields yield Changing Electric Fields Introduction The motion of a magnet can induce current in practical ways. If a credit card has a magnet strip on its

### Faraday s Law of Induction

Faraday s Law of Induction Potential drop along the closed contour is minus the rate of change of magnetic flu. We can change the magnetic flu in several ways including changing the magnitude of the magnetic

### The Basics of Permanent Magnet Motor Operations

COURSE# - 1 The Basics of Permanent Magnet Motor Operations By George Holling COURSE# - 2 Introduction Introduction The physics of permanent magnets Basic PM motor operating principles Basic motor parameters

### Magnetism Basics. Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment. Net Effect = Zero!

Magnetism Basics Source: electric currents Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment Net Effect = Zero! Net Effect = Additive! Bipolar: all magnets

### Objectives. Capacitors 262 CHAPTER 5 ENERGY

Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.

### Lecture 10 Induction and Inductance Ch. 30

Lecture 10 Induction and Inductance Ch. 30 Cartoon - Faraday Induction Opening Demo - Thrust bar magnet through coil and measure the current Warm-up problem Topics Faraday s Law Lenz s Law Motional Emf

### ELECTRICITY & ELECTROMAGNETISM TRANSFORMERS + ETC

Circuitry, Formulas & Electricity Ch5 Bushong RT 244 12 Lect # 3 1 RT 244 WEEK 10 rev 2012 2 LECTURE # 3 ELECTRICITY & ELECTROMAGNETISM TRANSFORMERS + ETC BUSHONG CH. 4 & 5 REF: CARLTONS CH 3, 4 & 5 &

### CHAPTER 3 INDUCTION MOTOR AND DIFFERENT SPEED CONTROL METHODS

CHAPTER 3 INDUCTION MOTOR AND DIFFERENT SPEED CONTROL METHODS Page No 3.1 Introduction 58 3.2 Three Phase Induction Motor 58 3.2.1 Stator 60 3.2.2 Rotor 60 3.2.3 Working principle of three phase induction

### Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions

Concept Check (top) Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 1 Solutions Student Book page 583 Concept Check (bottom) The north-seeking needle of a compass is attracted to what is called

### Inductors are electronic components that oppose a change in current. Air Core Inductor Symbol

BASIC ELECTRICAL OBJECTIVES Discuss the construction of a Inductor Describe the way react differently in AC and DC circuits Define the calculations for connecting in Series and parallel INTRODUCTION are

### STUDY OF IDEAL TRANSFORMER AND PRACTICAL TRANSFORMER

STUDY OF IDEAL TRANSFORMER AND PRACTICAL TRANSFORMER RUBY DHANKAR, SAPNA KAMRA,VISHAL JANGRA Abstract- This paper proposes the study of real and ideal transformer. It also explains load, no-load conditions

### Draw a ring around the correct answer to complete the following sentences. power supply. (1)

Q. The diagram shows a transformer made by a student. The student has designed the transformer to make a 6 V light bulb work using a 2 V power supply. (a) Draw a ring around the correct answer to complete

### Copper and Electricity: Generation

PHYSICS Copper and Electricity: Generation (Electromagnetic Induction) 16-18 YEARS Below are different sections of this e-source, for quick navigation. Electricity from Movement What is Induction? Flux

### Eðlisfræði 2, vor 2007

[ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has

### Induction. d. is biggest when the motor turns fastest.

Induction 1. A uniform 4.5-T magnetic field passes perpendicularly through the plane of a wire loop 0.10 m 2 in area. What flux passes through the loop? a. 5.0 T m 2 c. 0.25 T m 2 b. 0.45 T m 2 d. 0.135

### Induced voltages and Inductance Faraday s Law

Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic

### ELECTROMAGNETISM I. CAUSES OF MAGNETISM

I. CAUSES OF MAGNETISM ELECTROMAGNETISM 1. Moving electric fields (moving charges) cause magnetism. Yes, that current moving in electric circuits cause a magnetic field. More later! 2. Elementary nature

### PHYS 155: Final Tutorial

Final Tutorial Saskatoon Engineering Students Society eric.peach@usask.ca April 13, 2015 Overview 1 2 3 4 5 6 7 Tutorial Slides These slides have been posted: sess.usask.ca homepage.usask.ca/esp991/ Section

### Faraday s Law and Inductance

Historical Overview Faraday s Law and Inductance So far studied electric fields due to stationary charges and magentic fields due to moving charges. Now study electric field due to a changing magnetic

### Mutual inductance. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

This test covers Faraday s Law of induction, motional emf, Lenz s law, induced emf and electric fields, eddy currents, self-inductance, inductance, RL circuits, and energy in a magnetic field, with some

### Physics 1653 Exam 3 - Review Questions

Physics 1653 Exam 3 - Review Questions 3.0 Two uncharged conducting spheres, A and B, are suspended from insulating threads so that they touch each other. While a negatively charged rod is held near, but

### Test - A2 Physics. Primary focus Magnetic Fields - Secondary focus electric fields (including circular motion and SHM elements)

Test - A2 Physics Primary focus Magnetic Fields - Secondary focus electric fields (including circular motion and SHM elements) Time allocation 40 minutes These questions were ALL taken from the June 2010

### Inductive and Capacitive Reactance

Inductive and Capacitive Reactance Course No: E04-005 Credit: 4 PDH A. Bhatia Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980 P: (877) 322-5800 F: (877) 322-4774