# v kt = N A ρ Au exp (

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Determination of the number of vacancies per cubic meter in gold at 900 C (1173 K) requires the utilization of Equations 4.1 and 4.2 as follows: N v N exp Q v N A ρ Au kt A Au exp Q v kt ( atoms /mol)(18.63 g /cm 3 ) g /mol exp 0.98 ev /atom ( ev/atom K) (1173 K) 3.52 x cm x m -3

2 4-13 Equation 4.6 as 4.7 In order to compute composition, in atom percent, of a 92.5 wt% Ag-7.5 wt% Cu alloy, we employ C ' Ag C Ag A Cu C Ag A Cu + C Cu A Ag (92.5)(63.55 g /mol) (92.5)(63.55 g /mol) + (7.5)(107.87g /mol) 87.9 at% C ' Cu C Cu A Ag C Ag A Cu + C Cu A Ag (7.5)( g /mol) (92.5)(63.55 g /mol) + (7.5)(107.87g /mol) 12.1 at%

3 The concentration of an element in an alloy, in atom percent, may be computed using Equation 4.5. However, it first becomes necessary to compute the number of moles of both Cu and Zn, using Equation 4.4. Thus, the number of moles of Cu is just n mcu m ' Cu A Cu 33 g g /mol mol Likewise, for Zn n mzn 47 g g /mol mol Now, use of Equation 4.5 yields C ' Cu n mcu n mcu + n mzn mol mol mol 41.9 at% Also, C ' Zn mol mol mol 58.1 at%

4 This problem calls for a determination of the number of atoms per cubic meter for lead. In order to solve this problem, one must employ Equation 4.2, N N A ρ Pb A Pb The density of Pb (from the table inside of the front cover) is g/cm 3, while its atomic weight is g/mol. Thus, N (6.023 x 1023 atoms /mol)(11.35 g /cm 3 ) g /mol 3.30 x atoms/cm x atoms/m 3

5 We are asked in this problem to determine the approximate density of a Ti-6Al-4V titanium alloy that has a composition of 90 wt% Ti, 6 wt% Al, and 4 wt% V. In order to solve this problem, Equation 4.10a is modified to take the following form: ρ ave 100 C Ti ρ Ti + C Al ρ Al + C V ρ V And, using the density values for Ti, Al, and V i.e., 4.51 g/cm 3, 2.71 g/cm 3, and 6.10 g/cm 3 (as taken from inside the front cover of the text), the density is computed as follows: ρ ave wt% 4.51 g /cm wt% 2.71 g /cm wt% 6.10 g /cm g/cm 3

6 This problem asks us to determine the number of molybdenum atoms per cubic centimeter for a 16.4 wt% Mo-83.6 wt% W solid solution. To solve this problem, employment of Equation 4.18 is necessary, using the following values: C 1 C Mo 16.4 wt% ρ 1 ρ Mo g/cm 3 ρ 2 ρ W 19.3 g/cm 3 A 1 A Mo g/mol Thus N Mo C Mo A Mo ρ Mo N A C Mo + A Mo ρ W (100 C Mo ) ( atoms /mol) (16.4 wt%) (16.4 wt%)(95.94 g /mol) g /mol g /cm 3 + ( wt%) 19.3 g /cm x atoms/cm 3

7 4-36 Dislocations Linear Defects 4.26 The Burgers vector and dislocation line are perpendicular for edge dislocations, parallel for screw dislocations, and neither perpendicular nor parallel for mixed dislocations.

8 4-37 Interfacial Defects 4.27 The surface energy for a crystallographic plane will depend on its packing density [i.e., the planar density (Section 3.11)] that is, the higher the packing density, the greater the number of nearest-neighbor atoms, and the more atomic bonds in that plane that are satisfied, and, consequently, the lower the surface energy. From 1 the solution to Problem 3.53, planar densities for FCC (100) and (111) planes are 4R 2 and 1 2R 2 that is and R2 R 2 the lower surface energy. 3, respectively (where R is the atomic radius). Thus, since the planar density for (111) is greater, it will have

### CHAPTER 4 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS

4-1 CHAPTER 4 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Vacancies and Self-Interstitials 4.1 In order to compute the fraction of atom sites that are vacant in copper at 1357 K, we must employ Equation

### Materials Science and Engineering Department MSE , Sample Test #1, Spring 2010

Materials Science and Engineering Department MSE 200-001, Sample Test #1, Spring 2010 ID number First letter of your last name: Name: No notes, books, or information stored in calculator memories may be

### 14:635:407:02 Homework III Solutions

14:635:407:0 Homework III Solutions 4.1 Calculate the fraction of atom sites that are vacant for lead at its melting temperature of 37 C (600 K). Assume an energy for vacancy formation of 0.55 ev/atom.

### MAE 20 Winter 2011 Assignment 3 solutions

MAE 20 Winter 2011 Assignment 3 solutions 4.3 Calculate the activation energy for vacancy formation in aluminum, given that the equilibrium number of vacancies at 500 C (773 K) is 7.57 10 23 m -3. The

### CHAPTER 4 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS. C Zn A Cu C Zn A Cu C Cu A Zn. (30)(63.55 g /mol) (30)(63.55 g /mol) (70)(65.

HAPTER 4 IMPERFETIONS IN SOLIDS PROBLEM SOLUTIONS wt% u? 4.7 What is the composition, in atom percent, of an alloy that consists of 30 wt% Zn and 70 4.6 as In order to compute composition, in atom percent,

### 14:635:407:02 Homework III Solutions

14:635:407:02 Homework III Solutions 4.1 Calculate the fraction of atom sites that are vacant for lead at its melting temperature of 327 C (600 K). Assume an energy for vacancy formation of 0.55 ev/atom.

### Defects Introduction. Bonding + Structure + Defects. Properties

Defects Introduction Bonding + Structure + Defects Properties The processing determines the defects Composition Bonding type Structure of Crystalline Processing factors Defects Microstructure Types of

### Chapter Outline. Defects Introduction (I)

Crystals are like people, it is the defects in them which tend to make them interesting! - Colin Humphreys. Defects in Solids Chapter Outline 0D, Point defects vacancies interstitials impurities, weight

### CHAPTER 3 THE STRUCTURE OF CRYSTALLINE SOLIDS PROBLEM SOLUTIONS

CHAPTER THE STRUCTURE OF CRYSTALLINE SOLIDS PROBLEM SOLUTIONS Fundamental Concepts.6 Show that the atomic packing factor for HCP is 0.74. The APF is just the total sphere volume-unit cell volume ratio.

### Composition Solidus Liquidus (wt% Au) Temperature ( C) Temperature ( C)

10.4 Given here are the solidus and liquidus temperatures for the copper gold system. Construct the phase diagram for this system and label each region. Composition Solidus Liquidus (wt% Au) Temperature

### Imperfections in atomic arrangements

MME131: Lecture 8 Imperfections in atomic arrangements Part 1: 0D Defects A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Occurrence and importance of crystal defects Classification

### THE STRUCTURE OF CRYSTALLINE SOLIDS

CHAPTER 3 THE STRUCTURE OF CRYSTALLINE SOLIDS PROBLEM SOLUTIONS Fundamental Concepts 3.1 What is the difference between atomic structure and crystal structure? Atomic structure relates to the number of

### LECTURE SUMMARY September 30th 2009

LECTURE SUMMARY September 30 th 2009 Key Lecture Topics Crystal Structures in Relation to Slip Systems Resolved Shear Stress Using a Stereographic Projection to Determine the Active Slip System Slip Planes

### (10 4 mm -2 )(1000 mm 3 ) = 10 7 mm = 10 4 m = 6.2 mi

14:440:407 Fall 010 Additional problems and SOLUTION OF HOMEWORK 07 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 7.1 To provide

### 0% (0 out of 5 correct) The questions marked with symbol have not been graded.

Page 1 of 15 0% (0 out of 5 correct) The questions marked with symbol have not been graded. Responses to questions are indicated by the symbol. 1. Which of the following materials may form crystalline

### Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

### Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

### CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS

7-1 CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 7.1 The dislocation density is just the total dislocation length

### MAE 20 Winter 2011 Assignment 2 solutions

MAE 0 Winter 0 Assignment solutions. List the point coordinates of the titanium, barium, and oxygen ions for a unit cell of the perovskite crystal structure (Figure.6). In Figure.6, the barium ions are

### The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R

3.5 Show that the atomic packing factor for BCC is 0.68. The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C Since there are two spheres associated

### CHAPTER 9 Part 1. = 5 wt% Sn-95 wt% Pb C β. = 98 wt% Sn-2 wt% Pb. = 77 wt% Ag-23 wt% Cu. = 51 wt% Zn-49 wt% Cu C γ. = 58 wt% Zn-42 wt% Cu

CHAPTER 9 Part 1 9.5 This problem asks that we cite the phase or phases present for several alloys at specified temperatures. (a) For an alloy composed of 15 wt% Sn-85 wt% Pb and at 100 C, from Figure

### For the M state, n = 3, and 18 states are possible. Possible l values are 0, 1, and 2; possible m l. values are 0, ±1, and ±2; and possible m s

.6 Allowed values for the quantum numbers of electrons are as follows: n 1,,,... l 0, 1,,,..., n 1 m l 0, ±1, ±, ±,..., ±l m s ± 1 The relationships between n and the shell designations are noted in Table.1.

### Physics 172H. Lecture 6 Ball-Spring Model of Solids, Friction. Read

Physics 172H Lecture 6 Ball-Spring Model of Solids, Friction Read 4.1-4.8 Model of solid: chemical bonds d radial force (N) 0 F linear If atoms don t move too far away from equilibrium, force looks like

### CHAPTER 3 THE STRUCTURE OF CRYSTALLINE SOLIDS PROBLEM SOLUTIONS

HPTER THE STRUTURE OF RYSTLLINE SOLIDS PROBLEM SOLUTIONS Fundamental oncepts.1 What is the difference between atomic structure and crystal structure? tomic structure relates to the number of protons and

### THE STRUCTURE OF CRYSTALLINE SOLIDS. IE-114 Materials Science and General Chemistry Lecture-3

THE STRUCTURE OF CRYSTALLINE SOLIDS IE-114 Materials Science and General Chemistry Lecture-3 Outline Crystalline and Noncrystalline Materials 1) Single, Polycrystalline, Non-crystalline solids 2) Polycrystalline

### Material Deformations. Academic Resource Center

Material Deformations Academic Resource Center Agenda Origin of deformations Deformations & dislocations Dislocation motion Slip systems Stresses involved with deformation Deformation by twinning Origin

### (10 4 mm -2 )(1000 mm 3 ) = 10 7 mm = 10 4 m = 6.2 mi

CHAPTER 8 DEFORMATION AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 8.1 To provide some perspective on the dimensions of atomic defects,

### CHEM 10113, Quiz 7 December 7, 2011

CHEM 10113, Quiz 7 December 7, 2011 Name (please print) All equations must be balanced and show phases for full credit. Significant figures count, show charges as appropriate, and please box your answers!

### Chapter 3: The Structure of Crystalline Solids

Sapphire: cryst. Al 2 O 3 Insulin : The Structure of Crystalline Solids Crystal: a solid composed of atoms, ions, or molecules arranged in a pattern that is repeated in three dimensions A material in which

### Types of Solids. Metallic and Ionic Solids. Crystal Lattices. Properties of Solids. Cubic Unit Cells. Metallic and Ionic Solids

1 Metallic and Ionic Solids 1 Types of Solids Table 13.6 2 TYPE EXAMPLE FORCE Ionic NaCl, CaF 2, ZnS Ion-ion Metallic Na, Fe Metallic Molecular Ice, I 2 Dipole Ind. dipole Network Diamond Extended Graphite

### The University of Western Ontario Department of Physics and Astronomy P2800 Fall 2008

P2800 Fall 2008 Questions (Total - 20 points): 1. Of the noble gases Ne, Ar, Kr and Xe, which should be the most chemically reactive and why? (0.5 point) Xenon should be most reactive since its outermost

### ME 612 Metal Forming and Theory of Plasticity. 1. Introduction

Metal Forming and Theory of Plasticity Yrd.Doç. e mail: azsenalp@gyte.edu.tr Makine Mühendisliği Bölümü Gebze Yüksek Teknoloji Enstitüsü In general, it is possible to evaluate metal forming operations

### Solid State Device Fundamentals

Solid State Device Fundamentals ENS 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Office 4N101b 1 Solids Three types of solids, classified according to atomic

### Chapter 5: Diffusion. 5.1 Steady-State Diffusion

: Diffusion Diffusion: the movement of particles in a solid from an area of high concentration to an area of low concentration, resulting in the uniform distribution of the substance Diffusion is process

### Met-2023: Concepts of Materials Science I Sample Questions & Answers,(2009) ( Met, PR, FC, MP, CNC, McE )

1 Met-223: Concepts of Materials Science I Sample Questions & Answers,(29) ( Met, PR, FC, MP, CNC, McE ) Q-1.Define the following. (i) Point Defects (ii) Burgers Vector (iii) Slip and Slip system (iv)

### 4.2.4 Chemical Diffusion Coefficient

4.2. CHEMICAL DRIVING FORCE 107 we see that the first term in this expression comes from the concentration driving force arising from the ideal entropy of mixing, and the second term arises from the non-ideality

### Chapter 3: Structure of Metals and Ceramics. Chapter 3: Structure of Metals and Ceramics. Learning Objective

Chapter 3: Structure of Metals and Ceramics Chapter 3: Structure of Metals and Ceramics Goals Define basic terms and give examples of each: Lattice Basis Atoms (Decorations or Motifs) Crystal Structure

### interstitial positions

Interstitial Sites In the spaces between the sites of the closest packed lattices (planes), there are a number of well defined interstitial positions: The CCP (FCC) lattice in (a) has 4 octahedral, 6-coordinate

### Chapter Outline. How do atoms arrange themselves to form solids?

Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures Simple cubic Face-centered cubic Body-centered cubic Hexagonal close-packed

### HW 2. Q v. kt Step 1: Calculate N using one of two equivalent methods. Problem 4.2. a. To Find:

HW 2 Proble 4.2 a. To Find: Nuber of vacancies per cubic eter at a given teperature. b. Given: T 850 degrees C 1123 K Q v 1.08 ev/ato Density of Fe ( ρ ) 7.65 g/cc Fe toic weight of iron ( c. ssuptions:

### Concepts of Stress and Strain

CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS Concepts of Stress and Strain 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original

### Lecture Outline Real Structure

Lecture Outline Real Structure Point Defects (zero-dimensional) they move by diffusion Line defects Dislocations, one-dimensional they move by glide Observing Dislocations Significance of Dislocations

### The Mole. 6.022 x 10 23

The Mole 6.022 x 10 23 Background: atomic masses Look at the atomic masses on the periodic table. What do these represent? E.g. the atomic mass of Carbon is 12.01 (atomic # is 6) We know there are 6 protons

### CHAPTER 7: DISLOCATIONS AND STRENGTHENING

CHAPTER 7: DISLOCATIONS AND STRENGTHENING ISSUES TO ADDRESS... Why are dislocations observed primarily in metals and alloys? Mech 221 - Notes 7 1 DISLOCATION MOTION Produces plastic deformation, in crystalline

### Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige

Ch. 4: Imperfections in Solids Part 1 Dr. Feras Fraige Outline Defects in Solids 0D, Point defects vacancies Interstitials impurities, weight and atomic composition 1D, Dislocations edge screw 2D, Grain

### Lösungen Übung Verformung

Lösungen Übung Verformung 1. (a) What is the meaning of T G? (b) To which materials does it apply? (c) What effect does it have on the toughness and on the stress- strain diagram? 2. Name the four main

### 9.11 Upon heating a lead-tin alloy of composition 30 wt% Sn-70 wt% Pb from 150 C and utilizing Figure

9-13 9.8: 9.11 Upon heating a lead-tin alloy of composition 30 wt% Sn-70 wt% Pb from 150 C and utilizing Figure (a) The first liquid forms at the temperature at which a vertical line at this composition

### NUCLEAR CROSS SECTIONS AND NEUTRON FLUX

To determine the frequency of neutron interactions, it is necessary to describe the availability of neutrons to cause interaction and the probability of a neutron interacting with material. The availability

### Fundamentals of grain boundaries and grain boundary migration

1. Fundamentals of grain boundaries and grain boundary migration 1.1. Introduction The properties of crystalline metallic materials are determined by their deviation from a perfect crystal lattice, which

### MATERIALS SCIENCE AND ENGINEERING

Complete Solutions to Selected Problems to accompany MATERIALS SCIENCE AND ENGINEERING AN INTRODUCTION Sixth Edition William D. Callister, Jr. The University of Utah John Wiley & Sons, Inc. Copyright 2003

### Strength and Stiffness

Strength and Stiffness Stress = load/area is applied to a material by loading it Strain = deformation/length a change of shape (dimensions and twist angles) is its response Stiffness = stress/strain is

### Lecture 09 Dislocations & Strengthening Mechanisms

Lecture 09 Dislocations & Strengthening Mechanisms Chapter 7-1 Dislocations & Strengthening Mechanisms ISSUES TO ADDRESS... Why are dislocations observed primarily in metals and alloys? How are strength

### Sample Exercise 12.1 Calculating Packing Efficiency

Sample Exercise 12.1 Calculating Packing Efficiency It is not possible to pack spheres together without leaving some void spaces between the spheres. Packing efficiency is the fraction of space in a crystal

### Lecture 3: Electron statistics in a solid

Lecture 3: Electron statistics in a solid Contents Density of states. DOS in a 3D uniform solid.................... 3.2 DOS for a 2D solid........................ 4.3 DOS for a D solid........................

### Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the

### Lecture 2. Surface Structure

Lecture 2 Surface Structure Quantitative Description of Surface Structure clean metal surfaces adsorbated covered and reconstructed surfaces electronic and geometrical structure References: 1) Zangwill,

### Engr Materials Science and Engineering TEST 4 -- Sample Solution

Engr 70 -- Materials Science and Engineering TEST 4 -- Sample Solution Part : Solve each of the following problems completely. 1. In this problem we are asked to show that the minimum cation-to-anion radius

### Chapter Number of Atoms. 2.2 Atoms and Density. 2.3 Mass and Volume. 2.4 Plating Thickness. 2.4 Electronegativity and Bonding

Chapter 2 2.1 Number of Atoms 2.2 Atoms and Density 2.3 Mass and Volume 2.4 Plating Thickness 2.4 Electronegativity and Bonding 2.1 Number of Atoms Calculate the number of atoms in 100 grams of silver.

### A crystalline solid is one which has a crystal structure in which atoms or ions are arranged in a pattern that repeats itself in three dimensions.

CHAPTER ATOMIC STRUCTURE AND BONDING. Define a crstalline solid. A crstalline solid is one which has a crstal structure in which atoms or ions are arranged in a pattern that repeats itself in three dimensions..2

### For a two dimensional electron gas confined within a square region of sides a we have:

EE145 Spring 00 Homework 4 Prof. Ali Shakouri Chapter 4 *4.6 Density of states for a two-dimensional electron gas Second Edition ( 001 McGraw-Hill) Consider a two-dimensional electron gas in which the

### CHEM-100-chapter-2 Multiple Choice Identify the choice that best completes the statement or answers the question.

CHEM-100-chapter-2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1.Which metric prefix means 1 10-6? a. milli b. kilo c. pico d. micro e. nano 2.Which metric

### Chem 106 Thursday Feb. 3, 2011

Chem 106 Thursday Feb. 3, 2011 Chapter 13: -The Chemistry of Solids -Phase Diagrams - (no Born-Haber cycle) 2/3/2011 1 Approx surface area (Å 2 ) 253 258 Which C 5 H 12 alkane do you think has the highest

### CHAPTER 19 THERMAL PROPERTIES PROBLEM SOLUTIONS

19-1 CHAPTER 19 THERMAL PROPERTIES PROBLEM SOLUTIONS Heat Capacity 19.1 The energy, E, required to raise the temperature of a given mass of material, m, is the product of the specific heat, the mass of

### The Crystal Structures of Solids

The Crystal Structures of Solids Crystals of pure substances can be analyzed using X-ray diffraction methods to provide valuable information. The type and strength of intramolecular forces, density, molar

### Introduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5

Diffusion MSE 21 Callister Chapter 5 1 Goals: Diffusion - how do atoms move through solids? Fundamental concepts and language Diffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities Diffusion

### Introduction to Structure and Properties Winter 2005 Final Exam March 17, 2005 TOTAL POINTS 37

Materials 101 Introduction to Structure and Properties Winter 005 Final Exam March 17, 005 Solutions TOTAL POINTS 37 Problem 1: Tensile Test and Plastic Deformation (10 Points) A copper rod is deformed

### Chapter 3. 1. 3 types of materials- amorphous, crystalline, and polycrystalline. 5. Same as #3 for the ceramic and diamond crystal structures.

Chapter Highlights: Notes: 1. types of materials- amorphous, crystalline, and polycrystalline.. Understand the meaning of crystallinity, which refers to a regular lattice based on a repeating unit cell..

### Crystals are solids in which the atoms are regularly arranged with respect to one another.

Crystalline structures. Basic concepts Crystals are solids in which the atoms are regularly arranged with respect to one another. This regularity of arrangement can be described in terms of symmetry elements.

### THE WAY TO SOMEWHERE. Sub-topics. Diffusion Diffusion processes in industry

THE WAY TO SOMEWHERE Sub-topics 1 Diffusion Diffusion processes in industry RATE PROCESSES IN SOLIDS At any temperature different from absolute zero all atoms, irrespective of their state of aggregation

### Chemical Conversions and Problems

Chemical Conversions and Problems Contents: Temperature Conversions: pg. 1 Basic Unit Conversions: pg. 1-3 Chemical Quantity Conversions: pg. 3-5 Density: pg. 5-6 Percent Composition & Empirical & Molecular

### - in a typical metal each atom contributes one electron to the delocalized electron gas describing the conduction electrons

Free Electrons in a Metal - in a typical metal each atom contributes one electron to the delocalized electron gas describing the conduction electrons - if these electrons would behave like an ideal gas

### HW1. N = ρv/m =

1 HW1 1. Two spheres are cut from a certain uniform rock. One has radius r=5.0 cm. The mass of the other is eight times greater. Find its radius R. Since mass radius 3 R = r 8 1/3 = 10cm 2. The mass of

### Silicon Basics -- General Overview. File: ee4494 silicon basics.ppt revised 09/11/2001 copyright james t yardley 2001 Page 1

Silicon Basics -- General Overview. File: ee4494 silicon basics.ppt revised 09/11/2001 copyright james t yardley 2001 Page 1 Semiconductor Electronics: Review. File: ee4494 silicon basics.ppt revised 09/11/2001

### Chapter Outline. Diffusion - how do atoms move through solids?

Chapter Outline iffusion - how do atoms move through solids? iffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities The mathematics of diffusion Steady-state diffusion (Fick s first law)

### The Structure of solids.

Chapter S. The Structure of solids. After having studied this chapter, the student will be able to: 1. Distinguish between a crystal structure and an amorphous structure. 2. Describe the concept of a unit

### Experiment: Crystal Structure Analysis in Engineering Materials

Experiment: Crystal Structure Analysis in Engineering Materials Objective The purpose of this experiment is to introduce students to the use of X-ray diffraction techniques for investigating various types

### Practice Test-Chem 123

Practice Test-Chem 123 1. Calculate the number of protons in the average potassium atom if the atomic weight of potassium is 39 amu and the atomic number of this element is 19. (a) 19 (b) 20 (c) 39 (d)

### Principles of Electronic Materials and Devices

s Manual to accompany Principles of Electronic Materials and Devices Second Edition S.O. Kasap University of Saskatchewan Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco St. Louis

### 10.5. Click here for answers. Click here for solutions. EQUATIONS OF LINES AND PLANES. 3x 4y 6z 9 4, 2, 5. x y z. z 2. x 2. y 1.

SECTION EQUATIONS OF LINES AND PLANES 1 EQUATIONS OF LINES AND PLANES A Click here for answers. S Click here for solutions. 1 Find a vector equation and parametric equations for the line passing through

### 1/7/2013. Chapter 12. Chemistry: Atoms First Julia Burdge & Jason Overby. Intermolecular Forces and the Physical properties of Liquids and Solids

/7/203 Chemistry: Atoms First Julia Burdge & Jason Overby Chapter 2 Intermolecular Forces and the Physical Properties of Liquids and Solids Kent L. McCorkle Cosumnes River College Sacramento, CA Copyright

### Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Why? Chemists are concerned with mass relationships in chemical reactions, usually run on a macroscopic scale (grams, kilograms, etc.). To deal with

### Module #17. Work/Strain Hardening. READING LIST DIETER: Ch. 4, pp. 138-143; Ch. 6 in Dieter

Module #17 Work/Strain Hardening READING LIST DIETER: Ch. 4, pp. 138-143; Ch. 6 in Dieter D. Kuhlmann-Wilsdorf, Trans. AIME, v. 224 (1962) pp. 1047-1061 Work Hardening RECALL: During plastic deformation,

### 3a, so the NN spacing is. = nm. SOLUTIONS: ECE 305 Homework 1: Week 1 Mark Lundstrom Purdue University

ECE 305 SOLUTIONS: ECE 305 Homework 1: Week 1 Mark Lundstrom Purdue University 1) Ge has the same crystal structure (diamond) as Si, with a lattice constant of a = 5.6 Angstroms = 0.56 nm. Find the atomic

### A dozen. Molar Mass. Mass of atoms

A dozen Molar Mass Science 10 is a number of objects. A dozen eggs, a dozen cars, and a dozen people are all 12 objects. But a dozen cars has a much greater mass than a dozen eggs because the mass of each

### Chem 101 Test #1 review questions. Please don t look at the answers BEFORE

Chem 101 Test #1 review questions. Please don t look at the answers BEFORE SAMPLE MIDTERM#1: 1) Determine the formula weight for an ionic compound made up of the following isotopes: 96 42Mo and 129 52Te.

### Chapter 3 Mass Relationships in Chemical Reactions

Chapter 3 Mass Relationships in Chemical Reactions Student: 1. An atom of bromine has a mass about four times greater than that of an atom of neon. Which choice makes the correct comparison of the relative

### NPTEL: STRUCTURE OF MATERIALS Instructor: Anandh Subramaniam [Lecture-1 to Lecture-45] 1. Overview (C1) (Time: 49:06)

NPTEL: STRUCTURE OF MATERIALS Instructor: Anandh Subramaniam [Lecture-1 to Lecture-45] Lec Chapter 1. Overview (C1) (Time: 49:06) 2. Geometry of Crystals: Symmetry, Lattices (C2) (Time: 1:08:58) 3. (Time:

### Martensite in Steels

Materials Science & Metallurgy http://www.msm.cam.ac.uk/phase-trans/2002/martensite.html H. K. D. H. Bhadeshia Martensite in Steels The name martensite is after the German scientist Martens. It was used

### 12 x 1/6 + 2 x 1/2 + 3 = 6 atoms per unit cell for HCP.

FCC. BCC and HCP Metals Introduction The majority of common metals have either a Face Center Cubic Structure, fig la, a Body Centered Cubic Structure, fig.lb or an Hexagonal Close Packed structure fig.lc.

### !( =< 25% of samples exceed!( 25-50% of samples exceed. Exceedance analysis for aluminum dissolved (Al) Legend. Mapped aquifers

No exceedance =< 25% of samples exceed 25-50% of samples exceed for aluminum dissolved (Al) No exceedance =< 25% of samples exceed 25-50% of samples exceed for boron (B) No exceedance =< 25% of samples

### Tensile Testing. Objectives

Laboratory 1 Tensile Testing Objectives Students are required to understand the principle of a uniaxial tensile testing and gain their practices on operating the tensile testing machine. Students are able

### UNIT 1 THE SOLID STATE VERY SHORT ANSWER TYPE QUESTIONS (1 MARKS)

UNIT 1 THE SOLID STATE VERY SHORT ANSWER TYPE QUESTIONS (1 MARKS) Q-1. How many spheres are in contact with each other in a single plane of a close packed structure? A-1. Six(6). Q-2.Name the two closest

### Solution: ΔG = a 3 ΔG v. + 6a 2 γ. Differentiation of this expression with respect to a is as. d ΔG da = d(a3 ΔG v. + d(6a2 γ) = 3a 2 ΔG v.

14:440:407 ch10 Question 10.2: (a) Rewrite the expression for the total free energy change for nucleation (Equation 10.1) for the case of a cubic nucleus of edge length a (instead of a sphere of radius

### Properties of Atomic Orbitals and Intro to Molecular Orbital Theory

Properties of Atomic Orbitals and Intro to Molecular Orbital Theory Chemistry 754 Solid State Chemistry Dr. Patrick Woodward Lecture #15 Atomic Orbitals Four quantum numbers define the properties of each

### 1. How many hydrogen atoms are in 1.00 g of hydrogen?

MOLES AND CALCULATIONS USING THE MOLE CONCEPT INTRODUCTORY TERMS A. What is an amu? 1.66 x 10-24 g B. We need a conversion to the macroscopic world. 1. How many hydrogen atoms are in 1.00 g of hydrogen?

### Chapter Test B. Chapter: Measurements and Calculations

Assessment Chapter Test B Chapter: Measurements and Calculations PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1.

### Hydrocarbon Molecules Polymer Molecules The Chemistry of Polymer Molecules

14-1 CHAPTER 14 POLYMER STRUCTURES PROBLEM SOLUTIONS Hydrocarbon Molecules Polymer Molecules The Chemistry of Polymer Molecules 14.1 The repeat unit structures called for are sketched below. (a Polychlorotrifluoroethylene

### Monday January 23rd CHAPTER 10

Monday January 23rd BELL WORK: In what quantity do eggs usually come in at the store? How many gloves do you usually buy at one time? What is a group of pencils that you might buy at the store called?