v kt = N A ρ Au exp (


 Phillip Carr
 1 years ago
 Views:
Transcription
1 Determination of the number of vacancies per cubic meter in gold at 900 C (1173 K) requires the utilization of Equations 4.1 and 4.2 as follows: N v N exp Q v N A ρ Au kt A Au exp Q v kt ( atoms /mol)(18.63 g /cm 3 ) g /mol exp 0.98 ev /atom ( ev/atom K) (1173 K) 3.52 x cm x m 3
2 413 Equation 4.6 as 4.7 In order to compute composition, in atom percent, of a 92.5 wt% Ag7.5 wt% Cu alloy, we employ C ' Ag C Ag A Cu C Ag A Cu + C Cu A Ag (92.5)(63.55 g /mol) (92.5)(63.55 g /mol) + (7.5)(107.87g /mol) 87.9 at% C ' Cu C Cu A Ag C Ag A Cu + C Cu A Ag (7.5)( g /mol) (92.5)(63.55 g /mol) + (7.5)(107.87g /mol) 12.1 at%
3 The concentration of an element in an alloy, in atom percent, may be computed using Equation 4.5. However, it first becomes necessary to compute the number of moles of both Cu and Zn, using Equation 4.4. Thus, the number of moles of Cu is just n mcu m ' Cu A Cu 33 g g /mol mol Likewise, for Zn n mzn 47 g g /mol mol Now, use of Equation 4.5 yields C ' Cu n mcu n mcu + n mzn mol mol mol 41.9 at% Also, C ' Zn mol mol mol 58.1 at%
4 This problem calls for a determination of the number of atoms per cubic meter for lead. In order to solve this problem, one must employ Equation 4.2, N N A ρ Pb A Pb The density of Pb (from the table inside of the front cover) is g/cm 3, while its atomic weight is g/mol. Thus, N (6.023 x 1023 atoms /mol)(11.35 g /cm 3 ) g /mol 3.30 x atoms/cm x atoms/m 3
5 We are asked in this problem to determine the approximate density of a Ti6Al4V titanium alloy that has a composition of 90 wt% Ti, 6 wt% Al, and 4 wt% V. In order to solve this problem, Equation 4.10a is modified to take the following form: ρ ave 100 C Ti ρ Ti + C Al ρ Al + C V ρ V And, using the density values for Ti, Al, and V i.e., 4.51 g/cm 3, 2.71 g/cm 3, and 6.10 g/cm 3 (as taken from inside the front cover of the text), the density is computed as follows: ρ ave wt% 4.51 g /cm wt% 2.71 g /cm wt% 6.10 g /cm g/cm 3
6 This problem asks us to determine the number of molybdenum atoms per cubic centimeter for a 16.4 wt% Mo83.6 wt% W solid solution. To solve this problem, employment of Equation 4.18 is necessary, using the following values: C 1 C Mo 16.4 wt% ρ 1 ρ Mo g/cm 3 ρ 2 ρ W 19.3 g/cm 3 A 1 A Mo g/mol Thus N Mo C Mo A Mo ρ Mo N A C Mo + A Mo ρ W (100 C Mo ) ( atoms /mol) (16.4 wt%) (16.4 wt%)(95.94 g /mol) g /mol g /cm 3 + ( wt%) 19.3 g /cm x atoms/cm 3
7 436 Dislocations Linear Defects 4.26 The Burgers vector and dislocation line are perpendicular for edge dislocations, parallel for screw dislocations, and neither perpendicular nor parallel for mixed dislocations.
8 437 Interfacial Defects 4.27 The surface energy for a crystallographic plane will depend on its packing density [i.e., the planar density (Section 3.11)] that is, the higher the packing density, the greater the number of nearestneighbor atoms, and the more atomic bonds in that plane that are satisfied, and, consequently, the lower the surface energy. From 1 the solution to Problem 3.53, planar densities for FCC (100) and (111) planes are 4R 2 and 1 2R 2 that is and R2 R 2 the lower surface energy. 3, respectively (where R is the atomic radius). Thus, since the planar density for (111) is greater, it will have
CHAPTER 4 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS
41 CHAPTER 4 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Vacancies and SelfInterstitials 4.1 In order to compute the fraction of atom sites that are vacant in copper at 1357 K, we must employ Equation
More informationMaterials Science and Engineering Department MSE , Sample Test #1, Spring 2010
Materials Science and Engineering Department MSE 200001, Sample Test #1, Spring 2010 ID number First letter of your last name: Name: No notes, books, or information stored in calculator memories may be
More information14:635:407:02 Homework III Solutions
14:635:407:0 Homework III Solutions 4.1 Calculate the fraction of atom sites that are vacant for lead at its melting temperature of 37 C (600 K). Assume an energy for vacancy formation of 0.55 ev/atom.
More informationMAE 20 Winter 2011 Assignment 3 solutions
MAE 20 Winter 2011 Assignment 3 solutions 4.3 Calculate the activation energy for vacancy formation in aluminum, given that the equilibrium number of vacancies at 500 C (773 K) is 7.57 10 23 m 3. The
More informationCHAPTER 4 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS. C Zn A Cu C Zn A Cu C Cu A Zn. (30)(63.55 g /mol) (30)(63.55 g /mol) (70)(65.
HAPTER 4 IMPERFETIONS IN SOLIDS PROBLEM SOLUTIONS wt% u? 4.7 What is the composition, in atom percent, of an alloy that consists of 30 wt% Zn and 70 4.6 as In order to compute composition, in atom percent,
More information14:635:407:02 Homework III Solutions
14:635:407:02 Homework III Solutions 4.1 Calculate the fraction of atom sites that are vacant for lead at its melting temperature of 327 C (600 K). Assume an energy for vacancy formation of 0.55 ev/atom.
More informationDefects Introduction. Bonding + Structure + Defects. Properties
Defects Introduction Bonding + Structure + Defects Properties The processing determines the defects Composition Bonding type Structure of Crystalline Processing factors Defects Microstructure Types of
More informationChapter Outline. Defects Introduction (I)
Crystals are like people, it is the defects in them which tend to make them interesting!  Colin Humphreys. Defects in Solids Chapter Outline 0D, Point defects vacancies interstitials impurities, weight
More informationCHAPTER 3 THE STRUCTURE OF CRYSTALLINE SOLIDS PROBLEM SOLUTIONS
CHAPTER THE STRUCTURE OF CRYSTALLINE SOLIDS PROBLEM SOLUTIONS Fundamental Concepts.6 Show that the atomic packing factor for HCP is 0.74. The APF is just the total sphere volumeunit cell volume ratio.
More informationComposition Solidus Liquidus (wt% Au) Temperature ( C) Temperature ( C)
10.4 Given here are the solidus and liquidus temperatures for the copper gold system. Construct the phase diagram for this system and label each region. Composition Solidus Liquidus (wt% Au) Temperature
More informationImperfections in atomic arrangements
MME131: Lecture 8 Imperfections in atomic arrangements Part 1: 0D Defects A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Occurrence and importance of crystal defects Classification
More informationTHE STRUCTURE OF CRYSTALLINE SOLIDS
CHAPTER 3 THE STRUCTURE OF CRYSTALLINE SOLIDS PROBLEM SOLUTIONS Fundamental Concepts 3.1 What is the difference between atomic structure and crystal structure? Atomic structure relates to the number of
More informationLECTURE SUMMARY September 30th 2009
LECTURE SUMMARY September 30 th 2009 Key Lecture Topics Crystal Structures in Relation to Slip Systems Resolved Shear Stress Using a Stereographic Projection to Determine the Active Slip System Slip Planes
More information(10 4 mm 2 )(1000 mm 3 ) = 10 7 mm = 10 4 m = 6.2 mi
14:440:407 Fall 010 Additional problems and SOLUTION OF HOMEWORK 07 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 7.1 To provide
More information0% (0 out of 5 correct) The questions marked with symbol have not been graded.
Page 1 of 15 0% (0 out of 5 correct) The questions marked with symbol have not been graded. Responses to questions are indicated by the symbol. 1. Which of the following materials may form crystalline
More informationChapter Outline Dislocations and Strengthening Mechanisms
Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip
More informationChapter Outline Dislocations and Strengthening Mechanisms
Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip
More informationCHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS
71 CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 7.1 The dislocation density is just the total dislocation length
More informationMAE 20 Winter 2011 Assignment 2 solutions
MAE 0 Winter 0 Assignment solutions. List the point coordinates of the titanium, barium, and oxygen ions for a unit cell of the perovskite crystal structure (Figure.6). In Figure.6, the barium ions are
More informationThe atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R
3.5 Show that the atomic packing factor for BCC is 0.68. The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C Since there are two spheres associated
More informationCHAPTER 9 Part 1. = 5 wt% Sn95 wt% Pb C β. = 98 wt% Sn2 wt% Pb. = 77 wt% Ag23 wt% Cu. = 51 wt% Zn49 wt% Cu C γ. = 58 wt% Zn42 wt% Cu
CHAPTER 9 Part 1 9.5 This problem asks that we cite the phase or phases present for several alloys at specified temperatures. (a) For an alloy composed of 15 wt% Sn85 wt% Pb and at 100 C, from Figure
More informationFor the M state, n = 3, and 18 states are possible. Possible l values are 0, 1, and 2; possible m l. values are 0, ±1, and ±2; and possible m s
.6 Allowed values for the quantum numbers of electrons are as follows: n 1,,,... l 0, 1,,,..., n 1 m l 0, ±1, ±, ±,..., ±l m s ± 1 The relationships between n and the shell designations are noted in Table.1.
More informationPhysics 172H. Lecture 6 BallSpring Model of Solids, Friction. Read
Physics 172H Lecture 6 BallSpring Model of Solids, Friction Read 4.14.8 Model of solid: chemical bonds d radial force (N) 0 F linear If atoms don t move too far away from equilibrium, force looks like
More informationCHAPTER 3 THE STRUCTURE OF CRYSTALLINE SOLIDS PROBLEM SOLUTIONS
HPTER THE STRUTURE OF RYSTLLINE SOLIDS PROBLEM SOLUTIONS Fundamental oncepts.1 What is the difference between atomic structure and crystal structure? tomic structure relates to the number of protons and
More informationTHE STRUCTURE OF CRYSTALLINE SOLIDS. IE114 Materials Science and General Chemistry Lecture3
THE STRUCTURE OF CRYSTALLINE SOLIDS IE114 Materials Science and General Chemistry Lecture3 Outline Crystalline and Noncrystalline Materials 1) Single, Polycrystalline, Noncrystalline solids 2) Polycrystalline
More informationMaterial Deformations. Academic Resource Center
Material Deformations Academic Resource Center Agenda Origin of deformations Deformations & dislocations Dislocation motion Slip systems Stresses involved with deformation Deformation by twinning Origin
More information(10 4 mm 2 )(1000 mm 3 ) = 10 7 mm = 10 4 m = 6.2 mi
CHAPTER 8 DEFORMATION AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 8.1 To provide some perspective on the dimensions of atomic defects,
More informationCHEM 10113, Quiz 7 December 7, 2011
CHEM 10113, Quiz 7 December 7, 2011 Name (please print) All equations must be balanced and show phases for full credit. Significant figures count, show charges as appropriate, and please box your answers!
More informationChapter 3: The Structure of Crystalline Solids
Sapphire: cryst. Al 2 O 3 Insulin : The Structure of Crystalline Solids Crystal: a solid composed of atoms, ions, or molecules arranged in a pattern that is repeated in three dimensions A material in which
More informationTypes of Solids. Metallic and Ionic Solids. Crystal Lattices. Properties of Solids. Cubic Unit Cells. Metallic and Ionic Solids
1 Metallic and Ionic Solids 1 Types of Solids Table 13.6 2 TYPE EXAMPLE FORCE Ionic NaCl, CaF 2, ZnS Ionion Metallic Na, Fe Metallic Molecular Ice, I 2 Dipole Ind. dipole Network Diamond Extended Graphite
More informationThe University of Western Ontario Department of Physics and Astronomy P2800 Fall 2008
P2800 Fall 2008 Questions (Total  20 points): 1. Of the noble gases Ne, Ar, Kr and Xe, which should be the most chemically reactive and why? (0.5 point) Xenon should be most reactive since its outermost
More informationME 612 Metal Forming and Theory of Plasticity. 1. Introduction
Metal Forming and Theory of Plasticity Yrd.Doç. e mail: azsenalp@gyte.edu.tr Makine Mühendisliği Bölümü Gebze Yüksek Teknoloji Enstitüsü In general, it is possible to evaluate metal forming operations
More informationSolid State Device Fundamentals
Solid State Device Fundamentals ENS 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Office 4N101b 1 Solids Three types of solids, classified according to atomic
More informationChapter 5: Diffusion. 5.1 SteadyState Diffusion
: Diffusion Diffusion: the movement of particles in a solid from an area of high concentration to an area of low concentration, resulting in the uniform distribution of the substance Diffusion is process
More informationMet2023: Concepts of Materials Science I Sample Questions & Answers,(2009) ( Met, PR, FC, MP, CNC, McE )
1 Met223: Concepts of Materials Science I Sample Questions & Answers,(29) ( Met, PR, FC, MP, CNC, McE ) Q1.Define the following. (i) Point Defects (ii) Burgers Vector (iii) Slip and Slip system (iv)
More information4.2.4 Chemical Diffusion Coefficient
4.2. CHEMICAL DRIVING FORCE 107 we see that the first term in this expression comes from the concentration driving force arising from the ideal entropy of mixing, and the second term arises from the nonideality
More informationChapter 3: Structure of Metals and Ceramics. Chapter 3: Structure of Metals and Ceramics. Learning Objective
Chapter 3: Structure of Metals and Ceramics Chapter 3: Structure of Metals and Ceramics Goals Define basic terms and give examples of each: Lattice Basis Atoms (Decorations or Motifs) Crystal Structure
More informationinterstitial positions
Interstitial Sites In the spaces between the sites of the closest packed lattices (planes), there are a number of well defined interstitial positions: The CCP (FCC) lattice in (a) has 4 octahedral, 6coordinate
More informationChapter Outline. How do atoms arrange themselves to form solids?
Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures Simple cubic Facecentered cubic Bodycentered cubic Hexagonal closepacked
More informationHW 2. Q v. kt Step 1: Calculate N using one of two equivalent methods. Problem 4.2. a. To Find:
HW 2 Proble 4.2 a. To Find: Nuber of vacancies per cubic eter at a given teperature. b. Given: T 850 degrees C 1123 K Q v 1.08 ev/ato Density of Fe ( ρ ) 7.65 g/cc Fe toic weight of iron ( c. ssuptions:
More informationConcepts of Stress and Strain
CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS Concepts of Stress and Strain 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original
More informationLecture Outline Real Structure
Lecture Outline Real Structure Point Defects (zerodimensional) they move by diffusion Line defects Dislocations, onedimensional they move by glide Observing Dislocations Significance of Dislocations
More informationThe Mole. 6.022 x 10 23
The Mole 6.022 x 10 23 Background: atomic masses Look at the atomic masses on the periodic table. What do these represent? E.g. the atomic mass of Carbon is 12.01 (atomic # is 6) We know there are 6 protons
More informationCHAPTER 7: DISLOCATIONS AND STRENGTHENING
CHAPTER 7: DISLOCATIONS AND STRENGTHENING ISSUES TO ADDRESS... Why are dislocations observed primarily in metals and alloys? Mech 221  Notes 7 1 DISLOCATION MOTION Produces plastic deformation, in crystalline
More informationCh. 4: Imperfections in Solids Part 1. Dr. Feras Fraige
Ch. 4: Imperfections in Solids Part 1 Dr. Feras Fraige Outline Defects in Solids 0D, Point defects vacancies Interstitials impurities, weight and atomic composition 1D, Dislocations edge screw 2D, Grain
More informationLösungen Übung Verformung
Lösungen Übung Verformung 1. (a) What is the meaning of T G? (b) To which materials does it apply? (c) What effect does it have on the toughness and on the stress strain diagram? 2. Name the four main
More information9.11 Upon heating a leadtin alloy of composition 30 wt% Sn70 wt% Pb from 150 C and utilizing Figure
913 9.8: 9.11 Upon heating a leadtin alloy of composition 30 wt% Sn70 wt% Pb from 150 C and utilizing Figure (a) The first liquid forms at the temperature at which a vertical line at this composition
More informationNUCLEAR CROSS SECTIONS AND NEUTRON FLUX
To determine the frequency of neutron interactions, it is necessary to describe the availability of neutrons to cause interaction and the probability of a neutron interacting with material. The availability
More informationFundamentals of grain boundaries and grain boundary migration
1. Fundamentals of grain boundaries and grain boundary migration 1.1. Introduction The properties of crystalline metallic materials are determined by their deviation from a perfect crystal lattice, which
More informationMATERIALS SCIENCE AND ENGINEERING
Complete Solutions to Selected Problems to accompany MATERIALS SCIENCE AND ENGINEERING AN INTRODUCTION Sixth Edition William D. Callister, Jr. The University of Utah John Wiley & Sons, Inc. Copyright 2003
More informationStrength and Stiffness
Strength and Stiffness Stress = load/area is applied to a material by loading it Strain = deformation/length a change of shape (dimensions and twist angles) is its response Stiffness = stress/strain is
More informationLecture 09 Dislocations & Strengthening Mechanisms
Lecture 09 Dislocations & Strengthening Mechanisms Chapter 71 Dislocations & Strengthening Mechanisms ISSUES TO ADDRESS... Why are dislocations observed primarily in metals and alloys? How are strength
More informationSample Exercise 12.1 Calculating Packing Efficiency
Sample Exercise 12.1 Calculating Packing Efficiency It is not possible to pack spheres together without leaving some void spaces between the spheres. Packing efficiency is the fraction of space in a crystal
More informationLecture 3: Electron statistics in a solid
Lecture 3: Electron statistics in a solid Contents Density of states. DOS in a 3D uniform solid.................... 3.2 DOS for a 2D solid........................ 4.3 DOS for a D solid........................
More informationMechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied
Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the
More informationLecture 2. Surface Structure
Lecture 2 Surface Structure Quantitative Description of Surface Structure clean metal surfaces adsorbated covered and reconstructed surfaces electronic and geometrical structure References: 1) Zangwill,
More informationEngr Materials Science and Engineering TEST 4  Sample Solution
Engr 70  Materials Science and Engineering TEST 4  Sample Solution Part : Solve each of the following problems completely. 1. In this problem we are asked to show that the minimum cationtoanion radius
More informationChapter Number of Atoms. 2.2 Atoms and Density. 2.3 Mass and Volume. 2.4 Plating Thickness. 2.4 Electronegativity and Bonding
Chapter 2 2.1 Number of Atoms 2.2 Atoms and Density 2.3 Mass and Volume 2.4 Plating Thickness 2.4 Electronegativity and Bonding 2.1 Number of Atoms Calculate the number of atoms in 100 grams of silver.
More informationA crystalline solid is one which has a crystal structure in which atoms or ions are arranged in a pattern that repeats itself in three dimensions.
CHAPTER ATOMIC STRUCTURE AND BONDING. Define a crstalline solid. A crstalline solid is one which has a crstal structure in which atoms or ions are arranged in a pattern that repeats itself in three dimensions..2
More informationFor a two dimensional electron gas confined within a square region of sides a we have:
EE145 Spring 00 Homework 4 Prof. Ali Shakouri Chapter 4 *4.6 Density of states for a twodimensional electron gas Second Edition ( 001 McGrawHill) Consider a twodimensional electron gas in which the
More informationCHEM100chapter2 Multiple Choice Identify the choice that best completes the statement or answers the question.
CHEM100chapter2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1.Which metric prefix means 1 106? a. milli b. kilo c. pico d. micro e. nano 2.Which metric
More informationChem 106 Thursday Feb. 3, 2011
Chem 106 Thursday Feb. 3, 2011 Chapter 13: The Chemistry of Solids Phase Diagrams  (no BornHaber cycle) 2/3/2011 1 Approx surface area (Å 2 ) 253 258 Which C 5 H 12 alkane do you think has the highest
More informationCHAPTER 19 THERMAL PROPERTIES PROBLEM SOLUTIONS
191 CHAPTER 19 THERMAL PROPERTIES PROBLEM SOLUTIONS Heat Capacity 19.1 The energy, E, required to raise the temperature of a given mass of material, m, is the product of the specific heat, the mass of
More informationThe Crystal Structures of Solids
The Crystal Structures of Solids Crystals of pure substances can be analyzed using Xray diffraction methods to provide valuable information. The type and strength of intramolecular forces, density, molar
More informationIntroduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5
Diffusion MSE 21 Callister Chapter 5 1 Goals: Diffusion  how do atoms move through solids? Fundamental concepts and language Diffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities Diffusion
More informationIntroduction to Structure and Properties Winter 2005 Final Exam March 17, 2005 TOTAL POINTS 37
Materials 101 Introduction to Structure and Properties Winter 005 Final Exam March 17, 005 Solutions TOTAL POINTS 37 Problem 1: Tensile Test and Plastic Deformation (10 Points) A copper rod is deformed
More informationChapter 3. 1. 3 types of materials amorphous, crystalline, and polycrystalline. 5. Same as #3 for the ceramic and diamond crystal structures.
Chapter Highlights: Notes: 1. types of materials amorphous, crystalline, and polycrystalline.. Understand the meaning of crystallinity, which refers to a regular lattice based on a repeating unit cell..
More informationCrystals are solids in which the atoms are regularly arranged with respect to one another.
Crystalline structures. Basic concepts Crystals are solids in which the atoms are regularly arranged with respect to one another. This regularity of arrangement can be described in terms of symmetry elements.
More informationTHE WAY TO SOMEWHERE. Subtopics. Diffusion Diffusion processes in industry
THE WAY TO SOMEWHERE Subtopics 1 Diffusion Diffusion processes in industry RATE PROCESSES IN SOLIDS At any temperature different from absolute zero all atoms, irrespective of their state of aggregation
More informationChemical Conversions and Problems
Chemical Conversions and Problems Contents: Temperature Conversions: pg. 1 Basic Unit Conversions: pg. 13 Chemical Quantity Conversions: pg. 35 Density: pg. 56 Percent Composition & Empirical & Molecular
More information in a typical metal each atom contributes one electron to the delocalized electron gas describing the conduction electrons
Free Electrons in a Metal  in a typical metal each atom contributes one electron to the delocalized electron gas describing the conduction electrons  if these electrons would behave like an ideal gas
More informationHW1. N = ρv/m =
1 HW1 1. Two spheres are cut from a certain uniform rock. One has radius r=5.0 cm. The mass of the other is eight times greater. Find its radius R. Since mass radius 3 R = r 8 1/3 = 10cm 2. The mass of
More informationSilicon Basics  General Overview. File: ee4494 silicon basics.ppt revised 09/11/2001 copyright james t yardley 2001 Page 1
Silicon Basics  General Overview. File: ee4494 silicon basics.ppt revised 09/11/2001 copyright james t yardley 2001 Page 1 Semiconductor Electronics: Review. File: ee4494 silicon basics.ppt revised 09/11/2001
More informationChapter Outline. Diffusion  how do atoms move through solids?
Chapter Outline iffusion  how do atoms move through solids? iffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities The mathematics of diffusion Steadystate diffusion (Fick s first law)
More informationThe Structure of solids.
Chapter S. The Structure of solids. After having studied this chapter, the student will be able to: 1. Distinguish between a crystal structure and an amorphous structure. 2. Describe the concept of a unit
More informationExperiment: Crystal Structure Analysis in Engineering Materials
Experiment: Crystal Structure Analysis in Engineering Materials Objective The purpose of this experiment is to introduce students to the use of Xray diffraction techniques for investigating various types
More informationPractice TestChem 123
Practice TestChem 123 1. Calculate the number of protons in the average potassium atom if the atomic weight of potassium is 39 amu and the atomic number of this element is 19. (a) 19 (b) 20 (c) 39 (d)
More informationPrinciples of Electronic Materials and Devices
s Manual to accompany Principles of Electronic Materials and Devices Second Edition S.O. Kasap University of Saskatchewan Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco St. Louis
More information10.5. Click here for answers. Click here for solutions. EQUATIONS OF LINES AND PLANES. 3x 4y 6z 9 4, 2, 5. x y z. z 2. x 2. y 1.
SECTION EQUATIONS OF LINES AND PLANES 1 EQUATIONS OF LINES AND PLANES A Click here for answers. S Click here for solutions. 1 Find a vector equation and parametric equations for the line passing through
More information1/7/2013. Chapter 12. Chemistry: Atoms First Julia Burdge & Jason Overby. Intermolecular Forces and the Physical properties of Liquids and Solids
/7/203 Chemistry: Atoms First Julia Burdge & Jason Overby Chapter 2 Intermolecular Forces and the Physical Properties of Liquids and Solids Kent L. McCorkle Cosumnes River College Sacramento, CA Copyright
More informationChem 115 POGIL Worksheet  Week 4 Moles & Stoichiometry
Chem 115 POGIL Worksheet  Week 4 Moles & Stoichiometry Why? Chemists are concerned with mass relationships in chemical reactions, usually run on a macroscopic scale (grams, kilograms, etc.). To deal with
More informationModule #17. Work/Strain Hardening. READING LIST DIETER: Ch. 4, pp. 138143; Ch. 6 in Dieter
Module #17 Work/Strain Hardening READING LIST DIETER: Ch. 4, pp. 138143; Ch. 6 in Dieter D. KuhlmannWilsdorf, Trans. AIME, v. 224 (1962) pp. 10471061 Work Hardening RECALL: During plastic deformation,
More information3a, so the NN spacing is. = nm. SOLUTIONS: ECE 305 Homework 1: Week 1 Mark Lundstrom Purdue University
ECE 305 SOLUTIONS: ECE 305 Homework 1: Week 1 Mark Lundstrom Purdue University 1) Ge has the same crystal structure (diamond) as Si, with a lattice constant of a = 5.6 Angstroms = 0.56 nm. Find the atomic
More informationA dozen. Molar Mass. Mass of atoms
A dozen Molar Mass Science 10 is a number of objects. A dozen eggs, a dozen cars, and a dozen people are all 12 objects. But a dozen cars has a much greater mass than a dozen eggs because the mass of each
More informationChem 101 Test #1 review questions. Please don t look at the answers BEFORE
Chem 101 Test #1 review questions. Please don t look at the answers BEFORE SAMPLE MIDTERM#1: 1) Determine the formula weight for an ionic compound made up of the following isotopes: 96 42Mo and 129 52Te.
More informationChapter 3 Mass Relationships in Chemical Reactions
Chapter 3 Mass Relationships in Chemical Reactions Student: 1. An atom of bromine has a mass about four times greater than that of an atom of neon. Which choice makes the correct comparison of the relative
More informationNPTEL: STRUCTURE OF MATERIALS Instructor: Anandh Subramaniam [Lecture1 to Lecture45] 1. Overview (C1) (Time: 49:06)
NPTEL: STRUCTURE OF MATERIALS Instructor: Anandh Subramaniam [Lecture1 to Lecture45] Lec Chapter 1. Overview (C1) (Time: 49:06) 2. Geometry of Crystals: Symmetry, Lattices (C2) (Time: 1:08:58) 3. (Time:
More informationMartensite in Steels
Materials Science & Metallurgy http://www.msm.cam.ac.uk/phasetrans/2002/martensite.html H. K. D. H. Bhadeshia Martensite in Steels The name martensite is after the German scientist Martens. It was used
More information12 x 1/6 + 2 x 1/2 + 3 = 6 atoms per unit cell for HCP.
FCC. BCC and HCP Metals Introduction The majority of common metals have either a Face Center Cubic Structure, fig la, a Body Centered Cubic Structure, fig.lb or an Hexagonal Close Packed structure fig.lc.
More information!( =< 25% of samples exceed!( 2550% of samples exceed. Exceedance analysis for aluminum dissolved (Al) Legend. Mapped aquifers
No exceedance =< 25% of samples exceed 2550% of samples exceed for aluminum dissolved (Al) No exceedance =< 25% of samples exceed 2550% of samples exceed for boron (B) No exceedance =< 25% of samples
More informationTensile Testing. Objectives
Laboratory 1 Tensile Testing Objectives Students are required to understand the principle of a uniaxial tensile testing and gain their practices on operating the tensile testing machine. Students are able
More informationUNIT 1 THE SOLID STATE VERY SHORT ANSWER TYPE QUESTIONS (1 MARKS)
UNIT 1 THE SOLID STATE VERY SHORT ANSWER TYPE QUESTIONS (1 MARKS) Q1. How many spheres are in contact with each other in a single plane of a close packed structure? A1. Six(6). Q2.Name the two closest
More informationSolution: ΔG = a 3 ΔG v. + 6a 2 γ. Differentiation of this expression with respect to a is as. d ΔG da = d(a3 ΔG v. + d(6a2 γ) = 3a 2 ΔG v.
14:440:407 ch10 Question 10.2: (a) Rewrite the expression for the total free energy change for nucleation (Equation 10.1) for the case of a cubic nucleus of edge length a (instead of a sphere of radius
More informationProperties of Atomic Orbitals and Intro to Molecular Orbital Theory
Properties of Atomic Orbitals and Intro to Molecular Orbital Theory Chemistry 754 Solid State Chemistry Dr. Patrick Woodward Lecture #15 Atomic Orbitals Four quantum numbers define the properties of each
More information1. How many hydrogen atoms are in 1.00 g of hydrogen?
MOLES AND CALCULATIONS USING THE MOLE CONCEPT INTRODUCTORY TERMS A. What is an amu? 1.66 x 1024 g B. We need a conversion to the macroscopic world. 1. How many hydrogen atoms are in 1.00 g of hydrogen?
More informationChapter Test B. Chapter: Measurements and Calculations
Assessment Chapter Test B Chapter: Measurements and Calculations PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1.
More informationHydrocarbon Molecules Polymer Molecules The Chemistry of Polymer Molecules
141 CHAPTER 14 POLYMER STRUCTURES PROBLEM SOLUTIONS Hydrocarbon Molecules Polymer Molecules The Chemistry of Polymer Molecules 14.1 The repeat unit structures called for are sketched below. (a Polychlorotrifluoroethylene
More informationMonday January 23rd CHAPTER 10
Monday January 23rd BELL WORK: In what quantity do eggs usually come in at the store? How many gloves do you usually buy at one time? What is a group of pencils that you might buy at the store called?
More informationSolid State Theory Physics 545
Solid State Theory Physics 545 CRYSTAL STRUCTURES Describing periodic structures Terminology Basic Structures Symmetry Operations Ionic crystals often have a definite habit which gives rise to particular
More informationBasic laws and electrical properties of metals (I) Electrical properties. Basic laws and electrical properties of metals (II)
Electrical properties Electrical conduction How many moveable electrons are there in a material (carrier density)? How easily do they move (mobility)? Semiconductivity Electrons and holes Intrinsic and
More information