ME 612 Metal Forming and Theory of Plasticity. 1. Introduction

Size: px
Start display at page:

Download "ME 612 Metal Forming and Theory of Plasticity. 1. Introduction"

Transcription

1 Metal Forming and Theory of Plasticity Yrd.Doç. e mail: Makine Mühendisliği Bölümü Gebze Yüksek Teknoloji Enstitüsü

2 In general, it is possible to evaluate metal forming operations as part of the manufacturing processes. Manufacturing processes in general can be classified as follows: 1) Primary Shaping, such as Casting (sand and die), melt extrusion, metal powder pressing. No initial shape > well defined final shape. 2) Metal Forming: Rolling, Extrusion, Cold and Hot Forging, Bending, Deep Drawing, Rod and Tube Drawing,... Material is formed by Plastic Deformation. 3) Metal Cutting: Sawing, Turning, Milling, Broaching, where a new shape is made by removing of material. 4) Metal Treatment: Heat Treating, Anodizing, Surface Hardening. No change in shape, but changes in properties or appearance. 5) Joining: a) Metallurgical: Welding, Brazing, Diffusion Bonding. b) Mechanical: Riveting, Shrink fitting, Mechanical Assembly (bolts, screws,...). 2

3 In metal forming operations shape change is obtained by plastic deformation. It is preferred as there is no material removal and improvement of material properties is achieved. 3

4 1.1. Variables, Classification and Description of Metal Forming Processes In Metal Forming a simple geometry is transformed into a complex one. The tools (dies) "store" the desired geometry and impart pressure on the material through tool/material interface. The physical phenomena describing a forming operation are difficult to formulate for large number of process variables, e.g., for design of a forming operation the followings should be considered: 1) The kinematics: metal flow, i.e. shape, velocities, strain, strain rate. 2) The limits of formability, i.e. under what condition the material fails internally or on the surface. 3) The forces and stresses required, so, the capacity and type of presses can be determined, etc. 4

5 1.1. Variables, Classification and Description of Metal Forming Processes Metal forming operations can be performed cold or hot. Hot forming operations are the ones where the metal is heated above the recrystallization temperature. If classified according to dimensions of the material; Bulk (volume) or sheet metal forming If classified according to forces applied: Compresive forces (Ex: forging, extrusion,... ) Tensile forces (Ex: Wire drawing, deep drawing,strech forming... ) Moment in cross secttinal area (Ex: folding, strech folding,... ) Shear forces (Ex: Piercing, ) 5

6 1.2. Metal Forming as a System A Metal forming system is composed of 1) Work piece {Material, Geometry} 2) Tooling (dies) {Material, Geometry} 3) Interface condition, i.e. frictional characteristics of the two surfaces 4) Mechanics of plastic deformation 5) Equipment used 6) Plant environment 7) Characteristics of the final product {Geometry, Mechanical Properties, Metallurgical Properties)} 6

7 1.2. Metal Forming as a System Figure 1.1. Factors effecting workpiece in transferring to final product Metal flow determines the characteristics of the final product and formation of defects (e.g. cracks, folds, wrinkles). 7

8 1.3. Advantages of Metal Forming As a Manufacturing Process 1) Almost no scrap material. 2) Obtaining final product in short time. 3) Obtaining better mechanical and metallurgical properties. (strength, toughness, grain size,... ) 8

9 1.4. Structure of Metals, Deformation Mechanism of Crystals Structure of Metals: Metals and alloys are crystalline in solid state. It is not yet possible to relate the behavior of individual atoms in and around its lattice to Macroscopic properties of the metal. Unit Cell: (Lattice) the specific arrangement of atoms in a crystal. The crystal of the metalisformed bythe 3 D repetition of unit cells. Crystal (Grain): is the 3D array of Unit Cells. 9

10 1.4. Structure of Metals, Deformation Mechanism of Crystals Most metal's structure fall within 3 groups. BCC, Body Centered Cubic, such as: V, Cr, Fe, Fe FCC, Face Centered Cubic, such as: Cu, Al, Fe gibi HCP, Hexagonal Closed Packed, such as: Zn, Ti, Mg gibi Figure 1.2. (a) BCC, (b) FCC,(c) HCP. 10

11 1.4. Structure of Metals, Deformation Mechanism of Crystals Crystal structures of some metals: BCC FCC HCP Chrome Aluminium Beryllium Iron Demir Magnesium Molybdenum Copper Zinc Tungsten Gold Cobalt Vanadium Lead Titanyum Tantalum Nickel Zirconium Titanium Silver Zirconium Cobalt 11

12 1.4. Structure of Metals, Deformation Mechanism of Crystals Deformation Mechanism of Crystals: 1) The deformation of metals occurs by sliding of blocks of crystal over one another along definite crystallographic planes, called slip planes. Slip planes are the most populated planes and directions in the crystal. Sliding of blocks of material is produced by shear stresses in the slip plane. If the crystal was perfect, the shearing stress required to initiate plastic deformation would be ~ 100 times greater than realistic values; so > dislocations {edge, screw} 12

13 1.4. Structure of Metals, Deformation Mechanism of Crystals Figure 1.3. The deformation of metals by sliding of blocks 13

14 1.4. Structure of Metals, Deformation Mechanism of Crystals 2) Deformation by Twinning {Mechanical (Shock Loading (large )) and Thermal} The second mechanism of deformation in metals. It results when a portion of the crystal takes up an orientation which has mirror symmetry to the untwinned lattice. 14

Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

What is Manufacturing?

What is Manufacturing? MECH 421/6511 Shaping of Metals and Plastics DEPT. OF MECH. AND IND. ENG. MECH 421/6511 Shaping of Metals and Plastics LECTURES: Mon-Wed ER- 511-9 at 4:15 to 5:30 pm FACULTY: Dr. Mamoun Medraj e-mail:

More information

Defects Introduction. Bonding + Structure + Defects. Properties

Defects Introduction. Bonding + Structure + Defects. Properties Defects Introduction Bonding + Structure + Defects Properties The processing determines the defects Composition Bonding type Structure of Crystalline Processing factors Defects Microstructure Types of

More information

Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

CHAPTER 4 OUTLINE MAJOR CLASSES OF MATERIALS PART 1. Metals Ceramics Semi Conductors (Electronic Materials) Polymers Composites

CHAPTER 4 OUTLINE MAJOR CLASSES OF MATERIALS PART 1. Metals Ceramics Semi Conductors (Electronic Materials) Polymers Composites CHAPTER 4 MAJOR CLASSES OF MATERIALS PART 1 1 OUTLINE Metals Ceramics Semi Conductors (Electronic Materials) Polymers Composites 2 1 THE MATERIALS PENTAGRAM METALS SEMI CONDUCTORS CERAMICS NATURAL RESOURCES

More information

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the

More information

Material Deformations. Academic Resource Center

Material Deformations. Academic Resource Center Material Deformations Academic Resource Center Agenda Origin of deformations Deformations & dislocations Dislocation motion Slip systems Stresses involved with deformation Deformation by twinning Origin

More information

(10 4 mm -2 )(1000 mm 3 ) = 10 7 mm = 10 4 m = 6.2 mi

(10 4 mm -2 )(1000 mm 3 ) = 10 7 mm = 10 4 m = 6.2 mi 14:440:407 Fall 010 Additional problems and SOLUTION OF HOMEWORK 07 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 7.1 To provide

More information

CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS

CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS 7-1 CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 7.1 The dislocation density is just the total dislocation length

More information

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige Ch. 4: Imperfections in Solids Part 1 Dr. Feras Fraige Outline Defects in Solids 0D, Point defects vacancies Interstitials impurities, weight and atomic composition 1D, Dislocations edge screw 2D, Grain

More information

LECTURE SUMMARY September 30th 2009

LECTURE SUMMARY September 30th 2009 LECTURE SUMMARY September 30 th 2009 Key Lecture Topics Crystal Structures in Relation to Slip Systems Resolved Shear Stress Using a Stereographic Projection to Determine the Active Slip System Slip Planes

More information

Material Strengthening Mechanisms. Academic Resource Center

Material Strengthening Mechanisms. Academic Resource Center Material Strengthening Mechanisms Academic Resource Center Agenda Definition of strengthening Strengthening mechanisms Grain size reduction Solid solution alloying Cold Working (strain hardening) Three

More information

CHAPTER 4 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS

CHAPTER 4 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS 4-1 CHAPTER 4 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Vacancies and Self-Interstitials 4.1 In order to compute the fraction of atom sites that are vacant in copper at 1357 K, we must employ Equation

More information

Materials Science and Engineering Department MSE , Sample Test #1, Spring 2010

Materials Science and Engineering Department MSE , Sample Test #1, Spring 2010 Materials Science and Engineering Department MSE 200-001, Sample Test #1, Spring 2010 ID number First letter of your last name: Name: No notes, books, or information stored in calculator memories may be

More information

Chapter 3: The Structure of Crystalline Solids

Chapter 3: The Structure of Crystalline Solids Sapphire: cryst. Al 2 O 3 Insulin : The Structure of Crystalline Solids Crystal: a solid composed of atoms, ions, or molecules arranged in a pattern that is repeated in three dimensions A material in which

More information

Lösungen Übung Verformung

Lösungen Übung Verformung Lösungen Übung Verformung 1. (a) What is the meaning of T G? (b) To which materials does it apply? (c) What effect does it have on the toughness and on the stress- strain diagram? 2. Name the four main

More information

The mechanical properties of metal affected by heat treatment are:

The mechanical properties of metal affected by heat treatment are: Training Objective After watching this video and reviewing the printed material, the student/trainee will learn the basic concepts of the heat treating processes as they pertain to carbon and alloy steels.

More information

ME 612 Metal Forming and Theory of Plasticity. 3. Work Hardening Models

ME 612 Metal Forming and Theory of Plasticity. 3. Work Hardening Models Metal Forming and Theory of Plasticity Yrd.Doç. e mail: azsenalp@gyte.edu.tr Makine Mühendisliği Bölümü Gebze Yüksek Teknoloji Enstitüsü In this section work hardening models that are applicable to different

More information

Constitutive Equations - Plasticity

Constitutive Equations - Plasticity MCEN 5023/ASEN 5012 Chapter 9 Constitutive Equations - Plasticity Fall, 2006 1 Mechanical Properties of Materials: Modulus of Elasticity Tensile strength Yield Strength Compressive strength Hardness Impact

More information

The University of Western Ontario Department of Physics and Astronomy P2800 Fall 2008

The University of Western Ontario Department of Physics and Astronomy P2800 Fall 2008 P2800 Fall 2008 Questions (Total - 20 points): 1. Of the noble gases Ne, Ar, Kr and Xe, which should be the most chemically reactive and why? (0.5 point) Xenon should be most reactive since its outermost

More information

FEATURES AND BENEFITS OF DIFFERENT PLATINUM ALLOYS. Kris Vaithinathan and Richard Lanam Engelhard Corporation

FEATURES AND BENEFITS OF DIFFERENT PLATINUM ALLOYS. Kris Vaithinathan and Richard Lanam Engelhard Corporation FEATURES AND BENEFITS OF DIFFERENT PLATINUM ALLOYS Kris Vaithinathan and Richard Lanam Engelhard Corporation Introduction There has been a significant increase in the world wide use of platinum for jewelry

More information

Experiment: Crystal Structure Analysis in Engineering Materials

Experiment: Crystal Structure Analysis in Engineering Materials Experiment: Crystal Structure Analysis in Engineering Materials Objective The purpose of this experiment is to introduce students to the use of X-ray diffraction techniques for investigating various types

More information

Plastic Deformation of Metals and Related Properties

Plastic Deformation of Metals and Related Properties Plastic Deformation of Metals and Related Properties 1 Plastic Deformation of Metals and Related Properties 1 1.1 INTRODUCTION Metal forming is the backbone of modern manufacturing industry besides being

More information

Concepts of Stress and Strain

Concepts of Stress and Strain CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS Concepts of Stress and Strain 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original

More information

Rolling - Introductory concepts

Rolling - Introductory concepts Rolling - Introductory concepts R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 8 Table of Contents 1. Rolling -

More information

Chapter 1 Introduction to Material science & Metallurgy

Chapter 1 Introduction to Material science & Metallurgy Chapter 1 Introduction to Material science & Metallurgy 1. Material Science & Metallurgy (21419) State the importance of study of materials science and briefly. Explain Engineering requirements of materials.

More information

Lecture slides on rolling By: Dr H N Dhakal Lecturer in Mechanical and Marine Engineering, School of Engineering, University of Plymouth

Lecture slides on rolling By: Dr H N Dhakal Lecturer in Mechanical and Marine Engineering, School of Engineering, University of Plymouth Lecture slides on rolling By: Dr H N Dhakal Lecturer in Mechanical and Marine Engineering, School of Engineering, University of Plymouth Bulk deformation forming (rolling) Rolling is the process of reducing

More information

Materials Issues in Fatigue and Fracture

Materials Issues in Fatigue and Fracture Materials Issues in Fatigue and Fracture 5.1 Fundamental Concepts 5.2 Ensuring Infinite Life 5.3 Finite Life 5.4 Summary FCP 1 5.1 Fundamental Concepts Structural metals Process of fatigue A simple view

More information

- in a typical metal each atom contributes one electron to the delocalized electron gas describing the conduction electrons

- in a typical metal each atom contributes one electron to the delocalized electron gas describing the conduction electrons Free Electrons in a Metal - in a typical metal each atom contributes one electron to the delocalized electron gas describing the conduction electrons - if these electrons would behave like an ideal gas

More information

Heat Treating of Nonferrous Alloys

Heat Treating of Nonferrous Alloys Metallogr. Microstruct. Anal. (2013) 2:190 195 DOI 10.1007/s13632-013-0074-8 TUTORIAL Heat Treating of Nonferrous Alloys Howard E. Boyer Ó American Society for Metals 1984 The reader should understand

More information

Powder Metallurgy. Training Objective

Powder Metallurgy. Training Objective Training Objective After watching the program and reviewing this printed material, the viewer will gain a knowledge and understanding of the basics of powder metallurgy. Types of particles are explained.

More information

Material Expansion Coefficients

Material Expansion Coefficients 17 Material Expansion Coefficients Linear Thermal Expansion Coefficients of Metals and Alloys Table 17-1 provides the linear thermal expansion coefficients of the most frequently used metals and allows.

More information

CHAPTER 7: DISLOCATIONS AND STRENGTHENING

CHAPTER 7: DISLOCATIONS AND STRENGTHENING CHAPTER 7: DISLOCATIONS AND STRENGTHENING ISSUES TO ADDRESS... Why are dislocations observed primarily in metals and alloys? Mech 221 - Notes 7 1 DISLOCATION MOTION Produces plastic deformation, in crystalline

More information

Introduction to Iron Metallurgy. Lee Morin Houston Home Metal Shop Club October 2010

Introduction to Iron Metallurgy. Lee Morin Houston Home Metal Shop Club October 2010 Introduction to Iron Metallurgy Lee Morin Houston Home Metal Shop Club October 2010 Book I stole the pictures from We will start with a brief overview! Metals Are Crystals Fundamental geometry of a crystal

More information

PROPERTIES OF MATERIALS

PROPERTIES OF MATERIALS 1 PROPERTIES OF MATERIALS 1.1 PROPERTIES OF MATERIALS Different materials possess different properties in varying degree and therefore behave in different ways under given conditions. These properties

More information

Structure of Metals 110

Structure of Metals 110 Structure of Metals 110 Welcome to the Tooling University. This course is designed to be used in conjunction with the online version of this class. The online version can be found at http://www.toolingu.com.

More information

ALLOY 800 / 800H / 800AT DATA SHEET

ALLOY 800 / 800H / 800AT DATA SHEET ALLOY 800 / 800H / 800AT DATA SHEET UNS N08800 / UNS N08801 / UNS N08811 GENERAL PROPERTIES ////////////////////////////////////////////////////// //// 800 (UNS N08800), 800H (UNS N08810) and 800AT (UNS

More information

INDIAN STANDARDS (BIS) ON WELDING

INDIAN STANDARDS (BIS) ON WELDING ** IS 82:957 Glossary of terms relating to welding and cutting of Sep 2008 metals 2 IS 83:986 Scheme of symbols for welding (revised) Sep 2008 3 IS 84:2004 Covered electrodes for manual metal arc welding

More information

v kt = N A ρ Au exp (

v kt = N A ρ Au exp ( 4-2 4.2 Determination of the number of vacancies per cubic meter in gold at 900 C (1173 K) requires the utilization of Equations 4.1 and 4.2 as follows: N v N exp Q v N A ρ Au kt A Au exp Q v kt (6.023

More information

Deformation of Single Crystals

Deformation of Single Crystals Deformation of Single Crystals When a single crystal is deformed under a tensile stress, it is observed that plastic deformation occurs by slip on well defined parallel crystal planes. Sections of the

More information

Aluminium 1. Welding Consumables Aluminium. Section 12 - Welding Consumables. 12 Aluminium. Welding of Aluminium 2. Aluminium Electrodes 7

Aluminium 1. Welding Consumables Aluminium. Section 12 - Welding Consumables. 12 Aluminium. Welding of Aluminium 2. Aluminium Electrodes 7 Aluminium 1 Afrox Product Reference Manual Aluminium Section - Aluminium 1 Welding of Aluminium 2 Aluminium Electrodes 7 Aluminium MIG & TIG Wires 8 Aluminium Welding Flux 13 Aluminium Brazing Flux 13

More information

FATIGUE CONSIDERATION IN DESIGN

FATIGUE CONSIDERATION IN DESIGN FATIGUE CONSIDERATION IN DESIGN OBJECTIVES AND SCOPE In this module we will be discussing on design aspects related to fatigue failure, an important mode of failure in engineering components. Fatigue failure

More information

Lecture Notes on manufacturing Process. Engineering Material

Lecture Notes on manufacturing Process. Engineering Material Engineering Material Ferrous material; A general classification of engineering materials is shown in Figure 1.8. Engineering material can be broadly classified as Metallic and Non-Metallic materials. The

More information

Unit 6: EXTRUSION. Difficult to form metals like stainless steels, nickel based alloys and high temperature metals can also be extruded.

Unit 6: EXTRUSION. Difficult to form metals like stainless steels, nickel based alloys and high temperature metals can also be extruded. 1 Unit 6: EXTRUSION Introduction: Extrusion is a metal working process in which cross section of metal is reduced by forcing the metal through a die orifice under high pressure. It is used to produce cylindrical

More information

Fundamentals of Extrusion

Fundamentals of Extrusion CHAPTER1 Fundamentals of Extrusion The first chapter of this book discusses the fundamentals of extrusion technology, including extrusion principles, processes, mechanics, and variables and their effects

More information

14:635:407:02 Homework III Solutions

14:635:407:02 Homework III Solutions 14:635:407:0 Homework III Solutions 4.1 Calculate the fraction of atom sites that are vacant for lead at its melting temperature of 37 C (600 K). Assume an energy for vacancy formation of 0.55 ev/atom.

More information

FORGE. world leading numerical simulation software MATERIAL FORMING SIMULATION

FORGE. world leading numerical simulation software MATERIAL FORMING SIMULATION FORGE world leading numerical simulation software MATERIAL FORMING SIMULATION 2 www.transvalor.com 3 FORGE is a world leading numerical simulation software for all bulk metal forming processes. It is used

More information

Strengthening. Mechanisms of strengthening in single-phase metals: grain-size reduction solid-solution alloying strain hardening

Strengthening. Mechanisms of strengthening in single-phase metals: grain-size reduction solid-solution alloying strain hardening Strengthening The ability of a metal to deform depends on the ability of dislocations to move Restricting dislocation motion makes the material stronger Mechanisms of strengthening in single-phase metals:

More information

Crystal Symmetries METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

Crystal Symmetries METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08 Crystal Symmetries Why should we be interested? Important physical properties depend on crystal structure Conductivity Magnetic properties Stiffness Strength These properties also often depend on crystal

More information

Metallurgy Made Simple

Metallurgy Made Simple Metallurgy Made Simple Section II Metal Identification Titanium Nickel Copper Cast Iron 25 Greystone Drive Suite 7 Lynchburg, Virginia 24502 info@weldsmart.com ..... There are several Metal Identification

More information

The Structure of solids.

The Structure of solids. Chapter S. The Structure of solids. After having studied this chapter, the student will be able to: 1. Distinguish between a crystal structure and an amorphous structure. 2. Describe the concept of a unit

More information

CIRP Encyclopedia of Production Engineering

CIRP Encyclopedia of Production Engineering The International Academy for Production Engineering Luc Laperriere Gunther Reinhart Editors CIRP Encyclopedia of Production Engineering Volume 1 A-H With 1145 Figures and 85 Tables ^ Springer Reference

More information

YEARS. TRIMET Aluminium SE. Aluminium wires for electrical and mechanical applications

YEARS. TRIMET Aluminium SE. Aluminium wires for electrical and mechanical applications YEARS TRIMET Aluminium SE Aluminium wires for electrical and mechanical applications TRIMET Aluminium SE an independent family-run enterprise for more than 30 years TRIMET Aluminium SE is an innovative

More information

Imperfections in atomic arrangements

Imperfections in atomic arrangements MME131: Lecture 8 Imperfections in atomic arrangements Part 1: 0D Defects A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Occurrence and importance of crystal defects Classification

More information

Lecture: 33. Solidification of Weld Metal

Lecture: 33. Solidification of Weld Metal Lecture: 33 Solidification of Weld Metal This chapter presents common solidification mechanisms observed in weld metal and different modes of solidification. Influence of welding speed and heat input on

More information

Chapter Outline. How do atoms arrange themselves to form solids?

Chapter Outline. How do atoms arrange themselves to form solids? Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures Simple cubic Face-centered cubic Body-centered cubic Hexagonal close-packed

More information

(10 4 mm -2 )(1000 mm 3 ) = 10 7 mm = 10 4 m = 6.2 mi

(10 4 mm -2 )(1000 mm 3 ) = 10 7 mm = 10 4 m = 6.2 mi CHAPTER 8 DEFORMATION AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 8.1 To provide some perspective on the dimensions of atomic defects,

More information

Module 3 Machinability. Version 2 ME, IIT Kharagpur

Module 3 Machinability. Version 2 ME, IIT Kharagpur Module 3 Machinability Lesson 1 Cutting Tool Materials of common use Instructional Objectives At the end of this lesson, the students will be able to (i) Identify the needs and cite the chronological development

More information

MARTENSITIC STAINLESS STEEL RWL-34

MARTENSITIC STAINLESS STEEL RWL-34 MARTENSITIC STAINLESS STEEL RWL-34 RWL 34 is a Rapid Solidified Powder (RSP) Martensitic Stainless Steel, which is variation of the 420 martensitic stainless steel family with minimum 13 percent chromium

More information

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R 3.5 Show that the atomic packing factor for BCC is 0.68. The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C Since there are two spheres associated

More information

Lecture 2. Surface Structure

Lecture 2. Surface Structure Lecture 2 Surface Structure Quantitative Description of Surface Structure clean metal surfaces adsorbated covered and reconstructed surfaces electronic and geometrical structure References: 1) Zangwill,

More information

Griffith theory of brittle fracture:

Griffith theory of brittle fracture: Griffith theory of brittle fracture: Observed fracture strength is always lower than theoretical cohesive strength. Griffith explained that the discrepancy is due to the inherent defects in brittle materials

More information

NPTEL: STRUCTURE OF MATERIALS Instructor: Anandh Subramaniam [Lecture-1 to Lecture-45] 1. Overview (C1) (Time: 49:06)

NPTEL: STRUCTURE OF MATERIALS Instructor: Anandh Subramaniam [Lecture-1 to Lecture-45] 1. Overview (C1) (Time: 49:06) NPTEL: STRUCTURE OF MATERIALS Instructor: Anandh Subramaniam [Lecture-1 to Lecture-45] Lec Chapter 1. Overview (C1) (Time: 49:06) 2. Geometry of Crystals: Symmetry, Lattices (C2) (Time: 1:08:58) 3. (Time:

More information

Aluminum Metallurgy What Metal Finishers Should Know

Aluminum Metallurgy What Metal Finishers Should Know Help Log-in Site News Home About Us Services Publications Links Contact Us Accreditation Q & A Forums Print This Document Back again for installment #5 of the Omega Update! This past summer we began our

More information

Mechanical properties can be permanently altered by either thermal or mechanical treatment. Those properties include:

Mechanical properties can be permanently altered by either thermal or mechanical treatment. Those properties include: Training Objective After watching the program and reviewing this printed material, the viewer will become familiar with further aspects of tool design by exploring the materials used in toolmaking. Tool

More information

Manufacturing Technology II. Exercise 6. Tool materials for forming tools

Manufacturing Technology II. Exercise 6. Tool materials for forming tools Lehrstuhl für Technologie der Fertigungsverfahren Laboratorium für Werkzeugmaschinen und Betriebslehre Manufacturing Technology II Exercise 6 Tool materials for forming tools Werkzeugmaschinenlabor Lehrstuhl

More information

Energy of a Dislocation

Energy of a Dislocation Energy of a Dislocation The Line Tension T Broken and stretched bonds around the dislocation There is EXTRA energy associated with the Defect T = G 2 r 2 b J m G = Shear Modulus Total Extra Energy in the

More information

Solution for Homework #1

Solution for Homework #1 Solution for Homework #1 Chapter 2: Multiple Choice Questions (2.5, 2.6, 2.8, 2.11) 2.5 Which of the following bond types are classified as primary bonds (more than one)? (a) covalent bonding, (b) hydrogen

More information

Fatigue :Failure under fluctuating / cyclic stress

Fatigue :Failure under fluctuating / cyclic stress Fatigue :Failure under fluctuating / cyclic stress Under fluctuating / cyclic stresses, failure can occur at loads considerably lower than tensile or yield strengths of material under a static load: Fatigue

More information

Module 3 Selection of Manufacturing Processes. IIT Bombay

Module 3 Selection of Manufacturing Processes. IIT Bombay Module 3 Selection of Manufacturing Processes Lecture 1 Review of Manufacturing Processes Instructional objectives By the end of this lecture, the student will learn what are the different types of manufacturing

More information

Selection of the most suitable carbide grade -

Selection of the most suitable carbide grade - > Ultra-fine grain carbides are characterized by a very high hardness and wear resistance. They are used for milling tools and drills for processing abrasive, soft and tough materials, in nozzles and in

More information

Structure and Manufacturing Properties of Metals

Structure and Manufacturing Properties of Metals Chapter 3 Structure and Manufacturing Properties of Metals Questions 3.1 What is the difference between a unit cell and a single crystal? A unit cell is the smallest group of atoms showing the characteristic

More information

Die Casting. high performance steels for Die casting

Die Casting. high performance steels for Die casting Die Casting high performance steels for Die casting YOUR AREAS OF APPLICATION FOR HIGH PRESSURE DIE CASTING Areas of application Die casting is a manufacturing process for producing aluminium, zinc, magnesium

More information

7 Cobalt in Cemented Carbides

7 Cobalt in Cemented Carbides 7 Cobalt in The ability to cut metal faster and faster is to a great extent at the heart of the economic growth in the 20 th Century. Up until World War I, cutting tools were made from high carbon steels

More information

IBC Advanced Alloys - Copper Alloys

IBC Advanced Alloys - Copper Alloys Product Data Sheet - C17200 C17200 is manufactured to provide a combination of high strength and hardness properties coupled with superior thermal properties. This range of properties makes C17200 the

More information

Module #17. Work/Strain Hardening. READING LIST DIETER: Ch. 4, pp. 138-143; Ch. 6 in Dieter

Module #17. Work/Strain Hardening. READING LIST DIETER: Ch. 4, pp. 138-143; Ch. 6 in Dieter Module #17 Work/Strain Hardening READING LIST DIETER: Ch. 4, pp. 138-143; Ch. 6 in Dieter D. Kuhlmann-Wilsdorf, Trans. AIME, v. 224 (1962) pp. 1047-1061 Work Hardening RECALL: During plastic deformation,

More information

A crystalline solid is one which has a crystal structure in which atoms or ions are arranged in a pattern that repeats itself in three dimensions.

A crystalline solid is one which has a crystal structure in which atoms or ions are arranged in a pattern that repeats itself in three dimensions. CHAPTER ATOMIC STRUCTURE AND BONDING. Define a crstalline solid. A crstalline solid is one which has a crstal structure in which atoms or ions are arranged in a pattern that repeats itself in three dimensions..2

More information

MICRO METAL POWDERS. 1. TiN Powder (FTi) 2. Aluminium Powder. 3. Tin Powder. Product : TiN Powder(FTiN)

MICRO METAL POWDERS. 1. TiN Powder (FTi) 2. Aluminium Powder. 3. Tin Powder. Product : TiN Powder(FTiN) MICRO METAL POWDERS 1. TiN Powder (FTi) Product : TiN Powder(FTiN) Use : Widely used in hard alloys, diamond tools and cermet cutters. Particle Size : = 21 Fe < 0.10 O < 0.10 2. Aluminium

More information

Aluminium Alloy Specifications

Aluminium Alloy Specifications Aluminium is the world s most abundant metal and is the third most common element comprising 8% of the earth s crust. The versatility of aluminium makes it the most widely used metal after steel. Aluminium

More information

BIS or used as STANDARD comments is 15 Nov. 2008

BIS or used as STANDARD comments is 15 Nov. 2008 For comments only BUREAU OF INDIAN STANDARDS Draft Indian Standard STRUCTURAL STEEL (ORDINARY QUALITY) ICS 77.140.01 ------------------------------------------------------------------------------------------------------------------------------------------------

More information

Crystal Defects p. 2. Point Defects: Vacancies. Department of Materials Science and Engineering University of Virginia. Lecturer: Leonid V.

Crystal Defects p. 2. Point Defects: Vacancies. Department of Materials Science and Engineering University of Virginia. Lecturer: Leonid V. Crystal Defects p. 1 A two-dimensional representation of a perfect single crystal with regular arrangement of atoms. But nothing is perfect, and structures of real materials can be better represented by

More information

Wafer Manufacturing. Reading Assignments: Plummer, Chap 3.1~3.4

Wafer Manufacturing. Reading Assignments: Plummer, Chap 3.1~3.4 Wafer Manufacturing Reading Assignments: Plummer, Chap 3.1~3.4 1 Periodic Table Roman letters give valence of the Elements 2 Why Silicon? First transistor, Shockley, Bardeen, Brattain1947 Made by Germanium

More information

Sheet metal operations - Bending and related processes

Sheet metal operations - Bending and related processes Sheet metal operations - Bending and related processes R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Table of Contents 1.Quiz-Key... Error! Bookmark not defined. 1.Bending

More information

Objectives/Introduction Extraction of zinc Physical properties of zinc Zinc casting alloys Wrought zinc alloys Engineering design with zinc alloys

Objectives/Introduction Extraction of zinc Physical properties of zinc Zinc casting alloys Wrought zinc alloys Engineering design with zinc alloys Lecture 7 Zinc and its alloys Subjects of interest Objectives/Introduction Extraction of zinc Physical properties of zinc Zinc casting alloys Wrought zinc alloys Engineering design with zinc alloys Objectives

More information

ME 521 Computer Aided Design. 2. Computer Aided Design and Production Process

ME 521 Computer Aided Design. 2. Computer Aided Design and Production Process Computer Aided Design Yrd.Doç. e mail: azsenalp@gyte.edu.tr Makine Mühendisliği Bölümü Gebze Yüksek Teknoloji Enstitüsü Design 2 Integrating The Design and Manufacturing Process Through a Common Datase

More information

CHAPTER 3 THE STRUCTURE OF CRYSTALLINE SOLIDS PROBLEM SOLUTIONS

CHAPTER 3 THE STRUCTURE OF CRYSTALLINE SOLIDS PROBLEM SOLUTIONS CHAPTER THE STRUCTURE OF CRYSTALLINE SOLIDS PROBLEM SOLUTIONS Fundamental Concepts.6 Show that the atomic packing factor for HCP is 0.74. The APF is just the total sphere volume-unit cell volume ratio.

More information

Tensile Testing. Objectives

Tensile Testing. Objectives Laboratory 1 Tensile Testing Objectives Students are required to understand the principle of a uniaxial tensile testing and gain their practices on operating the tensile testing machine. Students are able

More information

Investigation of Experimental and Numerical Analysis on Extrusion Process of Magnesium Alloy Fin Structural Parts

Investigation of Experimental and Numerical Analysis on Extrusion Process of Magnesium Alloy Fin Structural Parts Investigation of Experimental and Numerical Analysis on Extrusion Process of Magnesium Alloy Fin Structural Parts Su-Hai Hsiang, Yi-Wei Lin, and Wen-Hao Chien Department of Mechanical Engineering National

More information

The Nature of Chemistry

The Nature of Chemistry CHAPTER 1 The Nature of Chemistry Objectives You will be able to do the following. 1. Describe how science in general is done. 2. Given a description of a property of a substance, identify the property

More information

Welding of Stainless Steels

Welding of Stainless Steels Welding of Stainless Steels i Compiled/Edited by Richard D. Campbell, P.E. Welding Solutions, Inc., Broomfield, CO 1999 by American Welding Society. All rights reserved Printed in the United States of

More information

Dislocation theory. Subjects of interest

Dislocation theory. Subjects of interest Chapter 5 Dislocation theory Subjects of interest Introduction/Objectives Observation of dislocation Burgers vector and the dislocation loop Dislocation in the FCC, HCP and BCC lattice Stress fields and

More information

One stop shopping for any metal, cut and ready, fast!

One stop shopping for any metal, cut and ready, fast! ANGLES Data and Specifications 01 Aluminum Angles (Typically Rounded Corners) This is the most versatile of the heat treatable aluminum alloys. This alloy offers a wide range of mechanical properties and

More information

COATED CARBIDE. TiN. Al 2 O 3

COATED CARBIDE. TiN. Al 2 O 3 COATED CARBIDE GENERAL INFORMATION CVD = Chemical Vapour Deposition coated grades GC2015, GC2025, GC2135, GC235, GC3005, GC3015, GC3020, GC3025, GC3115, GC4015, GC4025, GC4035, S05F, and CD1810. PVD =

More information

EndMills For Hardened Steel

EndMills For Hardened Steel For Hardened Hi-Performance Flute 45 For Tough Features : - Manufactured from premium sub micron grain carbide. - Increased core diameter for added strength. - Use for light finishing cuts - CG coated

More information

Chapter Outline. Defects Introduction (I)

Chapter Outline. Defects Introduction (I) Crystals are like people, it is the defects in them which tend to make them interesting! - Colin Humphreys. Defects in Solids Chapter Outline 0D, Point defects vacancies interstitials impurities, weight

More information

Cutting Tool Materials

Cutting Tool Materials Training Objectives After watching the video and reviewing this printed material, the viewer will gain knowledge and understanding of cutting tool metallurgy and specific tool applications for various

More information

CUSTOMS TARIFF - SCHEDULE V - 1

CUSTOMS TARIFF - SCHEDULE V - 1 V - 1 Section V MINERAL PRODUCTS 26 - i Chapter 26 ORES, SLAG AND ASH Notes. 1. This Chapter does not cover: (a) Slag or similar industrial waste prepared as macadam (heading 25.17); (b) Natural magnesium

More information

Mechanical Manufacturing Process

Mechanical Manufacturing Process Mechanical Manufacturing Process Yao-Joe Yang ( ) National Taiwan University OUTLINE Material Manufacturing processes 1 Materials in Manufacturing Most engineering materials can be classified into one

More information

Introduction to Metallography

Introduction to Metallography Introduction to Metallography Metallography has been described as both a science and an art. Traditionally, metallography has been the study of the microscopic structure of metals and alloys using optical

More information

Solution: The draft attempted in this rolling operation is

Solution: The draft attempted in this rolling operation is Example: 1 A 300-mm-wide strip 25 mm thick is fed through a rolling mill with two powered rolls each of radius = 250 mm. The work thickness is to be reduced to 22 mm in one pass at a roll speed of 50 rev/min.

More information