CHAPTER 22. The Electric Field I: Discrete Charge Distributions

Size: px
Start display at page:

Download "CHAPTER 22. The Electric Field I: Discrete Charge Distributions"

Transcription

1 CHAPTER 1* If the sign convention for charge were changed so that the charge on the electron were positive and the charge on the proton were negative, would Coulomb's law still be written the same? Yes Discuss the similarities and differences in the properties of electric charge and gravitational mass. Similarities: The force between charges and masses vary as 1/r. Differences: There are positive and negative charges but only positive masses. Like charges repel; like masses attract. The gravitational constant G is many orders of magnitude smaller than the Coulomb constant k. 3 A plastic rod is rubbed against a wool shirt, thereby acquiring a charge of 0.8 µc. How many electrons are transferred from the wool shirt to the plastic rod? n e = q/( e) n e = ( )/( ) = A charge equal to the charge of Avogadro's number of protons (N A = ) is called a faraday. Calculate the number of coulombs in a faraday. 1 faraday = N A e 1 faraday = C = C 5* How many coulombs of positive charge are there in 1 kg of carbon? Twelve grams of carbon contain Avogadro's number of atoms, with each atom having six protons and six electrons. Q = 6 n C e; n C = N A (m C /1) Q = ( /1) C = C 6 Can insulators be charged by induction? No 7 A metal rectangle B is connected to ground through a switch S that is initially closed (Figure -8). While the charge +Q is near B, switch S is opened. The charge +Q is then removed. Afterward, what is the charge state of the metal rectangle B? (a) It is positively charged. (b) It is uncharged. (c) It is negatively charged. (d) It may be any of the above depending on the charge on B before the charge +Q was placed nearby. (c) 8 Explain, giving each step, how a positively charged insulating rod can be used to give a metal sphere (a) a negative charge, and (b) a positive charge. (c) Can the same rod be used to simultaneously give one sphere a positive charge and another sphere a negative charge without the rod having to be recharged? (a) Connect the metal sphere to ground; bring the insulating rod near the metal sphere and disconnect the sphere from ground; then remove the insulating rod. The sphere will be negatively charged. (b) Bring the insulating rod in contact with the metal sphere; some of the positive charge on the rod will be

2 Chapter transferred to the metal sphere. (c) Yes. First charge one metal sphere negatively by induction as in (a). Then use that negatively charged sphere to charge the second metal sphere positively by induction. 9* Two uncharged conducting spheres with their conducting surfaces in contact are supported on a large wooden table by insulated stands. A positively charged rod is brought up close to the surface of one of the spheres on the side opposite its point of contact with the other sphere. (a) Describe the induced charges on the two conducting spheres, and sketch the charge distributions on them. (b) The two spheres are separated far apart and the charged rod is removed. Sketch the charge distributions on the separated spheres. (a) On the sphere near the positively charged rod, the induced charge is negative and near the rod. On the other sphere, the net charge is positive and on the side far from the rod. This is shown in the diagram. (b) When the spheres are separated and far apart and the rod has been removed, the induced charges are distributed uniformly over each sphere. The charge distributions are shown in the diagram. 10 Three charges, +q, +Q, and Q, are placed at the corners of an equilateral triangle as shown in Figure - 9. The net force on charge +q due to the other two charges is (a) vertically up. (b) vertically down. (c) zero. (d) horizontal to the left. (e) horizontal to the right. (e) 11 A charge q 1 = 4.0 µc is at the origin, and a charge q = 6.0 µc is on the x axis at x = 3.0 m. (a) Find the force on charge q. (b) Find the force on q 1. (c) How would your answers for parts (a) and (b) differ if q were 6.0 µc? (a) Use Equ. - (b) Use Newton s third law (c) In this case the forces are in opposite directions F1 = ( /9) N i =.4 10 N i F1 = F1 =.4 10 N i F1 =.4 10 N i; F1 =.4 10 N i 1 Three point charges are on the x axis: q 1 = 6.0 µc is at x = 3.0 m, q = 4.0 µc is at the origin, and q 3 = 6.0 µc is at x = 3.0 m. Find the force on q 1. Use Equ. - to find F1 and F31 F1 = F1 + F31 F1 =.4 10 N i; F31 = N i F1 = N I 13* Two equal charges of 3.0 µc are on the y axis, one at the origin and the other at y = 6 m. A third charge q 3 = µc is on the x axis at x = 8 m. Find the force on q 3. Use Equ. - to find F13 and F3 F3 = F13 + F3 F13 = N i; F3 = ( N)(0.8 i 0.6 j) F3 = N i N j 14 Three charges, each of magnitude 3 nc, are at separate corners of a square of side 5 cm. The two charges at opposite corners are positive, and the other charge is negative. Find the force exerted by these charges on a

3 Chapter fourth charge q = +3 nc at the remaining corner. The configuration of the charges and the forces on the fourth charge are shown in the figure. From the figure it is evident that the net force on q 4 is along the diagonal of the square and directed away from q Use Equ. - to find F14 and F4. Find i and j components of F34 3. F4 = F14 + F4 + F34 F14 = N j F4 = N i F34 = N (i + j) F4 = N (i + j) 15 A charge of 5 µc is on the y axis at y = 3 cm, and a second charge of 5 µc is on the y axis at y = 3 cm. Find the force on a charge of µc on the x axis at x = 8 cm. From the geometry it is evident that the net force on the µc charge is along the y axis. 1. Use Equ. - to find the y component of the force on the µc exerted by the 5 µc charge.. F = F 5y j F 5y = ( /73)(3/ 73 ) N = N F = N j 16 A point charge of.5 µc is located at the origin. A second point charge of 6 µc is at x = 1 m, y = 0.5 m. Find the x and y coordinates of the position at which an electron would be in equilibrium. The positions of the charges are shown in the diagram. It is apparent that the electron must be located along the line joining the two charges. Moreover, since it is negatively charged, it must be closer to the.5 µc than to the 6.0 µc charge, as is indicated in the figure. Use Equ. - to find the magnitude of the force on e acting along the line. Set F = 0 and solve for r r < 0 is unphysical. Find x and y components. F = ke[.5/r 6.0/(r / ) ] µn 3.5r 5.59r 3.15 = 0; r =.09 m, m x = (.09/1.5 1/ ) m = 1.87 m; y = 1/x = m 17* A charge of 1.0 µc is located at the origin, a second charge of.0 µc is located at x = 0, y = 0.1 m, and a third charge of 4.0 µc is located at x = 0. m, y = 0. Find the forces that act on each of the three charges. Let q 1 = 1.0 µc at (0, 0), q = µc at (0, 0.1), and q 3 = 4 µc at (0., 0). 1. Use Equ. - to find F1, F31, and F3 F1 = 1.8 N j, F31 = N i, F3 = N j 1.9 N i

4 Chapter. F1 = F1 + F31; F = F1 + F3 3. F3 + F1 + F = 0; F3 = -(F1 + F) F1 = N i N j; F = 1.9 N i 1.16 N j F3 = N i N j 18 A charge of 5.0 µc is located at x = 0, y = 0 and a charge Q is located at x = 4.0 cm, y = 0. The force on a -µc charge at x = 8.0 cm, y = 0 is 19.7 N, pointing in the negative x direction. When this -µc charge is positioned at x = cm, y = 0, the force on it is zero. Determine the charge Q. Write F on µc and set it equal to 0 when /(0.1775) Q /(0.1375) = 0 x( µc) = cm. Solve for Q Q = 3.0 µc 19 Five equal charges Q are equally spaced on a semicircle of radius R as shown in Figure -30. Find the force on a charge q located at the center of the semicircle. By symmetry, the y component of the force on q is zero. The x components of the forces on q are kqq/r for the charge Q on the x axis and kqq/ R for each of the two charges at 45 from the x axis. The total force on the charge q is therefore F = ( kqq / R )(1 + ) i. 0 The configuration of the NH 3 molecule is approximately that of a regular tetrahedron, with three H + ions forming the base and an N 3 ion at the apex of the tetrahedron. The length of each side is m. Calculate the force that acts on each ion. Let the H + ions be in the x-y plane with H 1 at (0, 0, 0), H at (a, 0, 0), and H 3 at (a/, a 3 /, 0). The N 3 ion which we shall label 4, is then at ( a /, a / 3, a / 3). Here a = m. To simplify the calculation we shall set ke /a = C = N. 1. Use Equ. - to find F1, F31, F41. F1 = F1 + F31 + F41 3. By symmetry, F = F3 = F1 4. F1 + F + F3 + F4 = 0; solve for F4 F1 = -C i; F31 = -C[(1/) i + ( 3 / ) j]; F41 = 3C[(1/) i + ( 1 / 3 ) j + ( / 3 ) k] F1 = C 6 k F = F3 = C 6 k F4 = 3C 6 k 1* A positive charge that is free to move but is at rest in an electric field E will (a) accelerate in the direction perpendicular to E. (b) remain at rest. (c) accelerate in the direction opposite to E. (d) accelerate in the same direction as E. (e) do none of the above. (d) If four charges are placed at the corners of a square as shown in Figure -31, the field E is zero at (a) all points along the sides of the square midway between two charges. (b) the midpoint of the square. (c) midway between the top two charges and midway between the bottom two charges. (d) none of the above. (b)

5 Chapter 3 At a particular point in space, a charge Q experiences no net force. It follows that (a) there are no charges nearby. (b) if charges are nearby, they have the opposite sign of Q. (c) if charges are nearby, the total positive charge must equal the total negative charge. (d) none of the above need be true. (d) Note: In the first printing of the textbook the problem statement reads, At experiences no force. In that case, the correct answer is (a). 4 A charge of 4.0 µc is at the origin. What is the magnitude and direction of the electric field on the x axis at (a) x = 6 m and (b) x = -10 m? (c) Sketch the function E x versus x for both positive and negative values of x. (Remember that E x is negative when E points in the negative x direction.) (a) Use Equ. -7 (b) At x = 10 m, E points in the i direction (c) A plot of E x is shown. E = ( /36) N/C i = 999 N/C i E = 360 N/C i 5* Two charges, each +4 µc, are on the x axis, one at the origin and the other at x = 8 m. Find the electric field on the x axis at (a) x = m, (b) x = m, (c) x = 6 m, and (d) x = 10 m. (e) At what point on the x axis is the electric field zero? (f) Sketch E x versus x. (a) Use Equ. -7 (b) Here the fie lds due to the two charges are oppositely directed (c) By symmetry, E(6) = E() (d) By symmetry, E(10) = E( ) (e) Use symmetry argument (f) E x versus x is shown E = (1/ + 1/10 ) N/C i = N/C i E = (1/ 1/6 ) N/C i = N/C i E = N/C i E = N/C I E = 0 at x = 4 m

6 Chapter 6 When a test charge q 0 = nc is placed at the origin, it experiences a force of N in the positive y direction. (a) What is the electric field at the origin? (b) What would be the force on a charge of 4 nc placed at the origin? (c) If this force is due to a charge on the y axis at y = 3 cm, what is the value of that charge? (a) Use Equ. -5 (b) F = qe (c) Use Equ. - E = ( / 10 9 ) N/C j = N/C j F = N j q = ( / ) C = 40 nc 7 An oil drop has a mass of kg and a net charge of C. An upward electric force just balances the downward force of gravity so that the oil drop is stationary. What is the direction and magnitude of the electric field? Eq = mg; Eq must point up E = ( / ) N/C = N/C up 8 The electric field near the surface of the earth points downward and has a magnitude of 150 N/C. (a) Compare the upward electric force on an electron with the downward gravitational force. (b) What charge should be placed on a penny of mass 3 g so that the electric force balances the weight of the penny near the earth's surface? (a) Ee/mg = / = The electric force is very much larger. (b) q = mg/e = C. 9* Two equal positive charges of magnitude q 1 = q = 6.0 nc are on the y axis at y 1 = +3 cm and y = 3 cm. (a) What is the magnitude and direction of the electric field on the x axis at x = 4 cm? (b) What is the force exerted on a third charge q 0 = nc when it is placed on the x axis at x = 4 cm? (a) By symmetry, E y =0. Find E due to q 1 at x = 4cm Total E x = E 4/5 (b) F = qe E = kq 1 / = N/C E x = N/C; E = N/C i F = N I 30 A point charge of +5.0 µc is located at x = 3.0 cm, and a second point charge of 8.0 µc is located at x = +4.0 cm. Where should a third charge of +6.0 µc be placed so that the electric field at x = 0 is zero? 1. Set E = 0 at x = 0; note that E due to +5 µc and (5/9) + (8/16) (6/x ) = 0 8 µc point in the i direction 1. Solve for x x =.38 cm 31 A point charge of 5 µc is located at x = 4 m, y = m. A second point charge of 1 µc is located at x = 1 m, y = m. (a) Find the magnitude and direction of the electric field at x = 1 m, y = 0. (b) Calculate the magnitude and direction of the force on an electron at x = 1 m, y = 0.

7 Chapter The diagram shows the electric field vectors at the point of interest due to the two charges. Note that the E field due to the +1 µc charge makes an angle of 5 with the x axis; the E field due to the 5 µc charge makes and angle tan 1 (0.4) = 1.8 with the x axis. (a) 1. Find the magnitude of the two fields. Find the x and y components of the fields 3. Find E (b) F = E E 1 = k/8 E -5 = k/9 E x1 = k E x-5 = k E y1 = k; E y 5 = k E = N/C i N/C j E = N/C at? = 31.3 F = N at? = Two equal positive charges q are on the y axis, one at y = a and the other at y = a. (a) Show that the electric field on the x axis is along the x axis with E x = kqx(x + a ) 3/. (b) Show that near the origin, when x is much smaller than a, E x is approximately kqx/a 3. (c) Show that for values of x much larger than a, E x is approximately kq/x. Explain why you would expect this result even before calculating it. (a) The distance between each charge and a point at (x, 0) is (a + x ) 1/. Thus, E due to each charge at that point is given by E = kq/(a + x ). By symmetry, the y components of the E fields cancel. The x component of E due to one charge is given by E x = Ex/(a + x ) 1/. The total field at (x, 0) is therefore E = kqx/(a + x ) 3/ i. (b) For x << a, (a + x ) 3/ a 3, and E x kqx/a 3 (c) Similarly, for x >> a, E x kq/x. This is to be expected; for x >> a, the system looks like a single charge of q. 33* A 5-µC point charge is located at x = 1 m, y = 3 m, and a 4-µC point charge is located at x = m, y = m. (a) Find the magnitude and direction of the electric field at x = 3 m, y = 1 m. (b) Find the magnitude and direction of the force on a proton at x = 3 m, y = 1 m. The diagram shows the electric field vectors at the point of interest due to the two charges. Note that the E field due to the +5 µc charge makes an angle tan 1 ( 0.5) = 06.6 with the x axis; the E field due to the 4 µc charge makes an angle tan 1 ( 0.6) = 31 with the x axis

8 Chapter (a) 1. Find the magnitude of the two fields.. Find the x and y components of the fields 3. Find E (b) F = E E 5 = k/0 E 4 = k/34 E x,5 = k, E x, 4 = k E y,5 = k; E y, 5 = k E = N/C i N/C j E = N/C at? = 34.4 o F = N at? = 34.4 o 34 (a) Show that the electric field for the charge distribution in Problem 3 has its greatest magnitude at the points x = a/ and x = a/ by computing de x /dx and setting the derivative equal to zero. (b) Sketch the function E x versus x using your results for part (a) of this problem and parts (b) and (c) of Problem 3. (a) Take the derivative of E x of Problem 3. de x /dx = kq/(a + x ) 3/ 6kqx /(a + x ) 5/ = kq(a x )/(a + x ) 5/. We see that de x /dx = 0 when x = ± a /. (b) A plot of E x is shown 35 For the charge distribution in Problem 3, the electric field at the origin is zero. A test charge q 0 placed at the origin will therefore be in equilibrium. (a) Discuss the stability of the equilibrium for a positive test charge by considering small displacements from equilibrium along the x axis and small displacements along the y axis. (b) Repeat part (a) for a negative test charge. (c) Find the magnitude and sign of a charge q 0 that when placed at the origin results in a net force of zero on each of the three charges. (d) What will happen if any of the charges is displaced slightly from equilibrium? (a) Since E x is in the x direction, a positive test charge that is displaced from (0, 0) in the x direction will experience a force in the x diretion and accelerate in the x direction. Consequently, the equilibrium at (0, 0) is unstable for a small displacement along the x axis. If the positive test charge is displaced in the y direction, the charge at +a will exert a greater force than the charge at a, and the net force is then in the y direction; i.e., it is a restoring force. Consequently, the equilibrium at (0, 0) is stable for small displacements along the y direction. (b) Following the same arguments as in part (a), one finds that, for a negative test charge, the equilibrium is stable at (0, 0) for displacements along the x direction and unstable for displacements along the y direction. (c) Since the two +q charges repel, the charge Q at (0, 0) must be a negative charge. Since the force between charges varies as 1/r, and the negative charge is midway between the two positive charges, Q = q/4. (d) If the charge Q is displaced, the equilibrium is as discussed in part (b). If either of the +q charges are displaced, the system is unstable. 36 Two positive point charges +q are on the y axis at y = +a and y = a as in Problem 3. A bead of mass m carrying a negative charge q slides without friction along a thread that runs along the x axis. (a) Show that for small displacements of x << a, the bead experiences a restoring force that is proportional to x and therefore

9 Chapter undergoes simple harmonic motion. (b) Find the period of the motion. (a) For x << a, (a + x ) 3/ a 3, and E x kqx/a 3 (see Problem 3(b)). Since m carries a negative charge, the force on m is directed opposite to the displacement in the x direction; i.e., it is a restoring force, proportional to x. For small displacements from equilibrium, the mass m will exhibit simple harmonic motion. (b) Writing F = k x, we see that k = kq /a 3 ma. The period of the oscillation is T = p/? = p kq 3 37* Which of the following statements about electric field lines is (are) not true? (a) The number of lines leaving a positive charge or entering a negative charge is proportional to the charge. (b) The lines begin on positive charges and end on negative charges. (c) The density of lines (the number per unit area perpendicular to the lines) is proportional to the magnitude of the field. (d) Electric field lines cross midway between charges that have equal magnitude and sign. (d) 38 Figure -3 shows the electric field lines for a system of two point charges. (a) What are the relative magnitudes of the charges? (b) What are the signs of the charges? (c) In what regions of space is the electric field strong? In what regions is it weak? (a) There are 3 lines emanating from the positive charge and 8 lines terminating on the negative charge. The relative magnitudes of the charges are 4:1. (b) The charge on the left is positive; that on the right is negative. (c) The field is strong near the positive charge. It is weak to the right of the negative charge. 39 Two charges +4q and 3q are separated by a small distance. Draw the electric field lines for this system. A sketch of the electric field lines is shown. We assign lines per charge q. 40 Two charges +q and 3q are separated by a small distance. Draw the electric field lines for this system.

10 Chapter A sketch of the field lines is shown. We assign lines per charge q. 41* Three equal positive point charges are situated at the corners of an equilateral triangle. Sketch the electric field lines in the plane of the triangle. A sketch of the field lines is shown. Here we have assigned 7 field lines to each charge q. 4 The acceleration of a particle in an electric field depends on the ratio of the charge to the mass of the particle. (a) Compute e/m for an electron. (b) What is the magnitude and direction of the acceleration of an electron in a uniform electric field with a magnitude of 100 N/C? (c) When the speed of an electron approaches the speed of light c, relativistic mechanics must be used to calculate its motion, but at speeds significantly less than c, Newtonian mechanics applies. Using Newtonian mechanics, compute the time it takes for an electron placed at rest in an electric field with a magnitude of 100 N/C to reach a speed of 0.01c. (d) How far does the electron travel in that time? (a) See textbook endpaper (b) a = F/m = ee/m (c) t = v/a (d) x = v av t e/m = ( / ) C/kg = C/kg a = m/s, directed opposite to E. t = ( / ) s = s = µs x = m = 0.57 m = 5.7 cm 43 (a) Compute e/m for a proton, and find its acceleration in a uniform electric field with a magnitude of 100

11 Chapter N/C. (b) Find the time it takes for a proton initially at rest in such a field to reach a speed of 0.01c (where c is the speed of light). (a), (b) Proceed as in Problem 4. One obtains e/m p = C/kg; a = m/s, in the direction of E; t = s = 313 µs. 44 An electron has an initial velocity of 10 6 m/s in the x direction. It enters a uniform electric field E = (400 N/C)j, which is in the y direction. (a) Find the acceleration of the electron. (b) How long does it take for the electron to travel 10 cm in the x direction in the field? (c) By how much and in what direction is the electron deflected after traveling 10 cm in the x direction in the field? (a) a = ee/m (b) t = x/v x (c) y = 1/a y t a = ( ) m/s j = m/s j t = 0.1/ 10 6 s = 0.05 µs y = ( /) m = 8.8 cm 45* An electron, starting from rest, is accelerated by a uniform electric field of N/C that extends over a distance of 5.0 cm. Find the speed of the electron after it leaves the region of uniform electric field. v 4 11 = ax; a = ee/m; v = eex / m v = m/s = m/s 46 An electron moves in a circular orbit about a stationary proton. The centripetal force is provided by the electrostatic force of attraction between the proton and the electron. The electron has a kinetic energy of J. (a) What is the speed of the electron? (b) What is the radius of the orbit of the electron? (a) v = K / m v = / m/s = m/s (b) mv /r = ke /r ; r = ke /K r = ( ) /( ) m = m = 5.8 pm 47 A mass of g located in a region of uniform electric field E = (300 N/C)i carries a charge Q. The mass, released from rest at x = 0, has a kinetic energy of 0.1 J at x = 0.50 m. Determine the charge Q. K = QEx Q = 0.1/150 C = C = 800 µc 48 A particle leaves the origin with a speed of m/s at 35 to the x axis. It moves in a constant electric field E = E y j. Find E y such that the particle will cross the x axis at x = 1.5 cm if the particle is (a) an electron, and (b) a proton. (a) 1. Write expressions for x and y x = (v cos?)t; y = (v sin?)t 1/(eE y /m)t. Set y = 0 and solve for t 0 t = (mv sin?)/ee y = x/(v cos?) 3. Solve for E y and evaluate E y = (mv sin? cos?)/ex = N/C (b) For the proton, change sign of e and mass m E y = N/C 49* An electron starts at the position shown in Figure -33 with an initial speed v 0 = m/s at 45 to the x axis. The electric field is in the positive y direction and has a magnitude of N/C. On which plate and at what location will the electron strike? 1. Note that a = ee/m downward. Use Equ. 3- x = (mv 0 /ee)sin? = 4.07 cm on the lower plate. Find y max ; y max = m(v 0 sin?) /ee y y max = 1.0 cm; electron does not hit the upper plate

12 Chapter 50 An electron with kinetic energy of J is moving to the right along the axis of a cathode-ray tube as shown in Figure -34. There is an electric field E = ( 10 4 N/C)j in the region between the deflection plates. Everywhere else, E = 0. (a) How far is the electron from the axis of the tube when it reaches the end of the plates? (b) At what angle is the electron moving with respect to the axis? (c) At what distance from the axis will the electron strike the fluorescent screen? (a) 1. Find the time between plates. Find y(t) = 1/a y t = 1/( ee y /m)t (b)? = tan 1 (v y /v 0 ) = tan 1 ( ee y x/k) (c) For stright line motion, y/x = v y /v x t = x/v 0 = x/(m/k) 1/ y = ee y x /4K = / = m = 6.4 mm? = tan 1 ( 0.3) = 17.7 o y = cm = 3.84; y total = ( ) cm = 4.48 cm 51 Two point charges, q 1 =.0 pc and q =.0 pc, are separated by 4 µm. (a) What is the dipole moment of this pair of charges? (b) Sketch the pair, and show the direction of the dipole moment. (a) p = qa = C.m = C.m (b) The dipole moment is shown in the figure. 5 A dipole of moment 0.5 e nm is placed in a uniform electric field with a magnitude of N/C. What is the magnitude of the torque on the dipole when (a) the dipole is parallel to the electric field, (b) the dipole is perpendicular to the electric field, and (c) the dipole makes an angle of 30 with the electric field? (d) Find the potential energy of the dipole in the electric field for each case. (a), (b), (c) t = p E; t = pe sin?? = 0, t = 0;? = 90, t = N.m;? = 30, t = N.m (d) U = p.e = pe cos?? = 0, U = J;? = 90 o, U = 0;? = 30, U = J 53* For a dipole oriented along the x axis, the electric field falls off as 1/x 3 in the x direction and 1/y 3 in the y direction. Use dimensional analysis to prove that, in any direction, the field far from the dipole falls off as 1/r 3. Dimensionally, we can write [E] = [kq]/[l] and [p] = [Q][L], where p represents the dipole. Thus the dimension of charge [Q] is [p]/[l], and the electric field has the dimension [kp]/[l] 3. This shows that the field E due to a dipole p falls off as 1/r A water molecule has its oxygen atom at the origin, one hydrogen nucleus at x = nm, y = nm and the other hydrogen nucleus at x = nm, y = nm. If the hydrogen electrons are transferred completely to the oxygen atom so that it has a charge of e, what is the dipole moment of the water molecule?

13 Chapter (Note that this characterization of the chemical bonds of water as totally ionic is simply an approximation that overestimates the dipole moment of a water molecule.) From the symmetry of the system, it is evident that the x component of the dipole moment is zero. The y component is e C.m = C.m. 55 An electric dipole consists of two charges +q and q separated by a very small distance a. Its center is on the x axis at x = x 1, and it points along the x axis in the positive x direction. The dipole is in a nonuniform electric field, which is also in the x direction, given by E = Cxi, where C is a constant. (a) Find the force on the positive charge and that on the negative charge, and show that the net force on the dipole is Cpi. (b) Show that, in general, if a dipole of moment p lies along the x axis in an electric field in the x direction, the net force on the dipole is given approximately by (de x /dx)pi. (a) The force on the negative charge is F q = Cq(x 1 a) i, that on the positive charge is Fq = Cq(x 1 + a) i. The net force is F = Fq + F q = Cqa i = Cp, where p = qa i. (b) F x = du/dx; U = p x E x. So F x = p x (de x /dx). 56 A positive point charge +Q is at the origin, and a dipole of moment p is a distance r away and in the radial direction as in Figure -6. (a) Show that the force exerted by the electric field of the point charge on the dipole is attractive and has a magnitude of approximately kqp/r 3 (see Problem 55). (b) Now assume that the dipole is centered at the origin and that a point charge Q is a distance r away along the line of the dipole. From your result for part (a) and Newton's third law, show that the magnitude of the electric field of the dipole along the line of the dipole a distance r away is approximately kp/r 3. (a) Let p = p r, where r is the unit vector in the radial direction. Then U = pe r and F = du/dr = p(de r /dr). The field E r = kq/r and de r /dr = kq/r 3. So the force on the dipole is F = kqp/r 3 r. (b) By Newton s third law, the force on the charge Q is equal and opposite to the force on the dipole. But the force on a charge Q is given by EQ. From the result of part (a) it follows that the magnitude of the field is E = kp/r 3. 57* A quadrupole consists of two dipoles that are close together, as shown in Figure -35. The effective charge at the origin is q and the other charges on the y axis at y = a and y = a are each +q. (a) Find the electric field at a point on the x axis far away so that x >> a. (b) Find the electric field on the y axis far away so that y >> a. (a) We have, in effect, three charges: +q at (0, a), +q at (0, a), and q at (0, 0). From the symmetry of the system it is evident that the field E along the x axis has no y component. The x component of E due to one of the charges +q is kq x kqx kq E+ qx = = 3/. For the q charge, E qx =. The total x + a x + a ( x + a ) x field along the x axis is E x = E +qx + E qx. For x >> a, (x + a ) 3/ (1 3a /x )/x 3, and E x = 3kqa /x 4. (b) Along the y axis, E x = 0 by symmetry. E y = kq/(y a) + kq/(y + a) kq/y. Again using the binomial expansion one finds that for y >> a, E y = 6kqa /y A charged insulator and an uncharged metal (a) always repel one another. (b) exert no electrostatic force on one another. (c) always attract one another. (d) may attract or repel, depending on the sign of the charge on the insulator.

14 Chapter (c) 59 Which of the following statements are true? (a) A positive charge experiences an attractive electrostatic force toward a nearby neutral conductor. (b) A positive charge experiences no electrostatic force near a neutral conductor. (c) A positive charge experiences a repulsive force, away from a nearby conductor. (d) Whatever the force on a positive charge near a neutral conductor, the force on a negative charge is then oppositely directed. (e) None of the above is correct. (a) 60 The electric field lines around an electrical dipole are best represented by which, if any, of the diagrams in Figure -36? (d) 61* A molecule with electric dipole moment p is oriented so that p makes an angle? with a uniform electric field E. The dipole is free to move in response to the force from the field. Describe the motion of the dipole. Suppose the electric field is nonuniform and is larger in the x direction. How will the motion be changed? The dipole experiences a torque t = pe sin?. In a uniform electric field, it will oscillate about its equilibrium orientation,? = 0. If the field is nonuniform and de/dx > 0, the dipole will accelerate in the x direction as it oscillates about? = 0. 6 True or false: (a) The electric field of a point charge always points away from the charge. (b) All macroscopic charges Q can be written as Q = ±Ne, where N is an integer and e is the charge of the electron. (c) Electric field lines never diverge from a point in space. (d) Electric field lines never cross at a point in space. (e) All molecules have electric dipole moments in the presence of an external electric field. (a) False (b) True (c) False, if that point does not carry a charge; True, if it carries a positive charge (d) True (e) True 63 A small, nonconducting ball with no net charge is suspended from a thread. When a positive charge is brought near the ball, the ball is attracted toward the charge. How does this come about? How would the situation be different if the charge brought near the ball were negative instead of positive? The charge induces a dipole in the nonconducting ball. Since the field of the charge is nonuniform, the dipole is attracted to the charge. The same effect is observed for either sign of the charge. 64 Two metal balls have charges +q and q. How will the force on one of them change if (a) the balls are placed in water, the distance between them being unchanged, and (b) a third uncharged metal ball is placed between the first two? Explain. (a) The force between the balls is diminished because the field produced by the two charges creates a dipolar field that opposes that of the two charges when they are out of the water (see Section 5-5). (b) The force is again reduced because a dipole is induced on the third metal ball. 65* A metal ball is positively charged. Is it possible for it to attract another positively charged ball? Explain. Yes. A positively charged ball will induce a dipole on the metal ball, and if the two are in close proximity, the net force can be attractive.

15 Chapter 66 In interstellar space, two charged point-like objects, each of mass m and charge q, are separated by a distance d and released. They remain motionless at that separation. Find an expression for q in terms of m, G, and k. F = kq /d - Gm /d = 0. Solve for q q = m G k 67 Point charges of 5.0 µc, +3.0 µc, and +5.0 µc are located along the x axis at x = 1.0 cm, x = 0, and x = +1.0 cm, respectively. Calculate the electric field at x = 3.0 cm and at x = 15.0 cm. Is there some point on the x axis where the magnitude of the electric field is zero? Locate that point. The location of the three charges and points of interest are shown in the diagram. From the diagram it is evident that E along the x axis has no y component. 1. Find E x at x = 3 cm; use Equ. -8. Find E x at x = 15 cm; use Equ There are two points where E = 0. One is between x = 0 and x = 1 cm, one is at x < 1 cm. 4. For x < 1 cm, let y = x. Set E = 0 E x = ( 5/16 + 3/9 + 5/4)( ) N/C = N/C E x = ( 5/56 + 3/5 + 5/196)( ) N/C = N/C For 0 < x < 1, E = 0 if 3/x 5/(1+x) 5/(1 x) = 0. 7x x 3 = 0; x = cm. 5/(y 1) 3/y 5/(y+1) = 0; 0y 3 = 3(y 1). Solve for y numerically: y = 6.95 cm; x = 6.95 cm 68 For the charge distribution of Problem 67, find the electric field at x = 15.0 cm as the vector sum of the electric field due to a dipole formed by the two 5.0-µC charges and a point charge of 3.0 µc, both located at the origin. Compare your result with the result obtained in Problem 67 and explain any difference between these two. For the two 5 µc charges, p = 10 8 C.m. 1. Find E x at x = 15 cm, using E px = kp/x 3 E x = k( 10 8 / )/0.05 = N/C This result is only a rough approximation because the separation between the two charges of the dipole is more than 10% of the distance to the point of interest, i.e., x is not much greater than a. The correct result is that of Problem 67, namely E x = N/C. 69* In copper, about one electron per atom is free to move about. A copper penny has a mass of 3 g. (a) What percentage of the free charge would have to be removed to give the penny a charge of 15 µc? (b) What would be the force of repulsion between two pennies carrying this charge if they were 5 cm apart? Assume that the pennies are point charges. (a) Find the number of free electrons, N = N a Find n e for a charge q = 15 µc Fraction to be removed = n e /N (b) Use Equ. - From Example -1, N = n e = /e n e /N = /( ) = % F = /0.065 N = 3.4 N

16 Chapter 70 Two charges q 1 and q have a total charge of 6 µc. When they are separated by 3 m, the force exerted by one charge on the other has a magnitude of 8 mn. Find q 1 and q if (a) both are positive so that they repel each other, and (b) one is positive and the other is negative so that they attract each other. (a) Given: q 1 + q = 6 µc; kq 1 q /9 = N q = q 1 ; q 1 ( q 1 )/9 = q q / = 0 q 1 = 4 µc, q = µc; or q 1 = µc, q = 4 µc Solve quadratic equation for q 1 (b) Now q 1 q = 6 µc; proceed as in (a) Solve for q 1 and q q q / = 0 q 1 = 7.1 µc, q = 1.1 µc 71 Three charges, +q, +q, and +4q, are connected by strings as shown in Figure -37. Find the tensions T 1 and T. 1. Find T = sum of Coulomb forces on +4q T = k(8q /d + 4q /4d ) = 9kq /d. Find T 1 = sum of Coulomb forces on +q T 1 = k(q /d + 4q /4d ) = 3kq /d 7 A positive charge Q is to be divided into two positive charges q 1 and q. Show that, for a given separation D, 1 the force exerted by one charge on the other is greatest if q 1 = q = Q. Write F = kq 1 q /D = kq 1 (Q q 1 )/D. Take the derivative of q 1 (Q q 1 ) with respect to q 1 and set it equal to zero to determine the value of q 1 for which F is a maximum: Q q 1 = 0, or q 1 = 1/Q = q. 73* A charge Q is located at x = 0 and a charge 4Q is at x = 1.0 cm. The force on a charge of µc is zero if that charge is placed at x = 4.0 cm and is 16.4 N in the positive x direction if placed at x = 8.0 cm. Determine the charge Q. 1. Write F on the µc charge when at x = 4 cm. Solve for Q 16.4 N = Q (4/ / ) Q = 3 µc 74 Two small spheres (point charges) separated by 0.60 m carry a total charge of 00 µc. (a) If the two spheres repel each other with a force of 80 N, what are the charges on each of the two spheres? (b) If the two spheres attract each other with a force of 80 N what are the charges on the two spheres? Except for a change in the data, this problem is identical to Problem 70. Using the same procedure as in Problem 70 one finds the following results; (a) q 1 = 17.5 µc, q = 18.5 µc. (b) q 1 = 15 µc, q = 15 µc. 75 A ball of known charge q and unknown mass m, initially at rest, falls freely from a height h in a uniform electric field E that is directed vertically downward. The ball hits the ground at a speed v = gh. Find m in terms of E, q, and g. 1. Use conservation of energy. Solve for m 1/mv = mgh = mgh + qeh m = qe/g 76 Charges of 3.0 µc are located at x = 0, y =.0 m and at x = 0, y =.0 m. Charges Q are located at x = 4.0 m, y =.0 m and at x = 4.0 m, y =.0 m (Figure -38). The electric field at x = 0, y = 0 is ( N/C)i. Determine Q. Note that the electric field due to the two 3 µc charges at (0, 0) is zero.

17 Chapter 1. Write E x due to the charges Q. Solve for Q with x = 4, y = 4 E x = kqx/(x + y ) 3/ = N/C Q = 4.97 µc 77* Two identical small spherical conductors (point charges), separated by 0.60 m, carry a total charge of 00 µc. They repel one another with a force of 10 N. (a) Find the charge on each sphere. (b) The two spheres are placed in electrical contact and then separated so that each carries 100 µc. Determine the force exerted by one sphere on the other when they are 0.60 m apart. (a) Given: q 1 + q = 00 µc; kq 1 q /0.36 =10 N Solve quadratic equation for q 1 (b) Now q 1 = q = 100 µc; find F q = 10 4 q 1 ; q 1 ( 10 4 q 1 )/0.36 = 10 q q / = 0 q 1 = 8 µc, q = 17 µc; or q 1 = 17 µc, q = 8 µc F = /0.36 N = 50 N 78 Repeat Problem 77 if the two spheres initially attract one another with a force of 10 N. (a) The problem is identical to Problem 70(b) except that the data are different. Following the same procedure, one obtains q 1 = 1.7 µc, q = 1.7 µc. (b) Since the final system configuration is the same as in Problem 77(b) the result is the same, i.e., F = 50 N 79 A charge of 3.0 µc is located at the origin; a charge of 4.0 µc is located at x = 0. m, y = 0; a third charge Q is located at x = 0.3 m, y = 0. The force on the 4.0-µC charge is 40 N, directed in the positive x direction. (a) Determine the charge Q. (b) With this configuration of three charges, where, along the x direction, is the electric field zero? The charge configuration is shown in the diagram. Here we also indicate the approximate locations, labeled x 1 and x, where the electric field is zero. (a) 1. Write the force on charge +4 µc. Solve for Q (b) By inspection, the points where E = 0 must be between the 3 µc and +4 µc charges. Write the condition for E = 0 and solve numerically for x. 40 = k(q / /0. ) Q = 97. µc = 0 (0.3 x) (0. x) x x 1 = m, x = m 80 Two small spheres of mass m are suspended from a common point by threads of length L. When each sphere carries a charge q, each thread makes an angle? with the vertical as shown in Figure -39. (a) Show that the charge q is given by mg tanθ q = L sin θ k where k is the Coulomb constant. (b) Find q if m = 10 g, L = 50 cm, and? = 10. (a) The forces acting on one sphere are mg acting downward, F E = kq /(L sin?) acting horizontally, and the tension T in the string. The angle? is therefore given by tan? = F E /mg = kq /(L sin?) mg. Solving for q, one obtains the result given in the problem statement.

18 Chapter (b) Substitute m = kg, L = 0.5 m,? = 10, q = 0.41 µc. 81* (a) Suppose that in Problem 80, L = 1.5 m, m = 0.01 kg, and q = 0.75 µc. What is the angle that each string makes with the vertical? (b) Find the angle that each string makes with the vertical if one mass carries a charge of 0.50 µc, the other a charge of 1.0 µc. (a) 1. Use the expression given in Problem 80 sin 9 6 kq ( )? tan? = = 4L mg Since sin? tan? << 1, sin? tan?? Solve for? (b) Repeat part (a) replacing q by q 1 q = ? 3 = ;? = rad = 10.5 o? = 9.86 o 8 Four charges of equal magnitude are arranged at the corners of a square of side L as shown in Figure -40. (a) Find the magnitude and direction of the force exerted on the charge in the lower left corner by the other charges. (b) Show that the electric field at the midpoint of one of the sides of the square is directed along that side toward the negative charge and has a magnitude E given by 8q 5 E = k 1 L 5 Let the origin be at the lower left-hand corner (a) Find the forces acting on the charge F = F-q,+q + F+q,+q (b) Consider the midpoint along the y axis; write E(0, L/); note that the x components due to the charges at (0, L) and (L, L) cancel F q,+q = kq /L (i + j); F+q,+q = kq / F = (kq /L )(1 1/ )(i + j) L ( i j) E+q = E q = 4kq/ L j for charges along y axis E qy = E +qy = kq/(5l /4)(1/ 5 ) for charges at x = L. E y = (8kq/L )(1 5 /5) 83 Figure -41 shows a dumbbell consisting of two identical masses m attached to the ends of a thin (massless) rod of length a that is pivoted at its center. The masses carry charges of +q and q and the system is located in a uniform electric field E. Show that for small values of the angle? between the direction of the dipole and the electric field, the system displays simple harmonic motion, and obtain an expression for the period of that motion. Note that the torque acting on the system is a restoring torque. For? << 1, t = pe sin? pe? = qae?. Apply Equs. 9-0, 9-3, and qae? = (ma /)(d?/dt ), d?/dt = (qe/ma)?. This is the differential equation for a harmonic oscillator with angular frequency? = (qe/ma) 1/ and period T = p(ma/qe) 1/. 84 For the dumbbell in Figure -41, let m = 0.0 kg, a = 0.3 m, and E = (600 N/C)i. Initially the dumbbell is at rest and makes an angle of 60 with the x axis. The dumbbell is then released, and when it is momentarily aligned with the electric field, its kinetic energy is J. Determine the magnitude of q. 1. Write the change in potential energy,?u. Use energy conservation; K +?U = 0?U = pe(cos 60 1) = q( ) 90q = ; q = 55.6 µc 85* An electron (charge e, mass m) and a positron (charge +e, mass m) revolve around their common center of mass under the influence of their attractive coulomb force. Find the speed of each particle v in terms of e, m, k, and their separation r.

19 Chapter The force on each particle is ke /r. The centripetal acceleration of each particle is v /(r/). Using F = ma one obtains v = (ke /mr) 1/. 86 The equilibrium separation between the nuclei of the ionic molecule KBr is 0.8 nm. The masses of the two ions, K + and Br, are very nearly the same, kg, and each of the two ions carries a charge of magnitude e. Use the result of Problem 83 to determine the frequency of oscillation of a KBr molecule in a uniform electric field of 1000 N/C. 1 qe From Problem 83, f =. Inserting the values q = C, m = kg, and a = m, π ma one obtains f = Hz. 87 A small (point) mass m, which carries a charge q, is constrained to move vertically inside a narrow, frictionless cylinder (Figure -4). At the bottom of the cylinder is a point mass of charge Q having the same sign as q. (a) Show that the mass m will be in equilibrium at a height y 0 = (kqq/mg) 1/. (b) Show that if the mass m is displaced by a small amount from its equilibrium position and released, it will exhibit simple harmonic motion with angular frequency? = (g/y 0 ) 1/. (a) Use SF = 0 and solve for y 0 mg = kqq/y 0 ; y = 0 kqq mg kqq kqq kqq y (b) Let y = y 0 +?y; then F = = = mg y / y 4 0 to lowest order in?y. y + yy y y From F = ma we now have (d?y/dt ) = g?y/y 0. This is the SHO differential equation, and comparing it with the expression for?, Equ. 14-8, we find? = g / y0. 88 A small bead of mass m and carrying a negative charge q is constrained to move along a thin frictionless rod (Figure -43). A distance L from this rod is a positive charge Q. Show that if the bead is displaced a distance x, where x << L, and released, it will exhibit simple harmonic motion. Obtain an expression for the period of this motion in terms of the parameters L, Q, q, and m. kqqx kqqx The x component of the force on m is F x = 3/ 3 for x << L. F=ma =m(d x/dt ) yields the ( L + x ) L 0 SHO equation. Comparison with Equs. 14- and 14-1 gives T = pl ml. kqq 89* Repeat Problem 81 with the system located in a uniform electric field of N/C that points vertically downward. (a) Note that if the two charges are equal, each mass experiences an equal downward force of qe in addition to its weight mg. Thus, we may use the expression in Problem 80 provided we replace mg by (mg + qe). As derived in Problem 81, sin 9 6 kq ( )? tan? = = = and? = L ( mg + qe) 4.5( ) (b) The downward forces on the two masses are not equal. Let the mass carrying the charge of 0.5 µc be m 1, and that carying the charge of 1.0 µc be m. Since we already know from part (a) that the angles are small, we

20 Chapter shall make the small angle approximation sin? = tan? =?. 1. Write the horizontal and vertical forces on m 1 due to g, the charges q 1 and q, and tension T. T x and T y are similar except for the subscripts kq q 1 F1 x = = T1y; F1y = m1g + q1e = T 1y L ( θ1 + θ ) kq q 1 F x = = T x ; Fy = m g + qe = T y L ( θ1 + θ ) 3.?1 = T 1x /T 1y ;? = T x /T y ; find?1/? 4. Write the expression for?1 +? 5. Solve for?1 +? 6. Substitute numerical values for m 1 = m = m to determine?1 +?,?1/?, and?1 and??1/? = (m g + q E)/(m 1 g + q 1 E) kqq 1 1 θ + = 1 θ + L ( θ1 + θ ) m1g + q1e m θ + θ 1 kqq = L m1 g + q1e m 1 g + qe 1 g + qe?1 +? = 0.87 rad = 16.4 ;?1/? = 1.34?1 = 9.4,? = / 3 90 Suppose that the two masses in Problem 80 are not equal. One mass is 0.01 kg, the other is 0.0 kg. The charges on the two masses are.0 µc and 1.0 µc, respectively. Determine the angle that each of the strings supporting the masses makes with the vertical. See Problem 89 for the general solution. Substitute the numerical values for m 1, m, q 1, q, and L into the expressions for?1 +? and?1/? given in Problem 89, setting E = 0. One obtains?1 +? = rad = 8.4,?1/? = 1/, and?1 = 9.47,? = ( Note: The small angle approximation is not as good here as in the preceding problems; however, the error introduced is less than 3%.) 91 A simple pendulum of length L = 1.0 m and mass M = kg is placed in a uniform, vertically directed electric field E. The bob carries a charge of 8.0 µc. The period of the pendulum is 1. s. What is the magnitude and direction of E? 1. Write the force on the mass M due to g and E. Use Equ. 14-7, replacing g by g 3. Solve for E with q = 8 µc F = Mg + qe = M(g + qe/m) = Mg g = 4π L/T = 7.4 m/s ; qe/m = 17.6 N/kg downward E = N/C upward 9 Two neutral polar molecules attract each other. Suppose that each molecule has a dipole moment p and that these dipoles are aligned along the x axis and separated by a distance d. Derive an expression for the force of attraction in terms of p and d. The potential energy of the dipole p 1 is U 1 = p 1 E 1, where E 1 is the field at p 1 due to p. E 1 = kp /x 3, where x is the separation between the two dipoles. So U 1 = kp 1 p /x 3. F = du/dx = 6kp 1 p /x 4. For p 1 = p = p and x = d we have F = 6kp /d 4. 93* A small bead of mass m, carrying a charge q, is constrained to slide along a thin rod of length L. Charges Q are fixed at each end of the rod (Figure -44). (a) Obtain an expression for the electric field due to the two charges Q as a function of x, where x is the distance from the midpoint of the rod. (b) Show that for x << L, the magnitude of the field is proportional to x. (c) Show that if q is of the same sign as Q, the force that acts on the object of mass m is always directed toward the center of the rod and is proportional to x. (d) Find the period of

21 Chapter 1 oscillation of the mass m if it is displaced by a small distance from the center of the rod and then released. (a) Write the expression for E x E x = kq/(1/l + x) kq/(1/l x) (b) For x << L, neglect x in denominator of (a) E x = 3kQx/L 3 (c) F x = qe x F x = 3kQqx/L 3 ; note that F x is proportional to x. (d) d x/dt = (16kQq/mL 3 3 )x; use Equs. 14-8, 14- T = (p/) ml / kqq 1 94 Two equal positive charges Q are on the x axis at x = L and x = 1 L (a) Obtain an expression for the electric field as a function of y on the y axis. (b) A ring of mass m, which carries a charge q, moves on a thin frictionless rod along the y axis. Find the force that acts on the charge q as a function of y; determine the sign of q such that this force always points toward y = 0. (c) Show that for small values of y the ring exhibits simple harmonic motion. (d) If Q = 5 µc, q = µc, L = 4 cm, and m = 0.03 kg, what is the frequency of the oscillation for small amplitudes? (a) Find E y ; see Problem 3(b) (b) F y = qe y ; to point in -y direction, the charge q must be negative. (c) Write equation of motion for y << a = L/ (d) Use Equs and with numerical values kqy Ey = 3/, where a = L/. ( a + y ) kqqy Fy = 3/ ( a + y ) d y 16kQq = y 3 ; this is the SHO equation of motion dt ml f = 1.1/L 3/ = 9.36 Hz

Solution. Problem. Solution. Problem. Solution

Solution. Problem. Solution. Problem. Solution 4. A 2-g ping-pong ball rubbed against a wool jacket acquires a net positive charge of 1 µc. Estimate the fraction of the ball s electrons that have been removed. If half the ball s mass is protons, their

More information

Physics 41 HW Set 1 Chapter 15

Physics 41 HW Set 1 Chapter 15 Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

More information

1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D

1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be

More information

Electromagnetism Extra Study Questions Short Answer

Electromagnetism Extra Study Questions Short Answer Electromagnetism Extra Study Questions Short Answer 1. The electrostatic force between two small charged objects is 5.0 10 5 N. What effect would each of the following changes have on the magnitude of

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions Conceptual: 1, 3, 5, 6, 8, 16, 18, 19 Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65 Conceptual Questions 1. The magnetic field cannot be described as the magnetic force per unit charge

More information

CHAPTER 26 ELECTROSTATIC ENERGY AND CAPACITORS

CHAPTER 26 ELECTROSTATIC ENERGY AND CAPACITORS CHAPTER 6 ELECTROSTATIC ENERGY AND CAPACITORS. Three point charges, each of +q, are moved from infinity to the vertices of an equilateral triangle of side l. How much work is required? The sentence preceding

More information

226 Chapter 15: OSCILLATIONS

226 Chapter 15: OSCILLATIONS Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion

More information

PHYS 211 FINAL FALL 2004 Form A

PHYS 211 FINAL FALL 2004 Form A 1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

More information

AP Physics C. Oscillations/SHM Review Packet

AP Physics C. Oscillations/SHM Review Packet AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

More information

Exam 1 Practice Problems Solutions

Exam 1 Practice Problems Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8 Spring 13 Exam 1 Practice Problems Solutions Part I: Short Questions and Concept Questions Problem 1: Spark Plug Pictured at right is a typical

More information

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true? 1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2014

Candidate Number. General Certificate of Education Advanced Level Examination June 2014 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday

More information

Chapter 22: The Electric Field. Read Chapter 22 Do Ch. 22 Questions 3, 5, 7, 9 Do Ch. 22 Problems 5, 19, 24

Chapter 22: The Electric Field. Read Chapter 22 Do Ch. 22 Questions 3, 5, 7, 9 Do Ch. 22 Problems 5, 19, 24 Chapter : The Electric Field Read Chapter Do Ch. Questions 3, 5, 7, 9 Do Ch. Problems 5, 19, 4 The Electric Field Replaces action-at-a-distance Instead of Q 1 exerting a force directly on Q at a distance,

More information

VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

More information

Determination of Acceleration due to Gravity

Determination of Acceleration due to Gravity Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two

More information

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L22-2D Rigid Body Dynamics: Work and Energy J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

More information

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013 PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be

More information

Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5

Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5 Solutions to Homework Questions 5 Chapt19, Problem-2: (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields in Figure P19.2, as shown. (b) Repeat

More information

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( ) Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

PHY231 Section 1, Form B March 22, 2012

PHY231 Section 1, Form B March 22, 2012 1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

More information

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise. Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

More information

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Practice Test SHM with Answers

Practice Test SHM with Answers Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

More information

Physics 201 Homework 8

Physics 201 Homework 8 Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

More information

CHARGED PARTICLES & MAGNETIC FIELDS - WebAssign

CHARGED PARTICLES & MAGNETIC FIELDS - WebAssign Name: Period: Due Date: Lab Partners: CHARGED PARTICLES & MAGNETIC FIELDS - WebAssign Purpose: Use the CP program from Vernier to simulate the motion of charged particles in Magnetic and Electric Fields

More information

Solution Derivations for Capa #11

Solution Derivations for Capa #11 Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

D Alembert s principle and applications

D Alembert s principle and applications Chapter 1 D Alembert s principle and applications 1.1 D Alembert s principle The principle of virtual work states that the sum of the incremental virtual works done by all external forces F i acting in

More information

Physics 1120: Simple Harmonic Motion Solutions

Physics 1120: Simple Harmonic Motion Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured

More information

ANALYTICAL METHODS FOR ENGINEERS

ANALYTICAL METHODS FOR ENGINEERS UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations

More information

Exam 2 Practice Problems Part 2 Solutions

Exam 2 Practice Problems Part 2 Solutions Problem 1: Short Questions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8. Exam Practice Problems Part Solutions (a) Can a constant magnetic field set into motion an electron, which is initially

More information

Problem Set 5 Work and Kinetic Energy Solutions

Problem Set 5 Work and Kinetic Energy Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics Physics 8.1 Fall 1 Problem Set 5 Work and Kinetic Energy Solutions Problem 1: Work Done by Forces a) Two people push in opposite directions on

More information

Review Questions PHYS 2426 Exam 2

Review Questions PHYS 2426 Exam 2 Review Questions PHYS 2426 Exam 2 1. If 4.7 x 10 16 electrons pass a particular point in a wire every second, what is the current in the wire? A) 4.7 ma B) 7.5 A C) 2.9 A D) 7.5 ma E) 0.29 A Ans: D 2.

More information

Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

More information

SOLUTIONS TO CONCEPTS CHAPTER 15

SOLUTIONS TO CONCEPTS CHAPTER 15 SOLUTIONS TO CONCEPTS CHAPTER 15 1. v = 40 cm/sec As velocity of a wave is constant location of maximum after 5 sec = 40 5 = 00 cm along negative x-axis. [(x / a) (t / T)]. Given y = Ae a) [A] = [M 0 L

More information

AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

More information

Chapter 18 Static Equilibrium

Chapter 18 Static Equilibrium Chapter 8 Static Equilibrium 8. Introduction Static Equilibrium... 8. Lever Law... Example 8. Lever Law... 4 8.3 Generalized Lever Law... 5 8.4 Worked Examples... 7 Example 8. Suspended Rod... 7 Example

More information

Chapter 18. Electric Forces and Electric Fields

Chapter 18. Electric Forces and Electric Fields My lecture slides may be found on my website at http://www.physics.ohio-state.edu/~humanic/ ------------------------------------------------------------------- Chapter 18 Electric Forces and Electric Fields

More information

Mechanics 1: Conservation of Energy and Momentum

Mechanics 1: Conservation of Energy and Momentum Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

More information

Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb:

Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb: Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6 Signature Name (Print): 4 Digit ID: Section: Instructions: Answer all questions 24 multiple choice questions. You may need to do some calculation.

More information

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring

More information

Chapter 22 Magnetism

Chapter 22 Magnetism 22.6 Electric Current, Magnetic Fields, and Ampere s Law Chapter 22 Magnetism 22.1 The Magnetic Field 22.2 The Magnetic Force on Moving Charges 22.3 The Motion of Charged particles in a Magnetic Field

More information

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE 1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object

More information

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

More information

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N) Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in

More information

Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis

Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis * By request, but I m not vouching for these since I didn t write them Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis There are extra office hours today & tomorrow Lots of practice exams

More information

Chapter 4. Electrostatic Fields in Matter

Chapter 4. Electrostatic Fields in Matter Chapter 4. Electrostatic Fields in Matter 4.1. Polarization A neutral atom, placed in an external electric field, will experience no net force. However, even though the atom as a whole is neutral, the

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2012

Candidate Number. General Certificate of Education Advanced Level Examination June 2012 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 212 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Monday

More information

Chapter 21. = 26 10 6 C and point charge

Chapter 21. = 26 10 6 C and point charge Chapter 21 21.1 What must the distance between point charge 1 26 10 6 C and point charge 2 47 10 6 C for the electrostatic force between them to be 5.70N? The magnitude of the force of attraction is given

More information

PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PHYS 101-4M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in

More information

Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

More information

circular motion & gravitation physics 111N

circular motion & gravitation physics 111N circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights

More information

TEACHER S CLUB EXAMS GRADE 11. PHYSICAL SCIENCES: PHYSICS Paper 1

TEACHER S CLUB EXAMS GRADE 11. PHYSICAL SCIENCES: PHYSICS Paper 1 TEACHER S CLUB EXAMS GRADE 11 PHYSICAL SCIENCES: PHYSICS Paper 1 MARKS: 150 TIME: 3 hours INSTRUCTIONS AND INFORMATION 1. This question paper consists of 12 pages, two data sheets and a sheet of graph

More information

Newton s Law of Motion

Newton s Law of Motion chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

More information

Chapter 9. particle is increased.

Chapter 9. particle is increased. Chapter 9 9. Figure 9-36 shows a three particle system. What are (a) the x coordinate and (b) the y coordinate of the center of mass of the three particle system. (c) What happens to the center of mass

More information

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law. 260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this

More information

Physics 30 Worksheet #10 : Magnetism From Electricity

Physics 30 Worksheet #10 : Magnetism From Electricity Physics 30 Worksheet #10 : Magnetism From Electricity 1. Draw the magnetic field surrounding the wire showing electron current below. x 2. Draw the magnetic field surrounding the wire showing electron

More information

Chapter 22: Electric Flux and Gauss s Law

Chapter 22: Electric Flux and Gauss s Law 22.1 ntroduction We have seen in chapter 21 that determining the electric field of a continuous charge distribution can become very complicated for some charge distributions. t would be desirable if we

More information

Simple Harmonic Motion(SHM) Period and Frequency. Period and Frequency. Cosines and Sines

Simple Harmonic Motion(SHM) Period and Frequency. Period and Frequency. Cosines and Sines Simple Harmonic Motion(SHM) Vibration (oscillation) Equilibrium position position of the natural length of a spring Amplitude maximum displacement Period and Frequency Period (T) Time for one complete

More information

LAB 6: GRAVITATIONAL AND PASSIVE FORCES

LAB 6: GRAVITATIONAL AND PASSIVE FORCES 55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

More information

Chapter 8: Potential Energy and Conservation of Energy. Work and kinetic energy are energies of motion.

Chapter 8: Potential Energy and Conservation of Energy. Work and kinetic energy are energies of motion. Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. Consider a vertical spring oscillating with mass m attached to one end. At the extreme ends of travel

More information

Prelab Exercises: Hooke's Law and the Behavior of Springs

Prelab Exercises: Hooke's Law and the Behavior of Springs 59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

More information

Tennessee State University

Tennessee State University Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

More information

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

More information

HW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.

HW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. HW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 22.P.053 The figure below shows a portion of an infinitely

More information

Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline

More information

Physics 1A Lecture 10C

Physics 1A Lecture 10C Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

More information

Problem Set V Solutions

Problem Set V Solutions Problem Set V Solutions. Consider masses m, m 2, m 3 at x, x 2, x 3. Find X, the C coordinate by finding X 2, the C of mass of and 2, and combining it with m 3. Show this is gives the same result as 3

More information

( )( 10!12 ( 0.01) 2 2 = 624 ( ) Exam 1 Solutions. Phy 2049 Fall 2011

( )( 10!12 ( 0.01) 2 2 = 624 ( ) Exam 1 Solutions. Phy 2049 Fall 2011 Phy 49 Fall 11 Solutions 1. Three charges form an equilateral triangle of side length d = 1 cm. The top charge is q = - 4 μc, while the bottom two are q1 = q = +1 μc. What is the magnitude of the net force

More information

CHAPTER 24 GAUSS S LAW

CHAPTER 24 GAUSS S LAW CHAPTER 4 GAUSS S LAW 4. The net charge shown in Fig. 4-40 is Q. Identify each of the charges A, B, C shown. A B C FIGURE 4-40 4. From the direction of the lines of force (away from positive and toward

More information

Torque Analyses of a Sliding Ladder

Torque Analyses of a Sliding Ladder Torque Analyses of a Sliding Ladder 1 Problem Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (May 6, 2007) The problem of a ladder that slides without friction while

More information

HW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions

HW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions HW Set VI page 1 of 9 10-30 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 10-33 ). The bullet emerges from the

More information

Awell-known lecture demonstration1

Awell-known lecture demonstration1 Acceleration of a Pulled Spool Carl E. Mungan, Physics Department, U.S. Naval Academy, Annapolis, MD 40-506; mungan@usna.edu Awell-known lecture demonstration consists of pulling a spool by the free end

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Wednesday, June 17, 2015 1:15 to 4:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Wednesday, June 17, 2015 1:15 to 4:15 p.m. P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Wednesday, June 17, 2015 1:15 to 4:15 p.m., only The possession or use of any communications

More information

Review D: Potential Energy and the Conservation of Mechanical Energy

Review D: Potential Energy and the Conservation of Mechanical Energy MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Fall 2005 Review D: Potential Energy and the Conservation of Mechanical Energy D.1 Conservative and Non-conservative Force... 2 D.1.1 Introduction...

More information

The Electric Field. Electric Charge, Electric Field and a Goofy Analogy

The Electric Field. Electric Charge, Electric Field and a Goofy Analogy . The Electric Field Concepts and Principles Electric Charge, Electric Field and a Goofy Analogy We all know that electrons and protons have electric charge. But what is electric charge and what does it

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2010

Candidate Number. General Certificate of Education Advanced Level Examination June 2010 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 1 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Friday 18

More information

Newton s Law of Universal Gravitation

Newton s Law of Universal Gravitation Newton s Law of Universal Gravitation The greatest moments in science are when two phenomena that were considered completely separate suddenly are seen as just two different versions of the same thing.

More information

Copyright 2011 Casa Software Ltd. www.casaxps.com

Copyright 2011 Casa Software Ltd. www.casaxps.com Table of Contents Variable Forces and Differential Equations... 2 Differential Equations... 3 Second Order Linear Differential Equations with Constant Coefficients... 6 Reduction of Differential Equations

More information

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc. Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

More information

Chapter 6. Work and Energy

Chapter 6. Work and Energy Chapter 6 Work and Energy The concept of forces acting on a mass (one object) is intimately related to the concept of ENERGY production or storage. A mass accelerated to a non-zero speed carries energy

More information

Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion

Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion Unid: Discussion T A: Bryant Justin Will Yuan 1 Place answers in box provided for each question. Specify units for each answer. Circle correct answer(s)

More information

Charges, voltage and current

Charges, voltage and current Charges, voltage and current Lecture 2 1 Atoms and electrons Atoms are built up from Positively charged nucleus Negatively charged electrons orbiting in shells (or more accurately clouds or orbitals) -

More information

AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path.

AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path. A charged particle is projected from point P with velocity v at a right angle to a uniform magnetic field directed out of the plane of the page as shown. The particle moves along a circle of radius R.

More information

Acceleration due to Gravity

Acceleration due to Gravity Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

More information

XI / PHYSICS FLUIDS IN MOTION 11/PA

XI / PHYSICS FLUIDS IN MOTION 11/PA Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

More information

11. Rotation Translational Motion: Rotational Motion:

11. Rotation Translational Motion: Rotational Motion: 11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational

More information