AREA. AREA is the amount of surface inside a flat shape. (flat means 2 dimensional)

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "AREA. AREA is the amount of surface inside a flat shape. (flat means 2 dimensional)"

Transcription

1 AREA AREA is the amount of surface inside a flat shape. (flat means 2 dimensional) Area is always measured in units 2 The most basic questions that you will see will involve calculating the area of a square or a rectangle which is drawn on squared background e.g calculate the area of the following rectangle: The easiest way to do this is to count the squares inside the shape. As there are 18 squares inside this shape its area is 18 units 2 1

2 As you get used to doing this you will eventually spot that there is a quicker way to calculate the area of a square or a rectangle than counting squares Rather than spend a long time counting all the squares in the above rectangle, you can see that we have '7 rows of 11 squares' If we calculate 7 x 11 then this tells us that there are 77 squares This means that the area of this rectangle is 77units 2 2

3 Sometimes you have to calculate the area of shapes by counting squares and parts of squares. You need to be very careful to make sure that you count all the part squares accurately! e.g calculate the area of the following shape: There are 9 whole squares (red dots) but there are also 4 half squares (blue dots). four halves make 2 whole squares So the area of this shape is = 11units 2 3

4 The next step is to calculate the area of simple shapes that are not drawn on square background. To do this we need to use certain formulas depending on the shape Remember: AREA is the amount of surface inside a flat shape. (flat means 2 dimensional) Area is always measured in units 2 We need to be able to calculate the area of the following shapes: 1: The square Area of a square = width x height e.g calculate the area of the following square, To calculate the area we need to use the above formula 7cm area of a square = width x height As this is a square we should know that all sides are the same length so... area = 7cm x 7cm = 49cm 2 4

5 2: The Rectangle This is very similar to the square, in fact, it uses the same formula to calculate the area! area of a rectangle = width x height (units 2 ) e.g calculate the area of the following rectangle, 5m use the formula for a rectangle: 12m area = width x height we can see from the diagram that: width = 12m height = 5m so... area = 12m x 5m = 60m 2 5

6 3: The Triangle To find the area of a triangle we use the following formula: area of a triangle = width x height 2 which can also be written as area of a triangle = (width x height) 2 Dont forget your units units 2 e.g calculate the area of the following triangle, we need to use the formula 6cm area of a triangle = width x height 2 11cm From the diagram we can see that: width = 11cm and height = 6cm so... area = 6 x 11 = = 33cm 2 6

7 Once you have grasped how to calculate the area of basic shapes you can move on to some more shapes. The first shape would be a parallelogram To calculate the area of a parallelogram we use width x height e.g calculate the area of: 15m 6m 7m using the above formula we can see that width = 15m height = 6m (Note: we do NOT need the 7m height is NOT the length of a slanty side Height is always measured perpendicular (90 0 ) to the ground!) So area = 15 x 6 = 90m 2 dont forget your unit! 7

8 To calculate the area of a trapezium we use the following formula: Area = 1 ( a + b ) x h 2 Where h is the height (ALWAYS perpendicular NOT the length of one of the slanty sides of the trapezium) a and b are the lengths of the parallel sides. e.g Calculate the area of the following: 12cm using the above formula we can see that: h = 5, a = 12, b = 22 So we can put these numbers into the formula to work it out Area = 1 ( ) x 5 2 = 1 x 34 x 5 2 = 17 x 5 = 85cm 2 Dont forget your units 22cm 5cm 8

9 Next we move on to calculating the area of compound shapes A compound shape is what you get when you stick TWO OR MORE simple shapes together. e.g calculate the area of: Split this compound shape into its simpe shapes. Call them A and B. 17cm 8cm A? 12cm The long vertical edge on the left is 17cm. There is a 5cm vertical edge on the right. To figure out the height of A we calculate 5 +? = 17 B 15cm 5cm so we do 17 5 = 12 Work out the area of A and B seperately: A is a rectangle: area = width x height = 8cm x 12cm = 96cm 2 area of B = width x height = 15cm x 5cm = 75cm 2 Area of the whole shape = = 171cm 2 9

10 The next step is to be able to calculate the area of a circle. In order to do this you will need to be aware of some of the key parts and key words associated with circles Circumference: The length around a circle Radius (r): The distance between the centre of a circle and its circumference r Diameter (d): A straight line from one side of a circle to the other, passing through the middle d From the above diagrams you can see that the radius is half the length of the diameter (or the diameter is double the length of the radius) 10

11 Next we move on to calculating the area of a circle REMEMBER: π = 3.14 (pi) To calculate the area of a circle you use the following formula: Area = πr 2 (r is the radius) Calculate the area of: 10cm Area = πr 2 From the diagram we can see that the diameter is 10cm so the radius is HALF OF THIS: r = 5cm So, using the formula, Area = πr 2 becomes Area = 3.14 x 5 2 Square the radius FIRST and then multiply it by 3.14 = 3.14 x 25 = 78.5cm 2 11

PERIMETERS AND AREAS

PERIMETERS AND AREAS PERIMETERS AND AREAS 1. PERIMETER OF POLYGONS The Perimeter of a polygon is the distance around the outside of the polygon. It is the sum of the lengths of all the sides. Examples: The perimeter of this

More information

Solutions Section J: Perimeter and Area

Solutions Section J: Perimeter and Area Solutions Section J: Perimeter and Area 1. The 6 by 10 rectangle below has semi-circles attached on each end. 6 10 a) Find the perimeter of (the distance around) the figure above. b) Find the area enclosed

More information

Functional Skills Mathematics

Functional Skills Mathematics Functional Skills Mathematics Level Learning Resource Perimeter and Area MSS1/L.7 Contents Perimeter and Circumference MSS1/L.7 Pages 3-6 Finding the Area of Regular Shapes MSS1/L.7 Page 7-10 Finding the

More information

The area of a figure is the measure of the size of the region enclosed by the figure. Formulas for the area of common figures: square: A = s 2

The area of a figure is the measure of the size of the region enclosed by the figure. Formulas for the area of common figures: square: A = s 2 The area of a figure is the measure of the size of the region enclosed by the figure. Formulas for the area of common figures: square: A = s 2 s s rectangle: A = l w parallelogram: A = b h h b triangle:

More information

A = ½ x b x h or ½bh or bh. Formula Key A 2 + B 2 = C 2. Pythagorean Theorem. Perimeter. b or (b 1 / b 2 for a trapezoid) height

A = ½ x b x h or ½bh or bh. Formula Key A 2 + B 2 = C 2. Pythagorean Theorem. Perimeter. b or (b 1 / b 2 for a trapezoid) height Formula Key b 1 base height rea b or (b 1 / b for a trapezoid) h b Perimeter diagonal P d (d 1 / d for a kite) d 1 d Perpendicular two lines form a angle. Perimeter P = total of all sides (side + side

More information

Fundamentals of Geometry

Fundamentals of Geometry 10A Page 1 10 A Fundamentals of Geometry 1. The perimeter of an object in a plane is the length of its boundary. A circle s perimeter is called its circumference. 2. The area of an object is the amount

More information

*1. Understand the concept of a constant number like pi. Know the formula for the circumference and area of a circle.

*1. Understand the concept of a constant number like pi. Know the formula for the circumference and area of a circle. Students: 1. Students deepen their understanding of measurement of plane and solid shapes and use this understanding to solve problems. *1. Understand the concept of a constant number like pi. Know the

More information

Dŵr y Felin Comprehensive School. Perimeter, Area and Volume Methodology Booklet

Dŵr y Felin Comprehensive School. Perimeter, Area and Volume Methodology Booklet Dŵr y Felin Comprehensive School Perimeter, Area and Volume Methodology Booklet Perimeter, Area & Volume Perimeters, Area & Volume are key concepts within the Shape & Space aspect of Mathematics. Pupils

More information

The Area is the width times the height: Area = w h

The Area is the width times the height: Area = w h Geometry Handout Rectangle and Square Area of a Rectangle and Square (square has all sides equal) The Area is the width times the height: Area = w h Example: A rectangle is 6 m wide and 3 m high; what

More information

CONNECT: Volume, Surface Area

CONNECT: Volume, Surface Area CONNECT: Volume, Surface Area 2. SURFACE AREAS OF SOLIDS If you need to know more about plane shapes, areas, perimeters, solids or volumes of solids, please refer to CONNECT: Areas, Perimeters 1. AREAS

More information

Geometry Notes PERIMETER AND AREA

Geometry Notes PERIMETER AND AREA Perimeter and Area Page 1 of 17 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter

More information

Perimeter is the length of the boundary of a two dimensional figure.

Perimeter is the length of the boundary of a two dimensional figure. Section 2.2: Perimeter and Area Perimeter is the length of the boundary of a two dimensional figure. The perimeter of a circle is called the circumference. The perimeter of any two dimensional figure whose

More information

A factor is a whole number that. Name 6 different quadrilaterals. The radius of a circle. What is an axis or a line of symmetry in a 2-D shape?

A factor is a whole number that. Name 6 different quadrilaterals. The radius of a circle. What is an axis or a line of symmetry in a 2-D shape? BOND HOW TO DO 11+ MATHS MATHS FACTS CARDS 1 2 3 4 A factor is a whole number that Name 6 different quadrilaterals. The radius of a circle is What is an axis or a line of symmetry in a 2-D shape? 5 6 7

More information

Calculating Area, Perimeter and Volume

Calculating Area, Perimeter and Volume Calculating Area, Perimeter and Volume You will be given a formula table to complete your math assessment; however, we strongly recommend that you memorize the following formulae which will be used regularly

More information

LESSON SUMMARY. Measuring Shapes

LESSON SUMMARY. Measuring Shapes LESSON SUMMARY CXC CSEC MATHEMATICS UNIT SIX: Measurement Lesson 11 Measuring Shapes Textbook: Mathematics, A Complete Course by Raymond Toolsie, Volume 1 (Some helpful exercises and page numbers are given

More information

Geometry. Geometry is the study of shapes and sizes. The next few pages will review some basic geometry facts. Enjoy the short lesson on geometry.

Geometry. Geometry is the study of shapes and sizes. The next few pages will review some basic geometry facts. Enjoy the short lesson on geometry. Geometry Introduction: We live in a world of shapes and figures. Objects around us have length, width and height. They also occupy space. On the job, many times people make decision about what they know

More information

Grade 9 Mathematics Unit 3: Shape and Space Sub Unit #1: Surface Area. Determine the area of various shapes Circumference

Grade 9 Mathematics Unit 3: Shape and Space Sub Unit #1: Surface Area. Determine the area of various shapes Circumference 1 P a g e Grade 9 Mathematics Unit 3: Shape and Space Sub Unit #1: Surface Area Lesson Topic I Can 1 Area, Perimeter, and Determine the area of various shapes Circumference Determine the perimeter of various

More information

Finding Volume of Rectangular Prisms

Finding Volume of Rectangular Prisms MA.FL.7.G.2.1 Justify and apply formulas for surface area and volume of pyramids, prisms, cylinders, and cones. MA.7.G.2.2 Use formulas to find surface areas and volume of three-dimensional composite shapes.

More information

9 Areas and Perimeters

9 Areas and Perimeters 9 Areas and Perimeters This is is our next key Geometry unit. In it we will recap some of the concepts we have met before. We will also begin to develop a more algebraic approach to finding areas and perimeters.

More information

LEVEL G, SKILL 1. Answers Be sure to show all work.. Leave answers in terms of ϖ where applicable.

LEVEL G, SKILL 1. Answers Be sure to show all work.. Leave answers in terms of ϖ where applicable. Name LEVEL G, SKILL 1 Class Be sure to show all work.. Leave answers in terms of ϖ where applicable. 1. What is the area of a triangle with a base of 4 cm and a height of 6 cm? 2. What is the sum of the

More information

Lesson 7: Using Formulas

Lesson 7: Using Formulas Lesson 7: Using Formulas Steps for Solving Problems Using a Formula 1. 2. 3. 4. Example 1 Using the formula: Density = mass/volume or D = m/v Find the density of a rock that has a volume of 20 ml with

More information

Area Long-Term Memory Review Review 1

Area Long-Term Memory Review Review 1 Review 1 1. To find the perimeter of any shape you all sides of the shape.. To find the area of a square, you the length and width. 4. What best identifies the following shape. Find the area and perimeter

More information

Student Outcomes. Lesson Notes. Classwork. Exercises 1 3 (4 minutes)

Student Outcomes. Lesson Notes. Classwork. Exercises 1 3 (4 minutes) Student Outcomes Students give an informal derivation of the relationship between the circumference and area of a circle. Students know the formula for the area of a circle and use it to solve problems.

More information

GAP CLOSING. 2D Measurement. Intermediate / Senior Student Book

GAP CLOSING. 2D Measurement. Intermediate / Senior Student Book GAP CLOSING 2D Measurement Intermediate / Senior Student Book 2-D Measurement Diagnostic...3 Areas of Parallelograms, Triangles, and Trapezoids...6 Areas of Composite Shapes...14 Circumferences and Areas

More information

CONNECT: Areas, Perimeters

CONNECT: Areas, Perimeters CONNECT: Areas, Perimeters 1. AREAS OF PLANE SHAPES A plane figure or shape is a two-dimensional, flat shape. Here are 3 plane shapes: All of them have two dimensions that we usually call length and width

More information

Surface Area of Rectangular & Right Prisms Surface Area of Pyramids. Geometry

Surface Area of Rectangular & Right Prisms Surface Area of Pyramids. Geometry Surface Area of Rectangular & Right Prisms Surface Area of Pyramids Geometry Finding the surface area of a prism A prism is a rectangular solid with two congruent faces, called bases, that lie in parallel

More information

Basic Math for the Small Public Water Systems Operator

Basic Math for the Small Public Water Systems Operator Basic Math for the Small Public Water Systems Operator Small Public Water Systems Technology Assistance Center Penn State Harrisburg Introduction Area In this module we will learn how to calculate the

More information

Area of a triangle: The area of a triangle can be found with the following formula: 1. 2. 3. 12in

Area of a triangle: The area of a triangle can be found with the following formula: 1. 2. 3. 12in Area Review Area of a triangle: The area of a triangle can be found with the following formula: 1 A 2 bh or A bh 2 Solve: Find the area of each triangle. 1. 2. 3. 5in4in 11in 12in 9in 21in 14in 19in 13in

More information

Types of Triangle Sum of internal angles of triangle = 80 Equilateral Δ: All sides are equal Each internal angle = 60 Height divide the base into two equal parts Perimeter of triangle = 3 side Height of

More information

Show that when a circle is inscribed inside a square the diameter of the circle is the same length as the side of the square.

Show that when a circle is inscribed inside a square the diameter of the circle is the same length as the side of the square. Week & Day Week 6 Day 1 Concept/Skill Perimeter of a square when given the radius of an inscribed circle Standard 7.MG:2.1 Use formulas routinely for finding the perimeter and area of basic twodimensional

More information

Geometry - Calculating Area and Perimeter

Geometry - Calculating Area and Perimeter Geometry - Calculating Area and Perimeter In order to complete any of mechanical trades assessments, you will need to memorize certain formulas. These are listed below: (The formulas for circle geometry

More information

Area of a triangle: The area of a triangle can be found with the following formula: You can see why this works with the following diagrams:

Area of a triangle: The area of a triangle can be found with the following formula: You can see why this works with the following diagrams: Area Review Area of a triangle: The area of a triangle can be found with the following formula: 1 A 2 bh or A bh 2 You can see why this works with the following diagrams: h h b b Solve: Find the area of

More information

The formula for the area of a parallelogram is: A = bh, where b is the length of the base and h is the length of the height.

The formula for the area of a parallelogram is: A = bh, where b is the length of the base and h is the length of the height. The formula for the area of a parallelogram is: A = h, where is the length of the ase and h is the length of the height. The formula for the area of a parallelogram is: A = h, where is the length of the

More information

Working in 2 & 3 dimensions Revision Guide

Working in 2 & 3 dimensions Revision Guide Tips for Revising Working in 2 & 3 dimensions Make sure you know what you will be tested on. The main topics are listed below. The examples show you what to do. List the topics and plan a revision timetable.

More information

1. Kyle stacks 30 sheets of paper as shown to the right. Each sheet weighs about 5 g. How can you find the weight of the whole stack?

1. Kyle stacks 30 sheets of paper as shown to the right. Each sheet weighs about 5 g. How can you find the weight of the whole stack? Prisms and Cylinders Answer Key Vocabulary: cylinder, height (of a cylinder or prism), prism, volume Prior Knowledge Questions (Do these BEFORE using the Gizmo.) [Note: The purpose of these questions is

More information

CONNECT: Volume, Surface Area

CONNECT: Volume, Surface Area CONNECT: Volume, Surface Area 1. VOLUMES OF SOLIDS A solid is a three-dimensional (3D) object, that is, it has length, width and height. One of these dimensions is sometimes called thickness or depth.

More information

CHAPTER 27 AREAS OF COMMON SHAPES

CHAPTER 27 AREAS OF COMMON SHAPES EXERCISE 113 Page 65 CHAPTER 7 AREAS OF COMMON SHAPES 1. Find the angles p and q in the diagram below: p = 180 75 = 105 (interior opposite angles of a parallelogram are equal) q = 180 105 0 = 35. Find

More information

Lesson 21. Chapter 2: Perimeter, Area & Volume. Lengths and Areas of Rectangles, Triangles and Composite Shapes

Lesson 21. Chapter 2: Perimeter, Area & Volume. Lengths and Areas of Rectangles, Triangles and Composite Shapes ourse: HV Lesson hapter : Perimeter, rea & Volume Lengths and reas of Rectangles, Triangles and omposite Shapes The perimeter of a shape is the total length of its boundary. You can find the perimeter

More information

Algebra Geometry Glossary. 90 angle

Algebra Geometry Glossary. 90 angle lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:

More information

The GED math test gives you a page of math formulas that

The GED math test gives you a page of math formulas that Math Smart 643 The GED Math Formulas The GED math test gives you a page of math formulas that you can use on the test, but just seeing the formulas doesn t do you any good. The important thing is understanding

More information

Geometry Review. Here are some formulas and concepts that you will need to review before working on the practice exam.

Geometry Review. Here are some formulas and concepts that you will need to review before working on the practice exam. Geometry Review Here are some formulas and concepts that you will need to review before working on the practice eam. Triangles o Perimeter or the distance around the triangle is found by adding all of

More information

2. Complete the table to identify the effect tripling the radius of a cylinder s base has on its volume. Cylinder Height (cm) h

2. Complete the table to identify the effect tripling the radius of a cylinder s base has on its volume. Cylinder Height (cm) h Name: Period: Date: K. Williams ID: A 8th Grade Chapter 14 TEST REVIEW 1. Determine the volume of the cylinder. Use 3.14 for. 2. Complete the table to identify the effect tripling the radius of a cylinder

More information

Area of Parallelograms (pages 546 549)

Area of Parallelograms (pages 546 549) A Area of Parallelograms (pages 546 549) A parallelogram is a quadrilateral with two pairs of parallel sides. The base is any one of the sides and the height is the shortest distance (the length of a perpendicular

More information

Rugs. This problem gives you the chance to: find perimeters of shapes use Pythagoras Rule. Hank works at a factory that makes rugs.

Rugs. This problem gives you the chance to: find perimeters of shapes use Pythagoras Rule. Hank works at a factory that makes rugs. Rugs This problem gives you the chance to: find perimeters of shapes use Pythagoras Rule Hank works at a factory that makes rugs. The edge of each rug is bound with braid. Hank s job is to cut the correct

More information

Q1. Here is a flag. Calculate the area of the shaded cross. Q2. The diagram shows a right-angled triangle inside a circle.

Q1. Here is a flag. Calculate the area of the shaded cross. Q2. The diagram shows a right-angled triangle inside a circle. Q1. Here is a flag. Calculate the area of the shaded cross. 2 marks Q2. The diagram shows a right-angled triangle inside a circle. The circle has a radius of 5 centimetres. Calculate the area of the triangle.

More information

Line AB (no Endpoints) Ray with Endpoint A. Line Segments with Endpoints A and B. Angle is formed by TWO Rays with a common Endpoint.

Line AB (no Endpoints) Ray with Endpoint A. Line Segments with Endpoints A and B. Angle is formed by TWO Rays with a common Endpoint. Section 8 1 Lines and Angles Point is a specific location in space.. Line is a straight path (infinite number of points). Line Segment is part of a line between TWO points. Ray is part of the line that

More information

Name: Class: Date: Geometry Chapter 3 Review

Name: Class: Date: Geometry Chapter 3 Review Name: Class: Date: ID: A Geometry Chapter 3 Review. 1. The area of a rectangular field is 6800 square meters. If the width of the field is 80 meters, what is the perimeter of the field? Draw a diagram

More information

28. [Area / Volume] cm 2. in = =

28. [Area / Volume] cm 2. in = = 8. [ / Volume] Skill 8. Calculating the area of polygons by counting squares and triangles on a square grid (). Count the number of fully shaded squares on the grid. If necessary add on the number of half

More information

Characteristics of the Four Main Geometrical Figures

Characteristics of the Four Main Geometrical Figures Math 40 9.7 & 9.8: The Big Four Square, Rectangle, Triangle, Circle Pre Algebra We will be focusing our attention on the formulas for the area and perimeter of a square, rectangle, triangle, and a circle.

More information

Junior Math Circles November 18, D Geometry II

Junior Math Circles November 18, D Geometry II 1 University of Waterloo Faculty of Mathematics Junior Math Circles November 18, 009 D Geometry II Centre for Education in Mathematics and Computing Two-dimensional shapes have a perimeter and an area.

More information

CALCULATING THE AREA OF A FLOWER BED AND CALCULATING NUMBER OF PLANTS NEEDED

CALCULATING THE AREA OF A FLOWER BED AND CALCULATING NUMBER OF PLANTS NEEDED This resource has been produced as a result of a grant awarded by LSIS. The grant was made available through the Skills for Life Support Programme in 2010. The resource has been developed by (managers

More information

This formula will give you the volume (in cubic feet) for any cylinder, such as a pipe: LENGTH DIAMETER

This formula will give you the volume (in cubic feet) for any cylinder, such as a pipe: LENGTH DIAMETER Volume Problems How much water a pipe (cylinder) can hold is dependent on how big the pipe is (cross-sectional area) and how long it is (length). The larger and/or the longer the pipe, the more water it

More information

Circumference and area of a circle

Circumference and area of a circle c Circumference and area of a circle 22 CHAPTER 22.1 Circumference of a circle The circumference is the special name of the perimeter of a circle, that is, the distance all around it. Measure the circumference

More information

Geometry Concepts. Figures that lie in a plane are called plane figures. These are all plane figures. Triangle 3

Geometry Concepts. Figures that lie in a plane are called plane figures. These are all plane figures. Triangle 3 Geometry Concepts Figures that lie in a plane are called plane figures. These are all plane figures. Polygon No. of Sides Drawing Triangle 3 A polygon is a plane closed figure determined by three or more

More information

Geometry of 2D Shapes

Geometry of 2D Shapes Name: Geometry of 2D Shapes Answer these questions in your class workbook: 1. Give the definitions of each of the following shapes and draw an example of each one: a) equilateral triangle b) isosceles

More information

Q1. The grid below is made of right-angled triangles like this: Shade triangles on the grid to make a quadrilateral.

Q1. The grid below is made of right-angled triangles like this: Shade triangles on the grid to make a quadrilateral. Q1. The grid below is made of right-angled triangles like this: Shade triangles on the grid to make a quadrilateral. Your quadrilateral must have an area of 24 cm 2 and a perimeter of 26 cm. Page 1 of

More information

In Problems #1 - #4, find the surface area and volume of each prism.

In Problems #1 - #4, find the surface area and volume of each prism. Geometry Unit Seven: Surface Area & Volume, Practice In Problems #1 - #4, find the surface area and volume of each prism. 1. CUBE. RECTANGULAR PRISM 9 cm 5 mm 11 mm mm 9 cm 9 cm. TRIANGULAR PRISM 4. TRIANGULAR

More information

Circumference of a Circle

Circumference of a Circle Circumference of a Circle A circle is a shape with all points the same distance from the center. It is named by the center. The circle to the left is called circle A since the center is at point A. If

More information

Applying formulas to measure attributes of shapes

Applying formulas to measure attributes of shapes Going the Distance Reporting Category Topic Primary SOL Measurement Applying formulas to measure attributes of shapes 6.10 The student will a) define π (pi) as the ratio of the circumference of a circle

More information

Geo - CH10 Practice Test

Geo - CH10 Practice Test Geo - H10 Practice Test Multiple hoice Identify the choice that best completes the statement or answers the question. 1. lassify the figure. Name the vertices, edges, and base. a. triangular pyramid vertices:,,,,

More information

Tallahassee Community College PERIMETER

Tallahassee Community College PERIMETER Tallahassee Community College 47 PERIMETER The perimeter of a plane figure is the distance around it. Perimeter is measured in linear units because we are finding the total of the lengths of the sides

More information

Study Guide. 6.g.1 Find the area of triangles, quadrilaterals, and other polygons. Note: Figure is not drawn to scale.

Study Guide. 6.g.1 Find the area of triangles, quadrilaterals, and other polygons. Note: Figure is not drawn to scale. Study Guide Name Test date 6.g.1 Find the area of triangles, quadrilaterals, and other polygons. 1. Note: Figure is not drawn to scale. If x = 14 units and h = 6 units, then what is the area of the triangle

More information

23. [Perimeter / Area]

23. [Perimeter / Area] 3. [Perimeter / rea] Skill 3. Calculating the perimeter of polygons (). MM5. 33 44 MM6. 33 44 Convert all measurements to the same unit. Find and label the length of all sides. dd together all side lengths.

More information

Marie has a winter hat made from a circle, a rectangular strip and eight trapezoid shaped pieces. y inches. 3 inches. 24 inches

Marie has a winter hat made from a circle, a rectangular strip and eight trapezoid shaped pieces. y inches. 3 inches. 24 inches Winter Hat This problem gives you the chance to: calculate the dimensions of material needed for a hat use circle, circumference and area, trapezoid and rectangle Marie has a winter hat made from a circle,

More information

Area and Volume 1. Circumference and Area of a Circle. Area of a Trapezium. and Measures. Geometry. Key Point. Key Point.

Area and Volume 1. Circumference and Area of a Circle. Area of a Trapezium. and Measures. Geometry. Key Point. Key Point. Geometry and Measures Area and Volume 1 You must be able to: Recall and use the formulae for the circumference and area of a circle Recall and use the formula for the area of a trapezium Recall and use

More information

Covering & Surrounding Notes Problem 1.1

Covering & Surrounding Notes Problem 1.1 Problem 1.1 Definitions: Area - the measure of the amount of surface enclosed by the sides of a figure. Perimeter - the measure of the distance around a figure. Bumper-cars is one of the most popular rides

More information

Are You Ready? Circumference and Area of Circles

Are You Ready? Circumference and Area of Circles SKILL 39 Are You Read? Circumference and Area of Circles Teaching Skill 39 Objective Find the circumference and area of circles. Remind students that perimeter is the distance around a figure and that

More information

Calculate Angles on Straight Lines, at Points, in s & involving Parallel Lines iss1

Calculate Angles on Straight Lines, at Points, in s & involving Parallel Lines iss1 alculate ngles on Straight Lines, at Points, in s & involving Parallel Lines iss1 ngles on a Straight Line dd to 180 x 44 x = 180 44 = 136 ngles at a Point dd to 360 ngles in a Triangle dd to 180 15 z

More information

10-4 Surface Area of Prisms and Cylinders

10-4 Surface Area of Prisms and Cylinders : Finding Lateral Areas and Surface Areas of Prisms 2. Find the lateral area and surface area of the right rectangular prism. : Finding Lateral Areas and Surface Areas of Right Cylinders 3. Find the lateral

More information

GRE MATH REVIEW #6. Geometry

GRE MATH REVIEW #6. Geometry GRE MATH REVIEW #6 Geometry As in the case of algera, you don t need to know much of the actual geometry you learned in your geometry class for the GRE. Here is a list of facts aout degrees and angles

More information

Geometry Chapter 9 Extending Perimeter, Circumference, and Area

Geometry Chapter 9 Extending Perimeter, Circumference, and Area Geometry Chapter 9 Extending Perimeter, Circumference, and Area Lesson 1 Developing Formulas for Triangles and Quadrilaterals Learning Target (LT-1) Solve problems involving the perimeter and area of triangles

More information

Name: Perimeter and area November 18, 2013

Name: Perimeter and area November 18, 2013 1. How many differently shaped rectangles with whole number sides could have an area of 360? 5. If a rectangle s length and width are both doubled, by what percent is the rectangle s area increased? 2.

More information

Worksheets for GCSE Mathematics. Perimeter & Area. mr-mathematics.com Maths Resources for Teachers. Shape

Worksheets for GCSE Mathematics. Perimeter & Area. mr-mathematics.com Maths Resources for Teachers. Shape Worksheets for GCSE Mathematics Perimeter & Area mr-mathematics.com Maths Resources for Teachers Shape Perimeter & Area Worksheets Contents Differentiated Independent Learning Worksheets Perimeter of Shapes

More information

MDPT - Geometry Practice Problems. 1. ABC is an isosceles triangle with base BC. L1 and L2 are parallel. 1=80. Find 4.

MDPT - Geometry Practice Problems. 1. ABC is an isosceles triangle with base BC. L1 and L2 are parallel. 1=80. Find 4. MDPT - Geometry Practice Problems 1. C is an isosceles triangle with base C. L1 and L are parallel. 1=80. Find 4. L1 1 4 a. 80 b. 50 c. 45 d. 60. In the figure, the measure of arc C is 7 π / 4 and O is

More information

Surface Area of Prisms

Surface Area of Prisms Surface Area of Prisms Find the Surface Area for each prism. Show all of your work. Surface Area: The sum of the areas of all the surface (faces) if the threedimensional figure. Rectangular Prism: A prism

More information

Week #15 - Word Problems & Differential Equations Section 8.1

Week #15 - Word Problems & Differential Equations Section 8.1 Week #15 - Word Problems & Differential Equations Section 8.1 From Calculus, Single Variable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 25 by John Wiley & Sons, Inc. This material is used by

More information

Area and Perimeter. Practice: Find the perimeter of each. Square with side length of 6 cm. Rectangle with side lengths of 4 cm and 7 cm

Area and Perimeter. Practice: Find the perimeter of each. Square with side length of 6 cm. Rectangle with side lengths of 4 cm and 7 cm Area and Perimeter Perimeter: add up all the sides (the outside of the polygon) Practice: Find the perimeter of each Square with side length of 6 cm Rectangle with side lengths of 4 cm and 7 cm Parallelogram

More information

10.4 Surface Area of Prisms, Cylinders, Pyramids, Cones, and Spheres. 10.4 Day 1 Warm-up

10.4 Surface Area of Prisms, Cylinders, Pyramids, Cones, and Spheres. 10.4 Day 1 Warm-up 10.4 Surface Area of Prisms, Cylinders, Pyramids, Cones, and Spheres 10.4 Day 1 Warm-up 1. Which identifies the figure? A rectangular pyramid B rectangular prism C cube D square pyramid 3. A polyhedron

More information

Area of Parallelograms, Triangles, and Trapezoids (pages 314 318)

Area of Parallelograms, Triangles, and Trapezoids (pages 314 318) Area of Parallelograms, Triangles, and Trapezoids (pages 34 38) Any side of a parallelogram or triangle can be used as a base. The altitude of a parallelogram is a line segment perpendicular to the base

More information

Perimeter, Area, and Volume

Perimeter, Area, and Volume Perimeter, Area, and Volume Perimeter of Common Geometric Figures The perimeter of a geometric figure is defined as the distance around the outside of the figure. Perimeter is calculated by adding all

More information

10.1: Areas of Parallelograms and Triangles

10.1: Areas of Parallelograms and Triangles 10.1: Areas of Parallelograms and Triangles Important Vocabulary: By the end of this lesson, you should be able to define these terms: Base of a Parallelogram, Altitude of a Parallelogram, Height of a

More information

9 Area, Perimeter and Volume

9 Area, Perimeter and Volume 9 Area, Perimeter and Volume 9.1 2-D Shapes The following table gives the names of some 2-D shapes. In this section we will consider the properties of some of these shapes. Rectangle All angles are right

More information

Grade 7 Area of circle

Grade 7 Area of circle Grade 7 Area of circle 7.SS.2 Develop and apply a formula for determining the area of triangles parallelograms circles 1. Illustrate and explain how the area of a rectangle can be used to determine the

More information

Geometry Chapter 9 Extending Perimeter, Circumference, and Area

Geometry Chapter 9 Extending Perimeter, Circumference, and Area Geometry Chapter 9 Extending Perimeter, Circumference, and Area Lesson 1 Developing Formulas for Triangles and Quadrilaterals Learning Targets LT9-1: Solve problems involving the perimeter and area of

More information

Solids. Objective A: Volume of a Solids

Solids. Objective A: Volume of a Solids Solids Math00 Objective A: Volume of a Solids Geometric solids are figures in space. Five common geometric solids are the rectangular solid, the sphere, the cylinder, the cone and the pyramid. A rectangular

More information

Perimeter. 14ft. 5ft. 11ft.

Perimeter. 14ft. 5ft. 11ft. Perimeter The perimeter of a geometric figure is the distance around the figure. The perimeter could be thought of as walking around the figure while keeping track of the distance traveled. To determine

More information

Module: Mathematical Reasoning

Module: Mathematical Reasoning Module: Mathematical Reasoning Lesson Title: Using Nets for Finding Surface Area Objectives and Standards Students will: Draw and construct nets for 3-D objects. Determine the surface area of rectangular

More information

Name: Date: Geometry Solid Geometry. Name: Teacher: Pd:

Name: Date: Geometry Solid Geometry. Name: Teacher: Pd: Name: Date: Geometry 2012-2013 Solid Geometry Name: Teacher: Pd: Table of Contents DAY 1: SWBAT: Calculate the Volume of Prisms and Cylinders Pgs: 1-7 HW: Pgs: 8-10 DAY 2: SWBAT: Calculate the Volume of

More information

Integrated Algebra: Geometry

Integrated Algebra: Geometry Integrated Algebra: Geometry Topics of Study: o Perimeter and Circumference o Area Shaded Area Composite Area o Volume o Surface Area o Relative Error Links to Useful Websites & Videos: o Perimeter and

More information

Perimeter, Circumference, Area and Ratio Long-Term Memory Review

Perimeter, Circumference, Area and Ratio Long-Term Memory Review Review 1 1. Which procedure is used to find the perimeter of any polygon? A) Add all the lengths B) Multiply length times width ( l w ) C) Add only one length and one width D) Multiply all of the lengths

More information

G6-9 Area of Composite Shapes

G6-9 Area of Composite Shapes G6-9 Area of Composite Shapes 1. a) Calculate the area of each figure. b) Draw a line to show how Shape C can be divided into rectangles A and. i) ii) A C A C Area of A = Area of A = Area of = Area of

More information

1 foot (ft) = 12 inches (in) 1 yard (yd) = 3 feet (ft) 1 mile (mi) = 5280 feet (ft) Replace 1 with 1 ft/12 in. 1ft

1 foot (ft) = 12 inches (in) 1 yard (yd) = 3 feet (ft) 1 mile (mi) = 5280 feet (ft) Replace 1 with 1 ft/12 in. 1ft 2 MODULE 6. GEOMETRY AND UNIT CONVERSION 6a Applications The most common units of length in the American system are inch, foot, yard, and mile. Converting from one unit of length to another is a requisite

More information

Dyffryn School Ysgol Y Dyffryn Mathematics Faculty

Dyffryn School Ysgol Y Dyffryn Mathematics Faculty Dyffryn School Ysgol Y Dyffryn Mathematics Faculty Formulae and Facts Booklet Higher Tier Number Facts Sum This means add. Difference This means take away. Product This means multiply. Share This means

More information

Saturday X-tra X-Sheet: 12. Revision of Grade 12 Space and Shape Part 1 2D Shapes

Saturday X-tra X-Sheet: 12. Revision of Grade 12 Space and Shape Part 1 2D Shapes Saturday X-tra X-Sheet: 12 Key Concepts Revision of Grade 12 Space and Shape Part 1 2D Shapes In this session we will focus on summarising what you need to know about: Measurement conversions of units

More information

PERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures.

PERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures. PERIMETER AND AREA In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures. Perimeter Perimeter The perimeter of a polygon, denoted by P, is the

More information

8-3 Perimeter and Circumference

8-3 Perimeter and Circumference Learn to find the perimeter of a polygon and the circumference of a circle. 8-3 Perimeter Insert Lesson and Title Circumference Here perimeter circumference Vocabulary The distance around a geometric figure

More information

*1. Derive formulas for the area of right triangles and parallelograms by comparing with the area of rectangles.

*1. Derive formulas for the area of right triangles and parallelograms by comparing with the area of rectangles. Students: 1. Students understand and compute volumes and areas of simple objects. *1. Derive formulas for the area of right triangles and parallelograms by comparing with the area of rectangles. Review

More information

Teacher Page Key. Geometry / Day # 13 Composite Figures 45 Min.

Teacher Page Key. Geometry / Day # 13 Composite Figures 45 Min. Teacher Page Key Geometry / Day # 13 Composite Figures 45 Min. 9-1.G.1. Find the area and perimeter of a geometric figure composed of a combination of two or more rectangles, triangles, and/or semicircles

More information

2006 Geometry Form A Page 1

2006 Geometry Form A Page 1 2006 Geometry Form Page 1 1. he hypotenuse of a right triangle is 12" long, and one of the acute angles measures 30 degrees. he length of the shorter leg must be: () 4 3 inches () 6 3 inches () 5 inches

More information

(a) 5 square units. (b) 12 square units. (c) 5 3 square units. 3 square units. (d) 6. (e) 16 square units

(a) 5 square units. (b) 12 square units. (c) 5 3 square units. 3 square units. (d) 6. (e) 16 square units 1. Find the area of parallelogram ACD shown below if the measures of segments A, C, and DE are 6 units, 2 units, and 1 unit respectively and AED is a right angle. (a) 5 square units (b) 12 square units

More information