# Inv 1 5. Draw 2 different shapes, each with an area of 15 square units and perimeter of 16 units.

Save this PDF as:

Size: px
Start display at page:

Download "Inv 1 5. Draw 2 different shapes, each with an area of 15 square units and perimeter of 16 units."

## Transcription

1 Covering and Surrounding: Homework Examples from ACE Investigation 1: Questions 5, 8, 21 Investigation 2: Questions 6, 7, 11, 27 Investigation 3: Questions 6, 8, 11 Investigation 5: Questions 15, 26 ACE Question Inv 1 5. Draw 2 different shapes, each with an area of 15 square units and perimeter of 16 units. Possible Answer 5. This question reinforces the idea that the relationship between perimeter and area is not simple. The obvious answer is a rectangle with length 5 and width 3. P = = 16. A = 5 x 3 = 15. But if students use their experiment with square tiles they can come up with other, non-rectangular, arrangements of 15 square tiles. P = = 16. Area = 15 square units. 8. Copy the design onto grid paper. Add 6 squares to make a new design with a perimeter of 30 units. Explain how the perimeter changed as you added new tiles to the figure. 8. We need to reduce the perimeter while increasing the area. Students learned that more compact figures can cover the same area without increasing the perimeter. This idea means that they have to fill in some of the blank space in the center of the shape.

2 Perimeter, starting where the heavy line segment is drawn = = 30 units. 21. Find the areas and perimeters of the rectangles whose lengths and widths are given in the chart below. Make a sketch of each rectangle and label its dimensions. Rect Length Width Area Perime ter A 5 6 B 4 13 C Rect Length Width Area Perime ter A B C A 4 13 B C Inv 2 6. The graph at right represents the whole number lengths and perimeters for rectangles with a fixed area. 6. Note: students know that for a rectangle

3 lengths and perimeters for rectangles with a fixed area. a. What is the perimeter of a rectangle whole length is 2 meters? What is its width? b. Describe the rectangle that has the largest perimeter. c. Describe the rectangle that has the smallest perimeter. d. What is the fixed area? Explain how you found the answer. A = lw and P = l + w + l + w = 2l + 2w = 2(l + w). a. The point (2, 32) represents a rectangle with length 2 and perimeter 32. So, 2 + w w = 32. So w = 14. (Students may also use the fact that l + w = half perimeter, so 2 + w = 16. This makes the solution for w easier.) b. The points (1, 58) and (28, 58) both have the largest perimeter given on this graph. If l = 1 then 1 + w w = 58, so w = 28. If l = 28 then 28 + w w = 58, so w =1. In both cases the rectangle has dimensions 1 by 28. c. The points (4, 22) and (7, 22) both have the smallest perimeter on this graph. If l = 4 then 4 + w w = 22. so w = 7. If l = 7 then 7 + w w = 22, so w = 4. In both cases the rectangles have dimensions 4 by 7. d. In part a the rectangle had length 2 and width 14 so area was 28 square units. In part b the rectangle had length 1 and width 28 so area was 28 square units. In part c the area had length 4 and width 7 so area was 28 square units. This graph shows rectangles whose dimensions and perimeters vary but whose areas are all 28 square units. 7. The following 4 by 6 rectangle is drawn on grid paper. Billie started at an edge and cut a path to the opposite corner. She then slid the piece onto the opposite edge, making the straight edges match. 7. This question addresses the fundamental idea that area is about covering space. Therefore, if we cut a shape into pieces and rearrange the pieces we will still cover the same area, though the actual shape looks different.

4 piece onto the opposite edge, making the straight edges match. Are the area and perimeter of her new figure the same as, less than, or greater than the area and perimeter of the original figure? Explain. See text rearrange the pieces we will still cover the same area, though the actual shape looks different. Students often think that if the areas are the same the perimeters must be the same. The other misconception they have is that the distance across a square is the same no matter how the square is crossed. They often think that a diagonal is the same length as a side of a square. The square below shows 3 bolded lines all of different lengths. So the resulting shape has a perimeter made of curves of unknown length. These curves are each definitely longer than 4 units. So the perimeter has increased. 11. a. Sketch rectangles with perimeter 20 meters. Record the length, width, area and perimeter in a table. b. Sketch a graph of the length and area. c. Describe how to use the table and graph to find the rectangular shape that has the greatest area. The smallest area. 11. a. If the perimeter is 20 meters then 2(l + w)= 20 so l + w = 10. Some pairs are: (1, 9), (2, 8), (3, 7), (4, 6), (5, 5,) (6, 4) etc. Length Width Perimete Area r etc

5 b. c. The maximum area occurs when length and width are both 5 units. The minimum area occurs when the dimensions are 1 by 9. (If we were permitted to use fractions for lengths of sides then the max would still be 25 but the smallest area would now be impossible to determine. If we choose a fraction less than 1 for the length then the width can still be determined and the area will be less than 9 square units. But we can always find another area even smaller by choosing an even smaller fraction for the length.) 27. a. Find the perimeter and area of the rectangle outlined in bold lines. a. The area is 2.25 x 3.25 = square units or 7 5 square units. 16

6 b. Draw another rectangle on grid paper that has the same perimeter as the one above but a different area than the one shown. What is the area of the one you have made? Be sure to label length and width. The perimeter = = 11 units. b. The equation for perimeter gives a strategy for a way to change the dimensions but retain the total 11 units = (adding 0.25 to the length and subtracting 0.25 from the width) = = = etc. So some other rectangles with the same perimeter are: 3.5 by 2, 3.75 by 1.75, 4 by 1.5, 4.25 by 1.25 etc. One of these is drawn below.

7 2.5 3 Inv 3 6. Calculate the area and perimeter of the triangle and explain your reasoning. Area of the example drawn = 3 x 2.5 = 7.5 square units. 6. Students have several ways to think about the area of the triangle. They might count whole square units covered and then estimate the area covered by the partial squares. Or they might surround this with a 4 by 8 rectangle and observe that the triangle is half of the rectangle. Or they might use the rule that Area of triangle = ( 1 )(base)(height) and use the 2 base and height shown on the picture below. B A h b Area = 0.5(4)(8) = 16 square units. Perimeter = 4 + length of AB + length of AC. The problem we have with the lengths of ab and AC is that they do not lie on grid lines, and so have to be measured or estimated using the edge of a grid square as a unit. Each is approximately 8.25 units long. (In a later unit students learn how to use the Pythagorean Theorem to find an accurate answer for these lengths.) C

8 using the edge of a grid square as a unit. Each is approximately 8.25 units long. (In a later unit students learn how to use the Pythagorean Theorem to find an accurate answer for these lengths.) Perimeter = = 20.5 units. 8. Vashan said that if you used 7 feet as the base of the triangle shown below then you would calculate the same area as you did when you used the10 feet base. Do you agree with him? 8. Vashan is correct. It does not matter which side of a triangle we choose as the base, as long as we then choose as the height the distance from the base to the opposite vertex. The triangle is half of the same 7 by 10 rectangle no matter the orientation Melissa was finding the area of a triangle when she wrote: Area = ( 1 2 ) 3 (4 1 2 ) a. Make a sketch of a triangle she might have been working with. b. What is the area of the triangle? 11. Apparently Melissa is using a base of 3 and a height of 4.5 for her triangle. But there are many triangles she might be working with. The key is to make the height be the perpendicular distance from the base to the opposite vertex. Shown below are several different triangles with the same base and height (and, therefore, the same area.)

9 4.5 3 Inv Best Crust Pizzaria sells three different sizes of pizza. The small size has a radius of 4 inches, the medium size has a radius of 5 inches, and the large size has a radius of 6 inches. a. Make a table with the following headings. Fill in the table and explain how you found the area of the pizzas. Pizza Size Small Mediu m Large Diame ter Radius Circu m Area b. Sam claims that the area of the pizza is about 0.75(diameter) 2. is he correct? 15. a. Pizza Size Diame ter Radius Circu m Small (8) = (10) = 31.4 Mediu m Large (12) =37.68 The above calculations use 3.14 as an approximation for pi. Area 3.14(4 2 ) = (5 2 ) = (6 2 ) = b. Using the answers for area from the above table and making comparisons we have: Pizza Size Area 0.75(diamet er) 2 Small (8 2 ) = 48 Medium (10 2 ) = 75 Large (12 2 ) = 108 As you can see the estimates using Sam s formula are a little low. This makes sense since the formula used in the first table for area = π(radius) 2. Radius = diameter so we 2 could replace this in the formula and have Area = π( diameter ) 2 = π 2 4 (diameter)2. Now π 3

10 since the formula used in the first table for area = π(radius) 2. Radius = diameter so we 2 could replace this in the formula and have Area = π( diameter ) 2 = π 2 4 (diameter)2. Now π 4 is more than 3 and so Sam s formula will 4 always give a lower estimate. 26. A rectangular lawn has a perimeter of 36 meters and a circular exercise run has a circumference of 36 meters. Which shape do you think will give Rico s dog the most area to run? 26. This question refers back to the idea in earlier investigations that two shapes with the same perimeter do not necessarily have the same area. Students discovered that, if only rectangles are compared, that the more square a rectangle (that is the closer the ratio of sides is to 1:1) the more area it can enclose for a given perimeter. So in this case the best rectangle they can make is 9 9. ( = 36) Now we have to do some reasoning with the formula for the circumference. C = pi(diameter) 36 = pi(diameter) So, diameter = 36 π = 11.5 (approx). So the radius must be Now that we know the radius we can figure the area = π(5.75) 2 = (approx). So a circle with circumference 36 meters covers more area than a square with perimeter 36 meters.

### Covering and Surrounding: Homework Examples from ACE

Covering and Surrounding: Homework Examples from ACE Investigation 1: Extending and Building on Area and Perimeter, ACE #4, #6, #17 Investigation 2: Measuring Triangles, ACE #4, #9, #12 Investigation 3:

### Filling and Wrapping: Homework Examples from ACE

Filling and Wrapping: Homework Examples from ACE Investigation 1: Building Smart Boxes: Rectangular Prisms, ACE #3 Investigation 2: Polygonal Prisms, ACE #12 Investigation 3: Area and Circumference of

### Covering & Surrounding Notes Problem 1.1

Problem 1.1 Definitions: Area - the measure of the amount of surface enclosed by the sides of a figure. Perimeter - the measure of the distance around a figure. Bumper-cars is one of the most popular rides

### Geometry and Measurement

The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for

### Pizza! Pizza! Assessment

Pizza! Pizza! Assessment 1. A local pizza restaurant sends pizzas to the high school twelve to a carton. If the pizzas are one inch thick, what is the volume of the cylindrical shipping carton for the

### Perimeter, Area, and Volume

Perimeter, Area, and Volume Perimeter of Common Geometric Figures The perimeter of a geometric figure is defined as the distance around the outside of the figure. Perimeter is calculated by adding all

### Characteristics of the Four Main Geometrical Figures

Math 40 9.7 & 9.8: The Big Four Square, Rectangle, Triangle, Circle Pre Algebra We will be focusing our attention on the formulas for the area and perimeter of a square, rectangle, triangle, and a circle.

### Student Outcomes. Lesson Notes. Classwork. Exercises 1 3 (4 minutes)

Student Outcomes Students give an informal derivation of the relationship between the circumference and area of a circle. Students know the formula for the area of a circle and use it to solve problems.

### 8-3 Perimeter and Circumference

Learn to find the perimeter of a polygon and the circumference of a circle. 8-3 Perimeter Insert Lesson and Title Circumference Here perimeter circumference Vocabulary The distance around a geometric figure

### In Problems #1 - #4, find the surface area and volume of each prism.

Geometry Unit Seven: Surface Area & Volume, Practice In Problems #1 - #4, find the surface area and volume of each prism. 1. CUBE. RECTANGULAR PRISM 9 cm 5 mm 11 mm mm 9 cm 9 cm. TRIANGULAR PRISM 4. TRIANGULAR

### Section 2.4: Applications and Writing Functions

CHAPTER 2 Polynomial and Rational Functions Section 2.4: Applications and Writing Functions Setting up Functions to Solve Applied Problems Maximum or Minimum Value of a Quadratic Function Setting up Functions

### Geometry Notes PERIMETER AND AREA

Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter

### Postulate 17 The area of a square is the square of the length of a. Postulate 18 If two figures are congruent, then they have the same.

Chapter 11: Areas of Plane Figures (page 422) 11-1: Areas of Rectangles (page 423) Rectangle Rectangular Region Area is measured in units. Postulate 17 The area of a square is the square of the length

### Geometry Review. Here are some formulas and concepts that you will need to review before working on the practice exam.

Geometry Review Here are some formulas and concepts that you will need to review before working on the practice eam. Triangles o Perimeter or the distance around the triangle is found by adding all of

### Looking for Pythagoras: Homework Examples from ACE

Looking for Pythagoras: Homework Examples from ACE Investigation 1: Coordinate Grids, ACE #20, #37 Investigation 2: Squaring Off, ACE #16, #44, #65 Investigation 3: The Pythagorean Theorem, ACE #2, #9,

### Tallahassee Community College PERIMETER

Tallahassee Community College 47 PERIMETER The perimeter of a plane figure is the distance around it. Perimeter is measured in linear units because we are finding the total of the lengths of the sides

### Areas of Rectangles and Parallelograms

CONDENSED LESSON 8.1 Areas of Rectangles and Parallelograms In this lesson you will Review the formula for the area of a rectangle Use the area formula for rectangles to find areas of other shapes Discover

### Algebra Geometry Glossary. 90 angle

lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:

### Area of Parallelograms (pages 546 549)

A Area of Parallelograms (pages 546 549) A parallelogram is a quadrilateral with two pairs of parallel sides. The base is any one of the sides and the height is the shortest distance (the length of a perpendicular

### EXPONENTS. To the applicant: KEY WORDS AND CONVERTING WORDS TO EQUATIONS

To the applicant: The following information will help you review math that is included in the Paraprofessional written examination for the Conejo Valley Unified School District. The Education Code requires

### CIRCUMFERENCE AND AREA OF CIRCLES

CIRCUMFERENCE AND AREA F CIRCLES 8..1 8.. Students have found the area and perimeter of several polygons. Next they consider what happens to the area as more and more sides are added to a polygon. By exploring

### Perimeter. 14ft. 5ft. 11ft.

Perimeter The perimeter of a geometric figure is the distance around the figure. The perimeter could be thought of as walking around the figure while keeping track of the distance traveled. To determine

### Right Prisms Let s find the surface area of the right prism given in Figure 44.1. Figure 44.1

44 Surface Area The surface area of a space figure is the total area of all the faces of the figure. In this section, we discuss the surface areas of some of the space figures introduced in Section 41.

### 3. If AC = 12, CD = 9 and BE = 3, find the area of trapezoid BCDE. (Mathcounts Handbooks)

EXERCISES: Triangles 1 1. The perimeter of an equilateral triangle is units. How many units are in the length 27 of one side? (Mathcounts Competitions) 2. In the figure shown, AC = 4, CE = 5, DE = 3, and

### Geometry Unit 7 (Textbook Chapter 9) Solving a right triangle: Find all missing sides and all missing angles

Geometry Unit 7 (Textbook Chapter 9) Name Objective 1: Right Triangles and Pythagorean Theorem In many geometry problems, it is necessary to find a missing side or a missing angle of a right triangle.

### Perimeter is the length of the boundary of a two dimensional figure.

Section 2.2: Perimeter and Area Perimeter is the length of the boundary of a two dimensional figure. The perimeter of a circle is called the circumference. The perimeter of any two dimensional figure whose

### , and it is always a constant for any size circle. See the Math Notes boxes in Lessons 7.1.2, 8.3.2, and A=πr 2 = π ( 8) 2 = 64π sq.

CIRCUMFERENCE AND AREA F CIRCLES 8..1 8.. Students have found the area and perimeter of several polygons. Next they consider what happens to the area as more and more sides are added to a polygon. By exploring

### Perfume Packaging. Ch 5 1. Chapter 5: Solids and Nets. Chapter 5: Solids and Nets 279. The Charles A. Dana Center. Geometry Assessments Through

Perfume Packaging Gina would like to package her newest fragrance, Persuasive, in an eyecatching yet cost-efficient box. The Persuasive perfume bottle is in the shape of a regular hexagonal prism 10 centimeters

### Perimeter and area formulas for common geometric figures:

Lesson 10.1 10.: Perimeter and Area of Common Geometric Figures Focused Learning Target: I will be able to Solve problems involving perimeter and area of common geometric figures. Compute areas of rectangles,

### 1.7 Find Perimeter, Circumference,

.7 Find Perimeter, Circumference, and rea Goal p Find dimensions of polygons. Your Notes FORMULS FOR PERIMETER P, RE, ND CIRCUMFERENCE C Square Rectangle side length s length l and width w P 5 P 5 s 5

### LESSON 10 GEOMETRY I: PERIMETER & AREA

LESSON 10 GEOMETRY I: PERIMETER & AREA INTRODUCTION Geometry is the study of shapes and space. In this lesson, we will focus on shapes and measures of one-dimension and two-dimensions. In the next lesson,

### GRE MATH REVIEW #6. Geometry

GRE MATH REVIEW #6 Geometry As in the case of algera, you don t need to know much of the actual geometry you learned in your geometry class for the GRE. Here is a list of facts aout degrees and angles

### I Perimeter, Area, Learning Goals 304

U N I T Perimeter, Area, Greeting cards come in a variety of shapes and sizes. You can buy a greeting card for just about any occasion! Learning Goals measure and calculate perimeter estimate, measure,

### A = ½ x b x h or ½bh or bh. Formula Key A 2 + B 2 = C 2. Pythagorean Theorem. Perimeter. b or (b 1 / b 2 for a trapezoid) height

Formula Key b 1 base height rea b or (b 1 / b for a trapezoid) h b Perimeter diagonal P d (d 1 / d for a kite) d 1 d Perpendicular two lines form a angle. Perimeter P = total of all sides (side + side

### Integrated Algebra: Geometry

Integrated Algebra: Geometry Topics of Study: o Perimeter and Circumference o Area Shaded Area Composite Area o Volume o Surface Area o Relative Error Links to Useful Websites & Videos: o Perimeter and

### Basic Math for the Small Public Water Systems Operator

Basic Math for the Small Public Water Systems Operator Small Public Water Systems Technology Assistance Center Penn State Harrisburg Introduction Area In this module we will learn how to calculate the

### NCERT. Area of the circular path formed by two concentric circles of radii. Area of the sector of a circle of radius r with central angle θ =

AREA RELATED TO CIRCLES (A) Main Concepts and Results CHAPTER 11 Perimeters and areas of simple closed figures. Circumference and area of a circle. Area of a circular path (i.e., ring). Sector of a circle

### Each pair of opposite sides of a parallelogram is congruent to each other.

Find the perimeter and area of each parallelogram or triangle. Round to the nearest tenth if necessary. 1. Use the Pythagorean Theorem to find the height h, of the parallelogram. 2. Each pair of opposite

### CSU Fresno Problem Solving Session. Geometry, 17 March 2012

CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfd-prep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news

### Signs, Signs, Every Place There Are Signs! Area of Regular Polygons p. 171 Boundary Lines Area of Parallelograms and Triangles p.

C H A P T E R Perimeter and Area Regatta is another word for boat race. In sailing regattas, sailboats compete on courses defined by marks or buoys. These courses often start and end at the same mark,

### 11-1 Areas of Parallelograms and Triangles. Find the perimeter and area of each parallelogram or triangle. Round to the nearest tenth if necessary.

Find the perimeter and area of each parallelogram or triangle. Round to the nearest tenth if necessary. 2. 1. Use the Pythagorean Theorem to find the height h, of the parallelogram. Each pair of opposite

### Area Long-Term Memory Review Review 1

Review 1 1. To find the perimeter of any shape you all sides of the shape.. To find the area of a square, you the length and width. 4. What best identifies the following shape. Find the area and perimeter

### Geometry. Geometry is the study of shapes and sizes. The next few pages will review some basic geometry facts. Enjoy the short lesson on geometry.

Geometry Introduction: We live in a world of shapes and figures. Objects around us have length, width and height. They also occupy space. On the job, many times people make decision about what they know

### Surface Area of Rectangular & Right Prisms Surface Area of Pyramids. Geometry

Surface Area of Rectangular & Right Prisms Surface Area of Pyramids Geometry Finding the surface area of a prism A prism is a rectangular solid with two congruent faces, called bases, that lie in parallel

### Calculating Area, Perimeter and Volume

Calculating Area, Perimeter and Volume You will be given a formula table to complete your math assessment; however, we strongly recommend that you memorize the following formulae which will be used regularly

### Formulas for Area Area of Trapezoid

Area of Triangle Formulas for Area Area of Trapezoid Area of Parallelograms Use the formula sheet and what you know about area to solve the following problems. Find the area. 5 feet 6 feet 4 feet 8.5 feet

### GAP CLOSING. 2D Measurement GAP CLOSING. Intermeditate / Senior Facilitator s Guide. 2D Measurement

GAP CLOSING 2D Measurement GAP CLOSING 2D Measurement Intermeditate / Senior Facilitator s Guide 2-D Measurement Diagnostic...4 Administer the diagnostic...4 Using diagnostic results to personalize interventions...4

### GAP CLOSING. 2D Measurement. Intermediate / Senior Student Book

GAP CLOSING 2D Measurement Intermediate / Senior Student Book 2-D Measurement Diagnostic...3 Areas of Parallelograms, Triangles, and Trapezoids...6 Areas of Composite Shapes...14 Circumferences and Areas

### The GED math test gives you a page of math formulas that

Math Smart 643 The GED Math Formulas The GED math test gives you a page of math formulas that you can use on the test, but just seeing the formulas doesn t do you any good. The important thing is understanding

### Area of Parallelograms, Triangles, and Trapezoids (pages 314 318)

Area of Parallelograms, Triangles, and Trapezoids (pages 34 38) Any side of a parallelogram or triangle can be used as a base. The altitude of a parallelogram is a line segment perpendicular to the base

### MAT 080-Algebra II Applications of Quadratic Equations

MAT 080-Algebra II Applications of Quadratic Equations Objectives a Applications involving rectangles b Applications involving right triangles a Applications involving rectangles One of the common applications

### REVIEW SHEETS INTERMEDIATE ALGEBRA MATH 95

REVIEW SHEETS INTERMEDIATE ALGEBRA MATH 95 A Summary of Concepts Needed to be Successful in Mathematics The following sheets list the key concepts which are taught in the specified math course. The sheets

### CHAPTER 8, GEOMETRY. 4. A circular cylinder has a circumference of 33 in. Use 22 as the approximate value of π and find the radius of this cylinder.

TEST A CHAPTER 8, GEOMETRY 1. A rectangular plot of ground is to be enclosed with 180 yd of fencing. If the plot is twice as long as it is wide, what are its dimensions? 2. A 4 cm by 6 cm rectangle has

### Measure the side of the figure to the nearest centimeter. Then find the perimeter. 1.

Measure the side of the figure to the nearest centimeter. Then find the perimeter. 1. a. 3 cm b. 6 cm c. 8 cm d. 9 cm 2. a. 4 cm b. 6 cm c. 8 cm d. 10 cm Powered by Cognero Page 1 Find the perimeter of

### Session 6 Area. area midline similar figures

Key Terms in This Session Session 6 Area Previously Introduced scale factor New in This Session area midline similar figures Introduction Area is a measure of how much surface is covered by a particular

### 100 Math Facts 6 th Grade

100 Math Facts 6 th Grade Name 1. SUM: What is the answer to an addition problem called? (N. 2.1) 2. DIFFERENCE: What is the answer to a subtraction problem called? (N. 2.1) 3. PRODUCT: What is the answer

### 24HourAnswers.com. Online Homework. Focused Exercises for Math SAT. Skill Set 12: Geometry - 2D Figures and 3D Solids

24HourAnsers.com Online Homeork Focused Exercises for Math SAT Skill Set 12: Geometry - 2D Figures and 3D Solids Many of the problems in this exercise set came from The College Board, riters of the SAT

### 16 Circles and Cylinders

16 Circles and Cylinders 16.1 Introduction to Circles In this section we consider the circle, looking at drawing circles and at the lines that split circles into different parts. A chord joins any two

### Working in 2 & 3 dimensions Revision Guide

Tips for Revising Working in 2 & 3 dimensions Make sure you know what you will be tested on. The main topics are listed below. The examples show you what to do. List the topics and plan a revision timetable.

### Applying formulas to measure attributes of shapes

Going the Distance Reporting Category Topic Primary SOL Measurement Applying formulas to measure attributes of shapes 6.10 The student will a) define π (pi) as the ratio of the circumference of a circle

### When solving application problems, you should have some procedure that you follow (draw a diagram, define unknown values, set-up equations, solve)

When solving application problems, you should have some procedure that you follow (draw a diagram, define unknown values, set-up equations, solve) Once again when solving applied problems I will include

### Circumference and area of a circle

c Circumference and area of a circle 22 CHAPTER 22.1 Circumference of a circle The circumference is the special name of the perimeter of a circle, that is, the distance all around it. Measure the circumference

### 9 Area, Perimeter and Volume

9 Area, Perimeter and Volume 9.1 2-D Shapes The following table gives the names of some 2-D shapes. In this section we will consider the properties of some of these shapes. Rectangle All angles are right

### How do changes in dimensions of similar geometric figures affect the perimeters and the areas of the figures? ACTIVITY: Creating Similar Figures

.6 Perimeters and Areas of Similar Figures How do changes in dimensions of similar geometric figures affect the perimeters and the areas of the figures? ACTIVITY: Creating Similar Figures Work with a partner.

### Winter 2016 Math 213 Final Exam. Points Possible. Subtotal 100. Total 100

Winter 2016 Math 213 Final Exam Name Instructions: Show ALL work. Simplify wherever possible. Clearly indicate your final answer. Problem Number Points Possible Score 1 25 2 25 3 25 4 25 Subtotal 100 Extra

### 43 Perimeter and Area

43 Perimeter and Area Perimeters of figures are encountered in real life situations. For example, one might want to know what length of fence will enclose a rectangular field. In this section we will study

### Name: Date: Geometry Solid Geometry. Name: Teacher: Pd:

Name: Date: Geometry 2012-2013 Solid Geometry Name: Teacher: Pd: Table of Contents DAY 1: SWBAT: Calculate the Volume of Prisms and Cylinders Pgs: 1-7 HW: Pgs: 8-10 DAY 2: SWBAT: Calculate the Volume of

### 7.4A/7.4B STUDENT ACTIVITY #1

7.4A/7.4B STUDENT ACTIVITY #1 Write a formula that could be used to find the radius of a circle, r, given the circumference of the circle, C. The formula in the Grade 7 Mathematics Chart that relates the

### Student Name: Teacher: Date: District: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Geometry Exam 3. Form: 201

Student Name: Teacher: District: Date: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Geometry Exam 3 Description: Geometry Topic 6: Circles Form: 201 1. Which method is valid for proving

### Grade 4 - Module 4: Angle Measure and Plane Figures

Grade 4 - Module 4: Angle Measure and Plane Figures Acute angle (angle with a measure of less than 90 degrees) Angle (union of two different rays sharing a common vertex) Complementary angles (two angles

### Measuring Irregular Shapes and Circles

5 Measuring Irregular Shapes and Circles It is not hard to find the area and perimeter of shapes made from straight lines. These shapes include rectangles, triangles, and parallelograms. But measuring

### SURFACE AREA AND VOLUME

SURFACE AREA AND VOLUME In this unit, we will learn to find the surface area and volume of the following threedimensional solids:. Prisms. Pyramids 3. Cylinders 4. Cones It is assumed that the reader has

### 1 foot (ft) = 12 inches (in) 1 yard (yd) = 3 feet (ft) 1 mile (mi) = 5280 feet (ft) Replace 1 with 1 ft/12 in. 1ft

2 MODULE 6. GEOMETRY AND UNIT CONVERSION 6a Applications The most common units of length in the American system are inch, foot, yard, and mile. Converting from one unit of length to another is a requisite

### Grade 9 Mathematics Unit 3: Shape and Space Sub Unit #1: Surface Area. Determine the area of various shapes Circumference

1 P a g e Grade 9 Mathematics Unit 3: Shape and Space Sub Unit #1: Surface Area Lesson Topic I Can 1 Area, Perimeter, and Determine the area of various shapes Circumference Determine the perimeter of various

### 1. Kyle stacks 30 sheets of paper as shown to the right. Each sheet weighs about 5 g. How can you find the weight of the whole stack?

Prisms and Cylinders Answer Key Vocabulary: cylinder, height (of a cylinder or prism), prism, volume Prior Knowledge Questions (Do these BEFORE using the Gizmo.) [Note: The purpose of these questions is

### Grade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013

Faculty of Mathematics Waterloo, Ontario N2L 3G Introduction Grade 7 & 8 Math Circles Circles, Circles, Circles March 9/20, 203 The circle is a very important shape. In fact of all shapes, the circle is

### Area, Perimeter, Volume and Pythagorean Theorem Assessment

Area, Perimeter, Volume and Pythagorean Theorem Assessment Name: 1. Find the perimeter of a right triangle with legs measuring 10 inches and 24 inches a. 34 inches b. 60 inches c. 120 inches d. 240 inches

### Study Guide and Review

Fill in the blank in each sentence with the vocabulary term that best completes the sentence. 1. A is a flat surface made up of points that extends infinitely in all directions. A plane is a flat surface

### GEOMETRY CIRCLING THE BASES

LESSON 3: PRE-VISIT - PERIMETER AND AREA OBJECTIVE: Students will be able to: Distinguish between area and perimeter. Calculate the perimeter of a polygon whose side lengths are given or can be determined.

### 10.1: Areas of Parallelograms and Triangles

10.1: Areas of Parallelograms and Triangles Important Vocabulary: By the end of this lesson, you should be able to define these terms: Base of a Parallelogram, Altitude of a Parallelogram, Height of a

### Solutions to Exercises, Section 5.2

Instructor s Solutions Manual, Section 5.2 Exercise 1 Solutions to Exercises, Section 5.2 In Exercises 1 8, convert each angle to radians. 1. 15 Start with the equation Divide both sides by 360 to obtain

### GEOMETRY & INEQUALITIES. (1) State the Triangle Inequality. In addition, give an argument explaining why it should be true.

GEOMETRY & INEQUALITIES LAMC INTERMEDIATE GROUP - 2/09/14 The Triangle Inequality! (1) State the Triangle Inequality. In addition, give an argument explaining why it should be true. Given the three side

### The formula for the area of a parallelogram is: A = bh, where b is the length of the base and h is the length of the height.

The formula for the area of a parallelogram is: A = h, where is the length of the ase and h is the length of the height. The formula for the area of a parallelogram is: A = h, where is the length of the

### a c Pythagorean Theorem: a 2 + b 2 = c 2

Section 2.1: The Pythagorean Theorem The Pythagorean Theorem is a formula that gives a relationship between the sides of a right triangle The Pythagorean Theorem only applies to RIGHT triangles. A RIGHT

### Name Date Time. STUDY LINK 8 13 Unit 9: Family Letter. Please keep this Family Letter for reference as your child works through Unit 9.

Name Date Time STUDY LINK Unit 9: Family Letter More about Variables, Formulas, and Graphs You may be surprised at some of the topics that are covered in Unit 9. Several of them would be traditionally

### Junior Math Circles November 18, D Geometry II

1 University of Waterloo Faculty of Mathematics Junior Math Circles November 18, 009 D Geometry II Centre for Education in Mathematics and Computing Two-dimensional shapes have a perimeter and an area.

### MATH 139 FINAL EXAM REVIEW PROBLEMS

MTH 139 FINL EXM REVIEW PROLEMS ring a protractor, compass and ruler. Note: This is NOT a practice exam. It is a collection of problems to help you review some of the material for the exam and to practice

### Geometry Unit 6 Areas and Perimeters

Geometry Unit 6 Areas and Perimeters Name Lesson 8.1: Areas of Rectangle (and Square) and Parallelograms How do we measure areas? Area is measured in square units. The type of the square unit you choose

### How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.

The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics

### Teacher Page Key. Geometry / Day # 13 Composite Figures 45 Min.

Teacher Page Key Geometry / Day # 13 Composite Figures 45 Min. 9-1.G.1. Find the area and perimeter of a geometric figure composed of a combination of two or more rectangles, triangles, and/or semicircles

### Park Forest Math Team. Meet #5. Algebra. Self-study Packet

Park Forest Math Team Meet #5 Self-study Packet Problem Categories for this Meet: 1. Mystery: Problem solving 2. Geometry: Angle measures in plane figures including supplements and complements 3. Number

### SA B 1 p where is the slant height of the pyramid. V 1 3 Bh. 3D Solids Pyramids and Cones. Surface Area and Volume of a Pyramid

Accelerated AAG 3D Solids Pyramids and Cones Name & Date Surface Area and Volume of a Pyramid The surface area of a regular pyramid is given by the formula SA B 1 p where is the slant height of the pyramid.

### Maths Vocabulary Support Booklet

Maths Vocabulary Support Booklet The aim of this booklet is to help parents to understand and use the technical maths vocabulary accurately and confidently so you can help your children to do the same.

### Geometry Solve real life and mathematical problems involving angle measure, area, surface area and volume.

Performance Assessment Task Pizza Crusts Grade 7 This task challenges a student to calculate area and perimeters of squares and rectangles and find circumference and area of a circle. Students must find

### Solids. Objective A: Volume of a Solids

Solids Math00 Objective A: Volume of a Solids Geometric solids are figures in space. Five common geometric solids are the rectangular solid, the sphere, the cylinder, the cone and the pyramid. A rectangular

### Section 2.1 Rectangular Coordinate Systems

P a g e 1 Section 2.1 Rectangular Coordinate Systems 1. Pythagorean Theorem In a right triangle, the lengths of the sides are related by the equation where a and b are the lengths of the legs and c is

### DOUBLE, DOUBLE: LOOKING AT THE EFFECT OF CHANGE

DOUBLE, DOUBLE: LOOKING AT THE EFFECT OF CHANGE ON PERIMETER, AREA AND VOLUME Outcome (lesson objective) Students will demonstrate how changes in the dimensions of squares, rectangles, and circles affect

### Unit 2, Activity 2, One-half Inch Grid

Unit 2, Activity 2, One-half Inch Grid Blackline Masters, Mathematics, Grade 8 Page 2-1 Unit 2, Activity 2, Shapes Cut these yellow shapes out for each pair of students prior to class. The labels for each