Kristen Kachurek. Circumference, Perimeter, and Area Grades Day lesson plan. Technology and Manipulatives used:

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Kristen Kachurek. Circumference, Perimeter, and Area Grades 7-10 5 Day lesson plan. Technology and Manipulatives used:"

Transcription

1 Kristen Kachurek Circumference, Perimeter, and Area Grades Day lesson plan Technology and Manipulatives used: TI-83 Plus calculator Area Form application (for TI-83 Plus calculator) Login application (for TI-83 Plus calculator) Learn Check application (for TI-83 Plus calculator) Learn Check Program Operating System 1.16 (for TI-83 Plus calculator) TI Navigator program 1

2 Objectives - Students will be able to o Determine perimeter and area of a square o Determine perimeter and area of a rectangle o Determine circumference and area of a circle o Determine area of shaded region NCTM Standards - Understand measurable attributes of objects and the units, systems, and processes of measurement - Apply appropriate techniques, tools, and formulas to determine measurements. New York State Standards Standard 3: Measurement Students will understand mathematics and become mathematically confident by communicating and reasoning mathematically, by apply mathematics in real-world settings, and by solving problems through the integrated study of number systems, geometry, algebra, data analysis, probability, and geometry. Key Idea: Students use measurement in real-world situations. 2

3 Resources Calabrese-Gray, Teresa and Marrcano, Jacqueline, et al. Curriculum, Instruction, and Assesment for New York State. 18 Nov Edwards, Merv. New York State Math A Semester 3. New York: Educational Design, Enterprise of Drexel University. The Math Forum at Drexel: An Online Math Education Community Center. 18 Nov Ferrini-Mundy, Joan, et al. Principles and Standards for School Mathematics. Virginia: The National Council of Teachers of Mathematics, Gerver, Robert, et al. Geometry: An Integrated Approach. Cincinnati: South-Western Educational Publishing, ` Oswego City School District. Regents Exam Prep Center. 18 Nov

4 Materials and Equipment Needed Rope or string Round plastic lids (different sizes) Cardboard shapes (squares and rectangles that fit inside plastic lids) Cheerios Textbook Used for Assignments Edwards, Merv. New York State Math A Semester 3. New York: Educational Design,

5 Overview of Unit This unit will concentrate on finding perimeter and area of squares, rectangles, and circles, and finding areas indirectly such as area of a shaded region. The unit will concentrate around hands-on activities. Using the Login, Learn check applications along with TI- navigator, teachers can enter a question of their choice to be put in the student s calculator. Students then answer the question and give the calculator back to the teacher. The teacher can then download each student s response onto their personal computer. This is an effective and efficient way for the teacher to see each student s progress and comprehension of the day s lesson, and a great way to review. Lesson 1 Students will be introduced to the circle and components of the circle such as radius, diameter, and circumference with notes. Materials used will be as follows; a circular object such as a can, lid, or cup and a piece of string or rope to measure the radius and diameter of the circular object. The results of each student s measurements will be recorded on a chart which includes; the item they measured, radius, diameter, circumference and circumference/diameter. Review of an old Math A exam question threw TI-Navigator. Lesson 2 Students will be introduced to perimeter for squares, rectangles, and circles. Students will also be introduced to the area formula for squares, rectangles, and circles with notes. Materials used will be as follows; cheerios, assorted sizes of plastic lids, cardboard shapes (squares and rectangles) that fit into plastic lids. Students will use the cheerios to find the perimeter of shapes and to find the radius and diameter of the lid. Review of an old Math A exam question threw TI-Navigator. Lesson 3 Students will be introduced to shaded area with notes. Materials used will be as follows; assorted sizes of plastic lids, cardboard shapes (squares and rectangles) that fit into plastic lids. Students will place a square or rectangle of their choice that fits inside the plastic lid. They will then be asked to find the area of the region between the circle and the square or rectangle (called the shaded area). Review of an old Math A exam question threw TI-Navigator. Lesson 4 Students will review past formulas for perimeter, area, and circumference by participation. Materials used will be as follows; TI-83 plus graphing calculator, Area Form application for graphing calculator. Each student will receive a TI-83 plus calculator. Instructions for the Area form program will follow, and then students will run the program on their own. Worksheet with practice shaded area problems. Review of an old Math A exam question threw TI-Navigator. Lesson 5 Students will review past formulas for perimeter, area, and circumference by participation. Students will then be tested on perimeter and area of squares, rectangles, and circles, and shaded area. 5

6 Lesson Plan 1 Objectives To identify circles To identify radius, diameter, and circumference of circle Beginning to see relationship between circumference and diameter Outline of activities 1) Notes will be presented as follows: Definitions: circle set of all points in a plane equal distance from its Center. Circle Center and Radius a segment whose endpoints are the center of the circle some point on the circle. Red line is the radius Diameter a segment that contains the end points of the circle and the center of the circle. 6

7 Blue line is the diameter Circumference the perimeter of the circle, found by the formula C = 2p r where r is the radius. ( given p = 3.14) Area of Circle = p r ^2 Circumfere nce is in green. Area is in orange. 2) After notes, pass out materials shown below to each student (optional: students work in pairs, hence hand out one of each to the pair of students) 1 ruler 1 can, lid, or round object 1 piece of string 7

8 3) Before hand, make sure you label the center of each of the round objects for the students. Then, direct students to measure radius and diameter. Measure the radius by measuring the length of the string from center of object to end of the round object. You may want to provide students with tape to hold down the string while they are measuring. Measure the diameter by measuring the length of the string from one end of the circle, with the sting intersecting the center to another end. Make students use the same measure (in my example I used inches) for all measurements. Radius measurement (below) 8

9 Diameter measurement (below) 4) After students have found their measurements, collect their data to form a chart of all the different round objects measured. Item Radius Diameter Circumference Circumference/Diameter Lid (blue) Can Lid (yellow) ETC. A sample of the other two items is shown below: Item Radius Diameter Circumference Circumference/Diameter Lid (blue) Can Lid (yellow) ETC. 9

10 5) Discuss the relationships in the chart with the students. One of which could be who two times the radius will result in the diameter. Another of which could be how the circumference divided by the diameter will result in pi. 6) Assign homework page 295, problems #1 thru # 8 from Edwards. Pass out TI-83 calculators to students. Ask students to go under apps, then learn check, then document 1. When students press the document one key, they will be asked to enter their username. Students should enter their 3 initials as seen in the screen below. A screen will then appear with assignments. Students should select assignment 1 for lesson plan 1; assignment 2 for lesson plan 2, etc. Students should answer the question then bring up calculators to the front of the room. Download answers from all students calculators onto your personal computer. Review results. Learn check screen Document 1 screen Username screen Assignment screen Assignment 1 Assignment 1 con t 10

11 Assignment 1 con t Assignment 1 con t Student can use the arrow keys to scroll up and down to read the given question. The window key on the calculator which is right below tab on the screen can be used to highlight an answer. When the student highlights their answer, they then use the trace key on the calculator which is right below the CHK on the screen to check the answer they highlighted. 11

12 Lesson Plan 2 Objectives Find Perimeter of circles, squares, and rectangles Find Area of circles, squares, and rectangles Outline of Activities 1) Notes will be presented as follows: Area formula for circle A = 2 p r^2 (from last class) Area formula for square A = s * s (side times side) Side (s) Side (s) Area formula for rectangle A = b * h (base times height) Height (h) Base (b) Perimeter of squares and rectangles - add up all the sides Perimeter of a square P = s+s+s+s 12

13 Perimeter of a rectangle P = b+h+b+h Perimeter of a circle (also known as circumference) C = 2 p r 2) Pass out one plastic lid to each student. Vary the sizes of the plastic lids. I found plastic food container lids worked well. You may want to label the center of the round lid. Then pass out a cardboard shape (square and rectangle). You may also want to label the lids and shapes with numbers or colors. This way you can create an answer key for yourself. Cardboard works well, but you need to make sure that the shape s corners touch the edge of the circular lid (see picture below). Next pass out a baggie of cheerios, enough to measure around all the objects. Finally pass out a worksheet to be completed in class. 1 plastic lid 1 square 1 rectangle a baggie of cheerios 3) Have students measure the perimeter of the square, the rectangle, and the circle by placing cheerios around the outside of each object. Students should record results on given worksheet. 13

14 4) Next, students should measure the diameter and radius of the circular object with cheerios. Record results on worksheet. 5) After the measurements above, students should be able to figure out the area of the square, rectangle and circle. Record results on worksheet. 6) Assign homework page 219, #5 thru #7 and page 297 #21,#22. Discuss the problems on page 297. What happens if the shape we need to take the area of isn t a square or rectangle? Cut up the figure to make squares and rectangles. Then add up all the areas of all the different pieces. 7) Collect worksheets and materials. Pass out TI-83 calculators to each student. Follow steps listed in lesson plan 1 to get students to assignment 2. Students should answer the question then bring up calculators to the front of the room. Download answers from all students calculators onto your personal computer. Review results. 14

15 Assignment 2 Assignment 2 con t Assignment 2 con t 15

16 Name Date Period Perimeter, Area, Circumference, and Shaded Area Lesson 2 Perimeter, Area, Circumference Directions 1) Measure Perimeter of square, rectangle, and circle by placing cheerios all the way around the object. The amount of cheerios you have will be your measurement. Record your measurements below. 2) Measure the diameter and radius of the circle by placing a line of cheerios from one endpoint of the circle; threw the center, to another endpoint of the circle. The amount of cheerios will be your measurement for the diameter. Now, how would you find the radius using the diameter measurement? (HINT: diameter = 2radius). Record your measurements below. 3) Use your measurements to find the area of the square, rectangle, and circle. 4) After you have finished the above measurements, bring your materials up to the front of the room and pick up a TI-83 calculator. You may eat the cheerios if you wish. Measurements 1) Perimeter of your square 2) Perimeter of your rectangle 3) Perimeter (Circumference) of your circle 4) Diameter of your circle 5) Radius of your circle 16

17 6) Area of your square = A = s*s 7) Area of your rectangle = A = b*h 8) Area of your circle = A = 2 p r^2 Lesson 3 Shaded Area Directions 1) Place the square inside the circle. Notice the space or the area unoccupied by the square in the circle. We call this space the shaded area. Find the shaded area by filling it in with cheerios. The amount of cheerios you have will be your measurement. 2) Notice a problem? See that tiny area between the edge of the circle and the edge of the square? How can you measure that with cheerios? No, you can t cut up the cheerios, so the cheerio idea is not going to work here. You can t measure all the area with them. Well, you already know the area of the circle and the area of the square. (HINT: Use this formula: Shaded Area = - ) Once you figure out this formula, find the shaded area. Record your results below. 3) Now place the rectangle inside the circle. Use the Shaded area formula you figured out above to find the Shaded area. Record your results below. 4) After you have finished the above measurements, bring your materials up to the front of the room and pick up a TI-83 calculator. You may eat the cheerios if you wish. Measurements 1) Shaded area (with square) = 2) Shaded area (with rectangle) = 17

18 Lesson Plan 3 Objective - Find shaded area Outline of Activities 1) Pass out the same materials used with lesson 2 (round lid, cardboard square, cardboard rectangle, and cheerios) and worksheet from lesson 2. 2) Review past lessons 1 and 2 with students (mostly formulas). 3) Have students place one of the cardboard shapes into the circle. Tell students to measure the shaded area (that is the area unoccupied by the circle and the shape) by filling in that area with cheerios. The students will observe that the cheerios can fill in some of the shaded area, but other areas are too small for the cheerios to fill. Discuss how the shaded area can be determined? Shaded area = Area of circle Area of shape (rectangle or square) 4) Have students place the other shape inside the circle and figure out the shaded area. 5) Students should record their results on the worksheet. 6) Assign homework page 296 problems #9 thru #13. 7) Collect worksheets and materials. Pass out TI-83 calculators to each student. Follow the steps listed in lesson plan 1 to get students to assignment 3. Students should answer the question then bring up calculators to the front of the room. Download answers from all students calculators onto your personal computer. Review results. 18

19 Assignment 3 19

20 Lesson Plan 4 Objectives Practice finding area of squares, rectangles, and circles Outline of activities 1) Review of past formulas for area of square, rectangle, and triangle. 2) Pass out TI-83 calculators. Tell students to go under APPS, then under Area form. A screen like this should appear: 3) Tell students to press any key in which this screen will appear: 4) The screen below will appear with three options to choose from. 1 Definitions and formulas, 2- Area quiz, and 3- quit. Students can use option 1 if they need an extra review for formulas. If not students should select option 2 in which this screen the screen on the right will appear. After option 2 (area quiz) is selected, a screen appears as to which level to select. Students should select level 1, and can attempt level two at a later time. 20

21 5) Questions will then appear on the screen for the students to answer. Below is an example of the types of questions asked. Student press the window key for choice A, the zoom key for choice B, the Trace key for choice c, and the Graph key for Choice D. They keys are below the letters on the screen. Remind students that they are finding area not perimeter in this application. If students answer the question correctly, correct will appear on the screen and the next question will automatically come up. If students answer incorrectly, the incorrect answer that the student chooses will appear and then the correct answer will appear. 6) Area form does contain questions about areas of triangles and trapezoids. I had my students skip over these questions. At any time students can hit the Y= key which brings them back to the main menu where they can quit the application. 7) Since the Area form application does not contain problems on shaded area, pass out worksheet with practice problems for shaded area. 8) Assign homework practice area form application. Follow steps listed in lesson plan 1 to get students to assignment 4. Students should answer the question then bring up calculators to the front of the room. Download answers from all students calculators onto your personal computer. Review results. 21

22 Assignment 4 Assignment 4 con t 22

23 Name Date Period Shaded Area worksheet 1) Given: Rectangle ABCD with two circles removed from the rectangle. The length of the rectangle is 50 and its width is 20. The diameter of each circle is 10. A B D 50 C a. What is the perimeter of the rectangle? b. What is the circumference of either circle? c. What is the area of the rectangle? d. What is the area of either circle? e. What is the area of the shaded region of the diagram? 23

24 2. In the accompanying figure, square ABCD is circumscribed about circle 0. The length of a side of the square and the diameter of the circle are both 12. A B O D C a. What is the circumference of the circle? b. What is the perimeter of the square? c. What is the area of the square? d. What is the area of the shaded portion of the diagram? 24

25 Lesson Plan 5 Objectives Test students on perimeter and area of square, rectangle, and circle. Test students on Shaded area. Outline of Activities 1) Distribute test and TI-83 calculators to students. Give students the whole class time to complete test. (Test shown below) Circumference, Perimeter, and Area Name Date Period Directions: Answer all the following questions. You may use the TI-83 calculator. 1) The pied piper and his friends are walking around a track that is shaped like a regular pentagon. Each side measures 85 feet. If they make 3 complete trips around the track, how far will they have walked? Choose: 255 ft 500 ft 1275 ft 1530 ft 25

26 2) Choose: Find the perimeter of this rectangle ). The diameter of this circular placemat is 15 inches. Find the circumference to the nearest tenth of an inch. Choose: 22.5 in in in in. 4) The ratio of the corresponding sides of two similar squares is 1 to 4. What is the ratio of the area of the smaller square to the area of the larger square? 1. 1:2 2. 1:4 3. 1:8 4. 1:16 5) What is the diameter of a circle whose circumference is 5? 1. A 2. B 3. C 4. D 26

27 6) In the figure below, ACDH and BCEF are rectangles, AH=2, GH=3, GF=4, and FE=5. What is the area of BCDG? ) The perimeter of a rectangle is 40. One of the sides is 5. Find the lengths of the other three sides , 10, , 10, , 15, , 15, 15 8) Find the area of a circle whose diameter is 10. Express answer to the nearest tenth ) If the lengths of the sides of a square are doubled, then the area of the sqaure would be multiplied by

28 10) The accompanied diagram shows a square with side y inside a square with side x. === y x === Which expression best represents the area of the shaded region? (1) x^2 (2) y^2 (3) y^2 x^2 (4) x^2 y^2 11) The length of the sides of two similar rectangular billboards are in the ratio 5:4. If 250 square feet is needed to cover the larger billboard, much material in square feet is needed to cover the smaller billboard? 12) An image of a building in a photograph is 6 cm wide and 11 cm tall. If the image is similar to the actual building and the actual building is 174 cm wide, how tall is the actual building? 13) In the accompanied diagram, a circle with radius 4 is inscribed in a square. 4 What is the area of the shaded region? (1) 64 16p (2) 16 16p (3) 64p - 8p (4) 16 8p 28

29 14) If the circumference of a circle is 10p, what is the area of the circle? (1) 10p (2) 25p (3) 50p (4) 100p 15) A target shown in the accompanied diagram consists of three circles with the same center. The radii of the circles have lengths of 3 inches, 7 inches, and 9inches What is the area of the shaded region? 29

30 Objectives Find perimeter of a triangle Find area of a triangle Outline of Activities Lesson Plan 5 1) Introduce students to the formula to find perimeter of a triangle and the formula to find area of a triangle. A s s Perimeter of triangle ABC = s+s+s B s C A h B s C Area of triangle = _ * h * s where h represents the height of the triangle and s represents the side to which height is drawn, also known as the base of the triangle. 23

31 2) Pass out cheerios, cardboard triangles, and worksheet to collect data to students. Have students measure the perimeter of the triangle by placing cheerios around the edges of the triangle. Then have students measure the area of the triangle by first placing cheerios along the base of the triangle, then placing cheerios along the height of the triangle. You may want to draw the height line in ahead of time for the students. You also may want to label the triangles using different colors or numbers in order for an easy answer key later. Perimeter of triangle Area of triangle Have students fill out worksheet with their answer for perimeter and area. 2) Pass out TI-83 calculators. Tell students to go under APPS, then AreaForm. A screen like the one below should appear. Following the prompts on the screen, students should press any key. When they do the screen below should appear. 24

32 Tell students to press any key. The screen below should appear. Students can use application 1, definitions and formulas for extra help and review. If students do not need the extra help and review, tell students to do under application 2, area quiz. After selecting choice 2 by pressing the number 2 key, the screen below appears. Students should first select level 1 by pressing the enter key. Inform students that they can try level 2 on their own time. After selecting level 1, the screen below should appear. Students use the WINDOW key for choice A, the ZOOM key for choice B, the Trace key for choice C, and the GRAPH key for choice D. If students select the right answer, the screen will say correct, and automatically bring up the next question. If the student is not correct, the screen will display the answer that the student chose and the correct answer, 25

33 then automatically bring up the next screen. Other questions such as area of squares, rectangles, and circles are in this application. Students can also attempt these problems. At the end of the quiz, a screen like the one below should appear. If students press the WINDOW key selecting problems, you will go back to the screen to select a level. 3) Assign homework from Edwards, page 244 #7 thru #15. Collect TI-83 calculators and worksheets form students. 26

34 Name Date Period Area and Perimeter of Triangles Your Triangle color: Perimeter of your triangle (add up all the cheerios around the sides) = Area of your triangle (multiply _ * # of cheerios on the bottom of the triangle, the base, *the # of cheerios along the height of the triangle) = Answers using the triangle in the pictures above: Perimeter = = 37 Area = _* 11 * 11 =

Show that when a circle is inscribed inside a square the diameter of the circle is the same length as the side of the square.

Show that when a circle is inscribed inside a square the diameter of the circle is the same length as the side of the square. Week & Day Week 6 Day 1 Concept/Skill Perimeter of a square when given the radius of an inscribed circle Standard 7.MG:2.1 Use formulas routinely for finding the perimeter and area of basic twodimensional

More information

8-3 Perimeter and Circumference

8-3 Perimeter and Circumference Learn to find the perimeter of a polygon and the circumference of a circle. 8-3 Perimeter Insert Lesson and Title Circumference Here perimeter circumference Vocabulary The distance around a geometric figure

More information

Area Long-Term Memory Review Review 1

Area Long-Term Memory Review Review 1 Review 1 1. To find the perimeter of any shape you all sides of the shape.. To find the area of a square, you the length and width. 4. What best identifies the following shape. Find the area and perimeter

More information

Student Outcomes. Lesson Notes. Classwork. Exercises 1 3 (4 minutes)

Student Outcomes. Lesson Notes. Classwork. Exercises 1 3 (4 minutes) Student Outcomes Students give an informal derivation of the relationship between the circumference and area of a circle. Students know the formula for the area of a circle and use it to solve problems.

More information

7.4A/7.4B STUDENT ACTIVITY #1

7.4A/7.4B STUDENT ACTIVITY #1 7.4A/7.4B STUDENT ACTIVITY #1 Write a formula that could be used to find the radius of a circle, r, given the circumference of the circle, C. The formula in the Grade 7 Mathematics Chart that relates the

More information

PERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures.

PERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures. PERIMETER AND AREA In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures. Perimeter Perimeter The perimeter of a polygon, denoted by P, is the

More information

Area of Parallelograms, Triangles, and Trapezoids (pages 314 318)

Area of Parallelograms, Triangles, and Trapezoids (pages 314 318) Area of Parallelograms, Triangles, and Trapezoids (pages 34 38) Any side of a parallelogram or triangle can be used as a base. The altitude of a parallelogram is a line segment perpendicular to the base

More information

Area of a triangle: The area of a triangle can be found with the following formula: 1. 2. 3. 12in

Area of a triangle: The area of a triangle can be found with the following formula: 1. 2. 3. 12in Area Review Area of a triangle: The area of a triangle can be found with the following formula: 1 A 2 bh or A bh 2 Solve: Find the area of each triangle. 1. 2. 3. 5in4in 11in 12in 9in 21in 14in 19in 13in

More information

LESSON PLAN #1. Name: Kevin Laley Date: March 1, NYS Mathematics, Science, and Technology Learning Standards Addressed

LESSON PLAN #1. Name: Kevin Laley Date: March 1, NYS Mathematics, Science, and Technology Learning Standards Addressed LESSON PLAN #1 Name: Kevin Laley Date: March 1, 2005 Today s Lesson: Circumference Exploration Unit Topic: Applying Fractions Course: Math 7 NYS Mathematics, Science, and Technology Learning Standards

More information

Characteristics of the Four Main Geometrical Figures

Characteristics of the Four Main Geometrical Figures Math 40 9.7 & 9.8: The Big Four Square, Rectangle, Triangle, Circle Pre Algebra We will be focusing our attention on the formulas for the area and perimeter of a square, rectangle, triangle, and a circle.

More information

Perimeter and area formulas for common geometric figures:

Perimeter and area formulas for common geometric figures: Lesson 10.1 10.: Perimeter and Area of Common Geometric Figures Focused Learning Target: I will be able to Solve problems involving perimeter and area of common geometric figures. Compute areas of rectangles,

More information

Geometry Chapter 9 Extending Perimeter, Circumference, and Area

Geometry Chapter 9 Extending Perimeter, Circumference, and Area Geometry Chapter 9 Extending Perimeter, Circumference, and Area Lesson 1 Developing Formulas for Triangles and Quadrilaterals Learning Target (LT-1) Solve problems involving the perimeter and area of triangles

More information

10.1 Areas of Quadrilaterals and triangles

10.1 Areas of Quadrilaterals and triangles 10.1 Areas of Quadrilaterals and triangles BASE AND HEIGHT MUST FORM A RIGHT ANGLE!! Draw the diagram, write the formula and SHOW YOUR WORK! FIND THE AREA OF THE FOLLOWING:. A rectangle with one side of

More information

Perimeter, Area, and Volume

Perimeter, Area, and Volume Perimeter, Area, and Volume Perimeter of Common Geometric Figures The perimeter of a geometric figure is defined as the distance around the outside of the figure. Perimeter is calculated by adding all

More information

Circumference and Area of a Circle

Circumference and Area of a Circle Overview Math Concepts Materials Students explore how to derive pi (π) as a ratio. Students also study the circumference and area of a circle using formulas. numbers and operations TI-30XS MultiView two-dimensional

More information

LESSON 10 GEOMETRY I: PERIMETER & AREA

LESSON 10 GEOMETRY I: PERIMETER & AREA LESSON 10 GEOMETRY I: PERIMETER & AREA INTRODUCTION Geometry is the study of shapes and space. In this lesson, we will focus on shapes and measures of one-dimension and two-dimensions. In the next lesson,

More information

VOLUME of Rectangular Prisms Volume is the measure of occupied by a solid region.

VOLUME of Rectangular Prisms Volume is the measure of occupied by a solid region. Math 6 NOTES 7.5 Name VOLUME of Rectangular Prisms Volume is the measure of occupied by a solid region. **The formula for the volume of a rectangular prism is:** l = length w = width h = height Study Tip:

More information

Area and Circumference of Circles

Area and Circumference of Circles Teacher Created Materials 21208 Focused Mathematics Student Guided Practice Book of Circles Learning Objectives Geometry Know the formulas for the area and circumference of a circle and use them to solve

More information

Student Teaching Observation Lesson Plan 5: Area and Circumference of Circles

Student Teaching Observation Lesson Plan 5: Area and Circumference of Circles Lauren Clarke April 23, 2013 Student Teaching Observation Lesson Plan 5: Area and Circumference of Circles Objectives: 1. Students will understand what area, circumference, diameter, radius, chord, and

More information

Volume of Pyramids and Cones. Tape together as shown. Tape together as shown.

Volume of Pyramids and Cones. Tape together as shown. Tape together as shown. 7-6 Volume of Pyramids and Cones MAIN IDEA Find the volumes of pyramids and cones. New Vocabulary cone Math Online glencoe.com Extra Examples Personal Tutor Self-Check Quiz In this Mini Lab, you will investigate

More information

Performance Based Learning and Assessment Task Confetti Task

Performance Based Learning and Assessment Task Confetti Task Performance Based Learning and Assessment Task Confetti Task I. ASSESSMENT TASK OVERVIEW & PURPOSE: In this task, Geometry students will investigate how surface area and volume is used to estimate the

More information

Honors Geometry Final Exam Study Guide

Honors Geometry Final Exam Study Guide 2011-2012 Honors Geometry Final Exam Study Guide Multiple Choice Identify the choice that best completes the statement or answers the question. 1. In each pair of triangles, parts are congruent as marked.

More information

Perimeter is the length of the boundary of a two dimensional figure.

Perimeter is the length of the boundary of a two dimensional figure. Section 2.2: Perimeter and Area Perimeter is the length of the boundary of a two dimensional figure. The perimeter of a circle is called the circumference. The perimeter of any two dimensional figure whose

More information

Applying formulas to measure attributes of shapes

Applying formulas to measure attributes of shapes Going the Distance Reporting Category Topic Primary SOL Measurement Applying formulas to measure attributes of shapes 6.10 The student will a) define π (pi) as the ratio of the circumference of a circle

More information

Junior Math Circles November 18, D Geometry II

Junior Math Circles November 18, D Geometry II 1 University of Waterloo Faculty of Mathematics Junior Math Circles November 18, 009 D Geometry II Centre for Education in Mathematics and Computing Two-dimensional shapes have a perimeter and an area.

More information

Set 1: Circumference, Angles, Arcs, Chords, and Inscribed Angles

Set 1: Circumference, Angles, Arcs, Chords, and Inscribed Angles Goal: To provide opportunities for students to develop concepts and skills related to circumference, arc length, central angles, chords, and inscribed angles Common Core Standards Congruence Experiment

More information

EXPLAINING AREA AND CIRCUMFERENCE OF A CIRCLE

EXPLAINING AREA AND CIRCUMFERENCE OF A CIRCLE EXPLAINING AREA AND CIRCUMFERENCE OF A CIRCLE 7.G.4 CONTENTS The types of documents contained in the unit are listed below. Throughout the unit, the documents are arranged by lesson. LEARNING MAP INFORMATION

More information

Calculating Area, Perimeter and Volume

Calculating Area, Perimeter and Volume Calculating Area, Perimeter and Volume You will be given a formula table to complete your math assessment; however, we strongly recommend that you memorize the following formulae which will be used regularly

More information

Grade 9 Mathematics Unit 3: Shape and Space Sub Unit #1: Surface Area. Determine the area of various shapes Circumference

Grade 9 Mathematics Unit 3: Shape and Space Sub Unit #1: Surface Area. Determine the area of various shapes Circumference 1 P a g e Grade 9 Mathematics Unit 3: Shape and Space Sub Unit #1: Surface Area Lesson Topic I Can 1 Area, Perimeter, and Determine the area of various shapes Circumference Determine the perimeter of various

More information

Geometry. Geometry is the study of shapes and sizes. The next few pages will review some basic geometry facts. Enjoy the short lesson on geometry.

Geometry. Geometry is the study of shapes and sizes. The next few pages will review some basic geometry facts. Enjoy the short lesson on geometry. Geometry Introduction: We live in a world of shapes and figures. Objects around us have length, width and height. They also occupy space. On the job, many times people make decision about what they know

More information

Crop Circle Math. (Kagan RallyRobin) TSW find the circumference and area of a real life crop circle.

Crop Circle Math. (Kagan RallyRobin) TSW find the circumference and area of a real life crop circle. Course: 7 th Grade Math Student Objective (Obj. 4b) TSW find the circumference and area of circles. DETAIL LESSON PLAN Wednesday, February 8 / Thursday, February 9 Lesson 8-5 Textbook Pages: 394-397 Homework

More information

Area of a triangle: The area of a triangle can be found with the following formula: You can see why this works with the following diagrams:

Area of a triangle: The area of a triangle can be found with the following formula: You can see why this works with the following diagrams: Area Review Area of a triangle: The area of a triangle can be found with the following formula: 1 A 2 bh or A bh 2 You can see why this works with the following diagrams: h h b b Solve: Find the area of

More information

CK-12 Geometry: Parts of Circles and Tangent Lines

CK-12 Geometry: Parts of Circles and Tangent Lines CK-12 Geometry: Parts of Circles and Tangent Lines Learning Objectives Define circle, center, radius, diameter, chord, tangent, and secant of a circle. Explore the properties of tangent lines and circles.

More information

Marie has a winter hat made from a circle, a rectangular strip and eight trapezoid shaped pieces. y inches. 3 inches. 24 inches

Marie has a winter hat made from a circle, a rectangular strip and eight trapezoid shaped pieces. y inches. 3 inches. 24 inches Winter Hat This problem gives you the chance to: calculate the dimensions of material needed for a hat use circle, circumference and area, trapezoid and rectangle Marie has a winter hat made from a circle,

More information

Circumference and Area of Circles

Circumference and Area of Circles ircumference and Area of ircles 7- MAIN IDEA Measure and record the distance d across the circular part of an object, such as a battery or a can, through its center. Find the circumference and area of

More information

A.G.1: Compositions of Poygons and Circles 2: Find the area and/or perimeter of figures composed of polygons and circles or sectors of a circle

A.G.1: Compositions of Poygons and Circles 2: Find the area and/or perimeter of figures composed of polygons and circles or sectors of a circle A.G.1: Compositions of Poygons and Circles 2: Find the area and/or perimeter of figures composed of polygons and circles or sectors of a circle 1 In the accompanying figure, ACDH and BCEF are rectangles,

More information

Geometry Chapter 9 Extending Perimeter, Circumference, and Area

Geometry Chapter 9 Extending Perimeter, Circumference, and Area Geometry Chapter 9 Extending Perimeter, Circumference, and Area Lesson 1 Developing Formulas for Triangles and Quadrilaterals Learning Targets LT9-1: Solve problems involving the perimeter and area of

More information

DOUBLE, DOUBLE: LOOKING AT THE EFFECT OF CHANGE

DOUBLE, DOUBLE: LOOKING AT THE EFFECT OF CHANGE DOUBLE, DOUBLE: LOOKING AT THE EFFECT OF CHANGE ON PERIMETER, AREA AND VOLUME Outcome (lesson objective) Students will demonstrate how changes in the dimensions of squares, rectangles, and circles affect

More information

Formulas for Area Area of Trapezoid

Formulas for Area Area of Trapezoid Area of Triangle Formulas for Area Area of Trapezoid Area of Parallelograms Use the formula sheet and what you know about area to solve the following problems. Find the area. 5 feet 6 feet 4 feet 8.5 feet

More information

NCERT. Area of the circular path formed by two concentric circles of radii. Area of the sector of a circle of radius r with central angle θ =

NCERT. Area of the circular path formed by two concentric circles of radii. Area of the sector of a circle of radius r with central angle θ = AREA RELATED TO CIRCLES (A) Main Concepts and Results CHAPTER 11 Perimeters and areas of simple closed figures. Circumference and area of a circle. Area of a circular path (i.e., ring). Sector of a circle

More information

Geometry Unit 7 (Textbook Chapter 9) Solving a right triangle: Find all missing sides and all missing angles

Geometry Unit 7 (Textbook Chapter 9) Solving a right triangle: Find all missing sides and all missing angles Geometry Unit 7 (Textbook Chapter 9) Name Objective 1: Right Triangles and Pythagorean Theorem In many geometry problems, it is necessary to find a missing side or a missing angle of a right triangle.

More information

Tallahassee Community College PERIMETER

Tallahassee Community College PERIMETER Tallahassee Community College 47 PERIMETER The perimeter of a plane figure is the distance around it. Perimeter is measured in linear units because we are finding the total of the lengths of the sides

More information

Student Name: Teacher: Date: District: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Geometry Exam 3. Form: 201

Student Name: Teacher: Date: District: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Geometry Exam 3. Form: 201 Student Name: Teacher: District: Date: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Geometry Exam 3 Description: Geometry Topic 6: Circles Form: 201 1. Which method is valid for proving

More information

Pi Project Deriving Pi from the Objects around Us Lesson Plan

Pi Project Deriving Pi from the Objects around Us Lesson Plan Pi Project Deriving Pi from the Objects around Us Lesson Plan Subject Area: Math Grade Levels: The lesson can be adapted for grades 4 10 (ages 9 6). Time: At least one 50-minute class period; time outside

More information

Volume of Pyramids and Cones

Volume of Pyramids and Cones Volume of Pyramids and Cones Objective To provide experiences with investigating the relationships between the volumes of geometric solids. www.everydaymathonline.com epresentations etoolkit Algorithms

More information

Area of Parallelograms (pages 546 549)

Area of Parallelograms (pages 546 549) A Area of Parallelograms (pages 546 549) A parallelogram is a quadrilateral with two pairs of parallel sides. The base is any one of the sides and the height is the shortest distance (the length of a perpendicular

More information

10.1: Areas of Parallelograms and Triangles

10.1: Areas of Parallelograms and Triangles 10.1: Areas of Parallelograms and Triangles Important Vocabulary: By the end of this lesson, you should be able to define these terms: Base of a Parallelogram, Altitude of a Parallelogram, Height of a

More information

Geometry SOL G.11 G.12 Circles Study Guide

Geometry SOL G.11 G.12 Circles Study Guide Geometry SOL G.11 G.1 Circles Study Guide Name Date Block Circles Review and Study Guide Things to Know Use your notes, homework, checkpoint, and other materials as well as flashcards at quizlet.com (http://quizlet.com/4776937/chapter-10-circles-flashcardsflash-cards/).

More information

Postulate 17 The area of a square is the square of the length of a. Postulate 18 If two figures are congruent, then they have the same.

Postulate 17 The area of a square is the square of the length of a. Postulate 18 If two figures are congruent, then they have the same. Chapter 11: Areas of Plane Figures (page 422) 11-1: Areas of Rectangles (page 423) Rectangle Rectangular Region Area is measured in units. Postulate 17 The area of a square is the square of the length

More information

Lesson 12.1 Skills Practice

Lesson 12.1 Skills Practice Lesson 12.1 Skills Practice Name Date Introduction to Circles Circle, Radius, and Diameter Vocabulary Define each term in your own words. 1. circle A circle is a collection of points on the same plane

More information

Geometry and Measurement

Geometry and Measurement The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for

More information

Cylinder Volume Lesson Plan

Cylinder Volume Lesson Plan Cylinder Volume Lesson Plan Concept/principle to be demonstrated: This lesson will demonstrate the relationship between the diameter of a circle and its circumference, and impact on area. The simplest

More information

LESSON 7 Don t Be A Square by Michael Torres

LESSON 7 Don t Be A Square by Michael Torres CONCEPT AREA GRADE LEVEL Measurement 5-6 TIME ALLOTMENT Two 60-minute sessions LESSON OVERVIEW LESSON ACTIVITIES OVERVIEW LEARNING OBJECTIVES STANDARDS (TEKS) Students will learn the relationship between

More information

Family Letters. Assessment Management. Playing Fraction Of

Family Letters. Assessment Management. Playing Fraction Of Formula for the Area of a Parallelogram Objectives To review the properties of parallelograms; and to guide the development and use of a formula for the area of a parallelogram. www.everydaymathonline.com

More information

In Problems #1 - #4, find the surface area and volume of each prism.

In Problems #1 - #4, find the surface area and volume of each prism. Geometry Unit Seven: Surface Area & Volume, Practice In Problems #1 - #4, find the surface area and volume of each prism. 1. CUBE. RECTANGULAR PRISM 9 cm 5 mm 11 mm mm 9 cm 9 cm. TRIANGULAR PRISM 4. TRIANGULAR

More information

Name: Date: Geometry Solid Geometry. Name: Teacher: Pd:

Name: Date: Geometry Solid Geometry. Name: Teacher: Pd: Name: Date: Geometry 2012-2013 Solid Geometry Name: Teacher: Pd: Table of Contents DAY 1: SWBAT: Calculate the Volume of Prisms and Cylinders Pgs: 1-7 HW: Pgs: 8-10 DAY 2: SWBAT: Calculate the Volume of

More information

SA B 1 p where is the slant height of the pyramid. V 1 3 Bh. 3D Solids Pyramids and Cones. Surface Area and Volume of a Pyramid

SA B 1 p where is the slant height of the pyramid. V 1 3 Bh. 3D Solids Pyramids and Cones. Surface Area and Volume of a Pyramid Accelerated AAG 3D Solids Pyramids and Cones Name & Date Surface Area and Volume of a Pyramid The surface area of a regular pyramid is given by the formula SA B 1 p where is the slant height of the pyramid.

More information

Implementing the 6 th Grade GPS via Folding Geometric Shapes. Presented by Judy O Neal

Implementing the 6 th Grade GPS via Folding Geometric Shapes. Presented by Judy O Neal Implementing the 6 th Grade GPS via Folding Geometric Shapes Presented by Judy O Neal (joneal@ngcsu.edu) Topics Addressed Nets Prisms Pyramids Cylinders Cones Surface Area of Cylinders Nets A net is a

More information

Module: Mathematical Reasoning

Module: Mathematical Reasoning Module: Mathematical Reasoning Lesson Title: Using Nets for Finding Surface Area Objectives and Standards Students will: Draw and construct nets for 3-D objects. Determine the surface area of rectangular

More information

The area of a figure is the measure of the size of the region enclosed by the figure. Formulas for the area of common figures: square: A = s 2

The area of a figure is the measure of the size of the region enclosed by the figure. Formulas for the area of common figures: square: A = s 2 The area of a figure is the measure of the size of the region enclosed by the figure. Formulas for the area of common figures: square: A = s 2 s s rectangle: A = l w parallelogram: A = b h h b triangle:

More information

AREA AND PERIMETER OF COMPLEX PLANE FIGURES

AREA AND PERIMETER OF COMPLEX PLANE FIGURES AREA AND PERIMETER OF OMPLEX PLANE FIGURES AREA AND PERIMETER OF POLYGONAL FIGURES DISSETION PRINIPLE: Every polygon can be dissected (or broken up) into triangles (or rectangles), which have no interior

More information

Surface Area. Assessment Management

Surface Area. Assessment Management Surface Area Objective To introduce finding the surface area of prisms, cylinders, and pyramids. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game Family Letters

More information

GAP CLOSING. 2D Measurement. Intermediate / Senior Student Book

GAP CLOSING. 2D Measurement. Intermediate / Senior Student Book GAP CLOSING 2D Measurement Intermediate / Senior Student Book 2-D Measurement Diagnostic...3 Areas of Parallelograms, Triangles, and Trapezoids...6 Areas of Composite Shapes...14 Circumferences and Areas

More information

How do changes in dimensions of similar geometric figures affect the perimeters and the areas of the figures? ACTIVITY: Creating Similar Figures

How do changes in dimensions of similar geometric figures affect the perimeters and the areas of the figures? ACTIVITY: Creating Similar Figures .6 Perimeters and Areas of Similar Figures How do changes in dimensions of similar geometric figures affect the perimeters and the areas of the figures? ACTIVITY: Creating Similar Figures Work with a partner.

More information

Lesson #13 Congruence, Symmetry and Transformations: Translations, Reflections, and Rotations

Lesson #13 Congruence, Symmetry and Transformations: Translations, Reflections, and Rotations Math Buddies -Grade 4 13-1 Lesson #13 Congruence, Symmetry and Transformations: Translations, Reflections, and Rotations Goal: Identify congruent and noncongruent figures Recognize the congruence of plane

More information

A. Areas of Parallelograms 1. If a parallelogram has an area of A square units, a base of b units, and a height of h units, then A = bh.

A. Areas of Parallelograms 1. If a parallelogram has an area of A square units, a base of b units, and a height of h units, then A = bh. Geometry - Areas of Parallelograms A. Areas of Parallelograms. If a parallelogram has an area of A square units, a base of b units, and a height of h units, then A = bh. A B Ex: See how VDFA V CGB so rectangle

More information

How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.

How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left. The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics

More information

WHAT IS AREA? CFE 3319V

WHAT IS AREA? CFE 3319V WHAT IS AREA? CFE 3319V OPEN CAPTIONED ALLIED VIDEO CORPORATION 1992 Grade Levels: 5-9 17 minutes DESCRIPTION What is area? Lesson One defines and clarifies what area means and also teaches the concept

More information

Name Date Period. 3D Geometry Project

Name Date Period. 3D Geometry Project Name 3D Geometry Project Part I: Exploring Three-Dimensional Shapes In the first part of this WebQuest, you will be exploring what three-dimensional (3D) objects are, how to classify them, and several

More information

Integrated Algebra: Geometry

Integrated Algebra: Geometry Integrated Algebra: Geometry Topics of Study: o Perimeter and Circumference o Area Shaded Area Composite Area o Volume o Surface Area o Relative Error Links to Useful Websites & Videos: o Perimeter and

More information

Geometry Solve real life and mathematical problems involving angle measure, area, surface area and volume.

Geometry Solve real life and mathematical problems involving angle measure, area, surface area and volume. Performance Assessment Task Pizza Crusts Grade 7 This task challenges a student to calculate area and perimeters of squares and rectangles and find circumference and area of a circle. Students must find

More information

Applications for Triangles

Applications for Triangles Not drawn to scale Applications for Triangles 1. 36 in. 40 in. 33 in. 1188 in. 2 69 in. 2 138 in. 2 1440 in. 2 2. 188 in. 2 278 in. 2 322 in. 2 none of these Find the area of a parallelogram with the given

More information

ACTIVITY: Finding a Formula Experimentally. Work with a partner. Use a paper cup that is shaped like a cone.

ACTIVITY: Finding a Formula Experimentally. Work with a partner. Use a paper cup that is shaped like a cone. 8. Volumes of Cones How can you find the volume of a cone? You already know how the volume of a pyramid relates to the volume of a prism. In this activity, you will discover how the volume of a cone relates

More information

Circumference Pi Regular polygon. Dates, assignments, and quizzes subject to change without advance notice.

Circumference Pi Regular polygon. Dates, assignments, and quizzes subject to change without advance notice. Name: Period GPreAP UNIT 14: PERIMETER AND AREA I can define, identify and illustrate the following terms: Perimeter Area Base Height Diameter Radius Circumference Pi Regular polygon Apothem Composite

More information

Unit 6 Geometry: Constructing Triangles and Scale Drawings

Unit 6 Geometry: Constructing Triangles and Scale Drawings Unit 6 Geometry: Constructing Triangles and Scale Drawings Introduction In this unit, students will construct triangles from three measures of sides and/or angles, and will decide whether given conditions

More information

2nd Semester Geometry Final Exam Review

2nd Semester Geometry Final Exam Review Class: Date: 2nd Semester Geometry Final Exam Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The owner of an amusement park created a circular

More information

Analysis in Geometry. By Danielle Long. Grade Level: 8 th. Time: 5-50 minute periods. Technology used: Geometer s sketchpad Geoboards NLVM website

Analysis in Geometry. By Danielle Long. Grade Level: 8 th. Time: 5-50 minute periods. Technology used: Geometer s sketchpad Geoboards NLVM website Analysis in Geometry By Danielle Long Grade Level: 8 th Time: 5-50 minute periods Technology used: Geometer s sketchpad Geoboards NLVM website 1 NCTM Standards Addressed Problem Solving Geometry Algebra

More information

Objective To introduce a formula to calculate the area. Family Letters. Assessment Management

Objective To introduce a formula to calculate the area. Family Letters. Assessment Management Area of a Circle Objective To introduce a formula to calculate the area of a circle. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game Family Letters Assessment

More information

Lesson 21. Circles. Objectives

Lesson 21. Circles. Objectives Student Name: Date: Contact Person Name: Phone Number: Lesson 1 Circles Objectives Understand the concepts of radius and diameter Determine the circumference of a circle, given the diameter or radius Determine

More information

Geometry Notes PERIMETER AND AREA

Geometry Notes PERIMETER AND AREA Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter

More information

The Area is the width times the height: Area = w h

The Area is the width times the height: Area = w h Geometry Handout Rectangle and Square Area of a Rectangle and Square (square has all sides equal) The Area is the width times the height: Area = w h Example: A rectangle is 6 m wide and 3 m high; what

More information

Geometry Chapter 12. Volume. Surface Area. Similar shapes ratio area & volume

Geometry Chapter 12. Volume. Surface Area. Similar shapes ratio area & volume Geometry Chapter 12 Volume Surface Area Similar shapes ratio area & volume Date Due Section Topics Assignment Written Exercises 12.1 Prisms Altitude Lateral Faces/Edges Right vs. Oblique Cylinders 12.3

More information

Surface Area and Volume

Surface Area and Volume 1 Area Surface Area and Volume 8 th Grade 10 days by Jackie Gerwitz-Dunn and Linda Kelly 2 What do you want the students to understand at the end of this lesson? The students should be able to distinguish

More information

12-8 Congruent and Similar Solids

12-8 Congruent and Similar Solids Determine whether each pair of solids is similar, congruent, or neither. If the solids are similar, state the scale factor. 3. Two similar cylinders have radii of 15 inches and 6 inches. What is the ratio

More information

MATH STUDENT BOOK. 7th Grade Unit 9

MATH STUDENT BOOK. 7th Grade Unit 9 MATH STUDENT BOOK 7th Grade Unit 9 Unit 9 Measurement and Area Math 709 Measurement and Area Introduction 3 1. Perimeter 5 Perimeter 5 Circumference 11 Composite Figures 16 Self Test 1: Perimeter 24 2.

More information

Area and Circumference

Area and Circumference 4.4 Area and Circumference 4.4 OBJECTIVES 1. Use p to find the circumference of a circle 2. Use p to find the area of a circle 3. Find the area of a parallelogram 4. Find the area of a triangle 5. Convert

More information

12-8 Congruent and Similar Solids

12-8 Congruent and Similar Solids Determine whether each pair of solids is similar, congruent, or neither. If the solids are similar, state the scale factor. Ratio of radii: Ratio of heights: The ratios of the corresponding measures are

More information

Area of Similar Figures PRIZM WORKSHEET #105

Area of Similar Figures PRIZM WORKSHEET #105 Area of Similar Figures PRIZM WORKSHEET # TEACHER S NOTES Area of Similar Figures Topic Area: Ratios of Similar Figures HOW TO Area of Similar Figures NCTM Standards: n Use two-dimensional representations

More information

GAP CLOSING. 2D Measurement GAP CLOSING. Intermeditate / Senior Facilitator s Guide. 2D Measurement

GAP CLOSING. 2D Measurement GAP CLOSING. Intermeditate / Senior Facilitator s Guide. 2D Measurement GAP CLOSING 2D Measurement GAP CLOSING 2D Measurement Intermeditate / Senior Facilitator s Guide 2-D Measurement Diagnostic...4 Administer the diagnostic...4 Using diagnostic results to personalize interventions...4

More information

17.2 Surface Area of Prisms and Cylinders

17.2 Surface Area of Prisms and Cylinders Name Class Date 17. Surface Area of Prisms and Cylinders Essential Question: How can you find the surface area of a prism or cylinder? Explore G.11.C Apply the formulas for the total and lateral surface

More information

3. If AC = 12, CD = 9 and BE = 3, find the area of trapezoid BCDE. (Mathcounts Handbooks)

3. If AC = 12, CD = 9 and BE = 3, find the area of trapezoid BCDE. (Mathcounts Handbooks) EXERCISES: Triangles 1 1. The perimeter of an equilateral triangle is units. How many units are in the length 27 of one side? (Mathcounts Competitions) 2. In the figure shown, AC = 4, CE = 5, DE = 3, and

More information

Pythagorean Theorem Differentiated Instruction for Use in an Inclusion Classroom

Pythagorean Theorem Differentiated Instruction for Use in an Inclusion Classroom Pythagorean Theorem Differentiated Instruction for Use in an Inclusion Classroom Grade Level: Seven Time Span: Four Days Tools: Calculators, The Proofs of Pythagoras, GSP, Internet Colleen Parker Objectives

More information

Finding Areas of Shapes

Finding Areas of Shapes Baking Math Learning Centre Finding Areas of Shapes Bakers often need to know the area of a shape in order to plan their work. A few formulas are required to find area. First, some vocabulary: Diameter

More information

11-4 Areas of Regular Polygons and Composite Figures

11-4 Areas of Regular Polygons and Composite Figures 1. In the figure, square ABDC is inscribed in F. Identify the center, a radius, an apothem, and a central angle of the polygon. Then find the measure of a central angle. Center: point F, radius:, apothem:,

More information

Perimeter, Circumference, and Area

Perimeter, Circumference, and Area -9 Perimeter, Circumference, and Area -9. Plan What You ll Learn To find perimeters of rectangles and squares, and circumferences of circles To find areas of rectangles, squares, and circles... And Why

More information

Area. Area Overview. Define: Area:

Area. Area Overview. Define: Area: Define: Area: Area Overview Kite: Parallelogram: Rectangle: Rhombus: Square: Trapezoid: Postulates/Theorems: Every closed region has an area. If closed figures are congruent, then their areas are equal.

More information

Unit 7 Circles. Vocabulary and Formulas for Circles:

Unit 7 Circles. Vocabulary and Formulas for Circles: ccelerated G Unit 7 ircles Name & ate Vocabulary and Formulas for ircles: irections: onsider 1) Find the circumference of the circle. to answer the following questions. Exact: pproximate: 2) Find the area

More information

DATE PERIOD. Estimate the product of a decimal and a whole number by rounding the Estimation

DATE PERIOD. Estimate the product of a decimal and a whole number by rounding the Estimation A Multiplying Decimals by Whole Numbers (pages 135 138) When you multiply a decimal by a whole number, you can estimate to find where to put the decimal point in the product. You can also place the decimal

More information

Radius, diameter, circumference, π (Pi), central angles, Pythagorean relationship. about CIRCLES

Radius, diameter, circumference, π (Pi), central angles, Pythagorean relationship. about CIRCLES Grade 9 Math Unit 8 : CIRCLE GEOMETRY NOTES 1 Chapter 8 in textbook (p. 384 420) 5/50 or 10% on 2011 CRT: 5 Multiple Choice WHAT YOU SHOULD ALREADY KNOW: Radius, diameter, circumference, π (Pi), central

More information

THE DISTANCE FORMULA

THE DISTANCE FORMULA THE DISTANCE FORMULA In this activity, you will develop a formula for calculating the distance between any two points in a coordinate plane. Part 1: Distance Along a Horizontal or Vertical Line To find

More information