# Basic Ohm s Law & Series and Parallel Circuits

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 2:256 Let there be no compulsion in religion: Truth stands out clear from Error: whoever rejects evil and believes in Allah hath grasped the most trustworthy hand-hold that never breaks. And Allah heareth and knoweth all things. Experiment 1 Basic Ohm s Law & Series and Parallel Circuits Test (a): Resistor Color Code Aims: To determine the value of resistors from their Electronic Industries Association (EIA) color code. To investigate the properties of potentiometer. Apparatus: Digital Multimeter. Resistors : R1=150Ω, R2=20kΩ and R3=5.1MΩ Linear 10kΩ potentiometer Background: Resistor The ohm is the unit of resistance, and it is represented by the symbol Ω (Greek letter omega). Resistance values are indicated by a standard color code that manufacturers have adopted. This code uses color band on the body of resistor. The colors and their numerical values are given in the resistor color chart, Table 1a-1. This code is used for 1/8-w, 1/4-w, 1/2- w, 2-w, and 3-w resistors.(w stands for watt, i.e.is the power dissipation ability of the resistance). The basic resistor is shown in Figure 1a-1. The standard color code marking consists of four bands around the body of the resistor. The color of the first band indicates the first significant figure of the resistance value. The second band indicates the second significant figure. The color of the third band indicates the number of zeros that follow the first two significant figures. For example: 1kΩ color codes are arranged from the leftmost to the rightmost to be brown, black, red and gold. The fourth band indicates the percent tolerance of the resistance. Percent tolerance in the amount the resistance may vary from the value indicated by the color code. Because resistors are mass produced, variations in materials will affect their actual resistance. Many circuits can still operate as designed even if the resistors in the circuit do not have the precise value specified. Tolerances are usually given as plus or minus the nominal, or color code value. Wire wound, high-wattage resistors usually are not color coded but have the resistance value and

2 wattage rating printed on the body of resistor. To avoid having to write all the zeros for high value resistors the metric abbreviations of k (for 1000) and M for ( ) are used. For example: 33,000 Ω can be written as 33kΩ. (pronounced 33 kay, or 33 kilohms) 1,200,000 Ω can be written as 1.2MΩ. (Pronounced 1.2 meg, or 1.2 megohms). Color Significant figure (First & second band) No. of Zeros (Multiplier) (third band) %Tolerance (Forth band) Black 0 0(10 0 ) - Brown 1 1(10 1 ) - Red 2 2(10 2 ) - Orange 3 3(10 3 ) - Yellow 4 4(10 4 ) - Green 5 5(10 5 ) - Blue 6 6(10 6 ) - Violet 7 7(10 7 ) - Gray 8 8(10 8 ) - White 9 9(10 9 ) - Gold - -1(10-1 ) 5 Silver - -2(10-2 ) 10 No color Table 1a-1: Resistor color code Lead First significant bit Second significant bit Tolerance No. of zeros Figure 1a-1: resistor color code Variable resistors In addition to the fixed-value resistors, variable resistors are used. The two types of variable resistors are the rheostat and the potentiometer. Volume controls used in radio is a typical example of potentiometer. A rheostat is essentially a two-terminal device. Its circuit symbol is shown in Figure 1a-2. Points a and b are connected to the circuit. A rheostat has a maximum resistance value, specified by the manufacturer, and a minimum value, usually 0Ω. The arrow head indicates a mechanical means of adjusting the rheostat so that the resistance, measured between points a and b, can be adjusted to any intermediate value within the range of variation.

3 Figure 1a-2 The circuit symbol of potentiometer, Figure 1a-3, shows that this is a three-terminal device. The resistance between the terminals a and c is fixed. Point b is the variable arm of the potentiometer, the wiper. The arm is a metal contactor that slides along the uninsulated surface of the resistance element. The resistance between points a and c varies as the length of element included between points a and b. The same is true for points c and b. Figure 1a-3 A potentiometer may be used as a rheostat if the center arm and one of the end terminals are connected into the circuit and the other end terminal is left disconnected. Method: Resistor color code: 1. The color code on each resistor defines the nominal value about which the tolerance is defined. The nominal value is that value of resistance that the resistor would have if its tolerance were 0 percent. Use the color code to determine the nominal value for each resistor and record them in Table 1a Determine the tolerance and record the values for each of the resistor. 3. Determine the theoretical maximum and minimum values for each resistor in turn. 4. Measure and record the actual value of resistor, and check to see whether or not this value falls between the calculated limits in step 2. Variable resistor: 1. Identify the end terminals and the wiper terminal for the potentiometer. Number them 1, 2 and 3 with 2 being the wiper. 2. Position the ohmmeter between terminals 1-2, 2-3 and 1-3 and record these measured values in Table 1a Add the values measured between terminals 1-2 and 2-3 and compare the result with the value measured between 1-3 (theoretical value). 4. Reposition the shaft of the potentiometer and repeat steps 2 and 3 for the other two trials.

4 Test (b): Voltage and Current Measurements Aim: To measure voltage and current in DC circuit. Apparatus: DC voltage supply, 2k resistor, and two Digital Multimeters (2DMMs). Background: The test will familiarize you with the basic voltage and current measurements that is connected to a dc power supply. Voltage Measurements A voltemeter must always be connected with probes across the component under test; that is, the circuit need never be broken (see Figure 1b-1). This is often referred to as parallel connection. Polarity: It is a good practice to place the correct leads at the proper nodes. Eg. Red lead at the positive node and the black lead at the negative node. Current Measurements In measuring current (Figure 1b-2), the meter must always be inserted within the circuit in such a manner that the current to be measured will flow through the meter and it is similar to a series connection. You must break the circuit to perform a current measurement. Figure 1b-1 Figure 1b-2 Figure 1b-3

5 Method: 1. Switch on the power supply and set for the minimum output voltage. 2. Set the digital multi-meter to measure voltage. 3. Connect the voltmeter directly to the power supply terminals. 4. Observe the effect of tuning the output voltage control and adjust the voltage value to 2 Volts. 5. Remove the meter and connect 2kΩ resistor across the terminals of the power supply as shown in Figure 1b-1. Reconnect the meter as shown. Observe the value measured by the meter. 6. Now break the circuit as shown in 1b-2 and insert the other meter set on ma current range. The meter will now be reading the current flowing in the circuit. 7. Record the current in Table 1b Increase the voltage in 2-Volt steps. For each of the voltage increment, measure and record the current changes. Test (c): Ohm s Law Aim: To verify Ohm s law (V=IR). Apparatus: Voltage dc supply, resistors 5.1kΩ and two digital DMMs. Background: Ohm s Law is the basis of many electrical circuit calculations which indicates V=IR. In this experiment Ohms Law has to be verified and will prove that the current through a resistor is proportional to the voltage across it. The way in which we accomplish this is to measure the voltage across and the current through a known resistor for several different pairs of values. Data can then be plotted on a graph, and if the relationship is truly linear, it should yield a straight line. Figure 1c-1 Method: 1. Measure the actual value of the resistor R and record the result in Table 1c Connect the circuit in Figure 1c-1 with R= 5.1kΩ. 3. Beginning at 0 volt, increase the voltage across R in 1-Volt steps until 9 Volts. Measure and record the resulting current in Table 1c-1 for each increment of voltage. 4. Plot the graphs of I verses V for results in Table 1c-1. (Assign I to the vertical axis and V to the horizontal axis). 5. Construct a right triangle on the graph and from this, re-determine the slope and hence evaluate

6 the conductance G. 6. From this information, evaluate the resistance R. Record G and R for the graph in the appropriate column in Table 1c Compare these experimentally obtained values with those measured values recorded in the respective tables. Analysis, deductions and conclusion: 1. Has Ohm s law been verified? 2. What are the facts supporting this decision? 3. State the factors affecting resistance of a material with a uniform cross-sectional area? 4. What are the common types of fixed and variable resistors? State usage of each type. 5. If the Resistor from the experiment above is changed to 10kΩ, deduct what will happen to the slope of I-V graph. What effect on the conductance G? 6. Do all resistors obey ohm s law? Justify your answer by stating some examples. Test (d): Series and Parallel Circuits Aims: To verify that in a series circuit; 1) The total resistance is equal to the sum of the individual resistors. 2) The voltage drops across the resistors equals to the applied voltage. 3) The value of the current is the same in all parts of the circuit. To verify that in parallel circuits; 1) The equivalent resistance is the reciprocal of the sum of reciprocals of the individual resistors. 2) The branch current in parallel equal to the supply current. 3) The voltage drop across each resistor in parallel is the same. To verify by measurement and calculation for two different networks: the total current and the branch values, the voltage drop across various parts of the networks and the method for determining the equivalent resistance of such networks. Apparatus: 15 volt dc supply. Two digital multi-meters. Resistors ; 1.0kΩ, 1.5kΩ, 6.8kΩ Circuit Diagram: Figure 1d-1

7 (a) Series Circuit Method: 1. Connect the circuit shown in Figure 1d Adjust the supply voltage to 15V.(Note the value must be kept constant throughout the test by connecting voltmeter across the voltage supply in the circuit to observe the voltage.) 3. Switch off the supply. Connect the ammeter in position A. 4. Switch on the supply. Read the current through resistor R1. 5. Connect the voltmeter across R1 and measure the voltage drop across it. 6. Repeat 3 until 5 for the ammeter positions B, C, and D and the voltmeter positions across resistors R2, and R3. 7. Record the voltage for close and open loop. Fill up the measured values in Table 1d-1 (b) Parallel Circuits Circuit Diagram: Figure 1d-2 Method: 1. Connect the circuit shown in Figure 1d Adjust the supply voltage 15V.(Note the value of the supply voltage and keep it constant throughout the test.) 3. Switch off the supply. Connect the ammeter in position A, the total current, I Total. Switch on the supply. Read the current through resistor R1 and the voltage drop across it. 4. Repeat 4 for the ammeter positions B, C, and D and the voltmeter positions across resistors R2, and R3. Be careful not to touch R3 during measurement as it might be hot. 5. Fill up the measured values in Table 1d-2. Analysis, deductions and conclusions: 1. Have the aims been achieved? 2. What are the facts supporting these decision for each point of the aim? 3. What are the probable factors, which contributed to the discrepancies in the results for each point of the aim? 4. Indicate which circuit the principle of voltage division and current division is applicable to. 5. State the formula for each condition.

8 Table of Results Resistor R1 R2 R3 Nominal Value Tolerance % Maximum Value Minimum Value Measured Value Table 1a-2 1 st trial 2 nd trial 3 rd trial R1-2 R2-3 R1-3 R1-2+R2-3 Table 1a-3 V supply (volt) Current (Measured) Current (Calculated) Table 1b-1 Nominal Resistance R=5.1kΩ Voltage Source (Vs) Current (Measured values) Current (Theoretical values) Measured Resistance R = (V) Table 1c-1

9 Slope (G) R (1/G) Measured Values Theoretical Values Table 1c-2 Supply voltage (volt) V1 V2 V3 Σ Voltage Supply current I1 I2 I3 I Total Total resistance R1 R2 R3 Σ R R1+R2+R3 Table 1d-1 Supply current (ampere) I1 (amperes) I2 (amperes) I3 (amperes) Σ Current Supply voltage (volt) V1 V2 V3 Equivalent resistance R1 R2 R3 Equivalent resistance Total conductance G1 (Siemens) G2 (siemens) G3 (siemens) Σ G Table 1d-2

### R A _ + Figure 2: DC circuit to verify Ohm s Law. R is the resistor, A is the Ammeter, and V is the Voltmeter. A R _ +

Physics 221 Experiment 3: Simple DC Circuits and Resistors October 1, 2008 ntroduction n this experiment, we will investigate Ohm s Law, and study how resistors behave in various combinations. Along the

### DC Circuits (Combination of resistances)

Name: Partner: Partner: Partner: DC Circuits (Combination of resistances) EQUIPMENT NEEDED: Circuits Experiment Board One Dcell Battery Wire leads Multimeter 100, 330, 1k resistors Purpose The purpose

### Physics 1021 Experiment 6. Ohm s Law and Equivalent Resistance V=IR. Georg Simon Ohm ( )

1 Physics 1021 Ohm s Law and Equivalent Resistance V=IR Georg Simon Ohm (1789-1854) 2 Ohm s Law Electric current, I, is a measure of the flow of charge. It is rate of charge with time across a given point

### International Islamic University Chittagong Department of Electrical & Electronics Engineering

International Islamic University Chittagong Department of Electrical & Electronics Engineering Course No: EEE 1102 Course Title: Electrical Circuit I Sessional Experiment No : 01 Experiment Name: Introduction

### Series and Parallel Resistive Circuits Physics Lab VIII

Series and Parallel Resistive Circuits Physics Lab VIII Objective In the set of experiments, the theoretical expressions used to calculate the total resistance in a combination of resistors will be tested

### RESISTANCE & OHM S LAW (PART I

RESISTANCE & OHM S LAW (PART I and II) Objectives: To understand the relationship between potential and current in a resistor and to verify Ohm s Law. To understand the relationship between potential and

### Resistors. Jeffrey La Favre

1 Resistors Jeffrey La Favre Resistors One of the most basic components (parts) used in electronics is the resistor. Resistors are used to control the amount of current that flows in a circuit and to reduce

### 3 DC Circuits, Ohm's Law and Multimeters

3 DC Circuits, Ohm's Law and Multimeters Theory: Today's lab will look at some basics of electricity and how these relate to simple circuit diagrams. Three basic terms are important to a study of electricity.

### Ohm s Law and Simple DC Circuits

Ohm s Law and Simple DC Circuits 2EM Object: Apparatus: To confirm Ohm s Law, to determine the resistance of a resistor, and to study currents, potential differences, and resistances in simple direct current

### Background: Electric resistance, R, is defined by:

RESISTANCE & OHM S LAW (PART I and II) - 8 Objectives: To understand the relationship between applied voltage and current in a resistor and to verify Ohm s Law. To understand the relationship between applied

### ElectronicsLab1.nb 1. Electronics Lab #1. Ohm's Law and Simple Circuits

ElectronicsLab1.nb 1 Electronics Lab #1 Ohm's Law and Simple Circuits In this laboratory, you will verify Ohm's law V=iR where V is the voltage, i is the current and R is the resistance. You will learn

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 1 - D.C. CIRCUITS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME - D.C. CIRCUITS Be able to use circuit theory to determine voltage, current and resistance in direct

### Name Partner Date Class

Name Partner Date Class Ohm's Law Equipment: Resistors, multi-meters, VOM, alligator clips, wires, breadboard, batteries, 1/4 or 1/2 Amp fuse, low voltage power supply. Object: The object of this exercise

### Lab #2: Parallel and Series Resistors

Fall 2013 EELE 250 Circuits, Devices, and Motors Lab #2: Parallel and Series Resistors Scope: Use a multimeter to measure resistance, DC voltage, and current Use the color code for resistors. Use the prototype-board

### Electrical Measurements

Electrical Measurements Experimental Objective The objective of this experiment is to become familiar with some of the electrical instruments. You will gain experience by wiring a simple electrical circuit

### R Ω. II. Experimental Procedure. Ohm's Law

I. Theory Ohm's Law In this lab we will make detailed measurements on a resistor to see if it obeys Ohm's law. We will also check the rules for combining resistors in series and parallel. Ohm's law describes

### 3_given a graph of current_voltage for a resistor, determine the resistance. Three resistance R1 = 1.0 kω, R2 = 1.5 kω, R3 = 2.

Ohm s Law Objectives: 1_measure the current_voltage curve for a resistor 2_construct a graph of the data from objective 1 3_given a graph of current_voltage for a resistor, determine the resistance Equipment:

### Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament

Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament Name Partner Date Introduction Carbon resistors are the kind typically used in wiring circuits. They are made from a small cylinder of

### 2-1: Types of Resistors

Chapter 2 Resistors Topics Covered in Chapter 2 2-1: Types of Resistors 2-2: Resistor Color Coding 2-3: Variable Resistors 2-4: Rheostats and Potentiometers 2-5: Power Ratings of Resistors 2-6: Resistor

### Meters - Ohm s Law R 2 R 1 APPARATUS INTRODUCTION R 1 R 2 A

Meters - Ohm s Law APPARATUS 1. Board on which two wires are mounted, each 1 m long, equipped with a sliding contact 2. Rheostat (variable resistance), 0... 7 Ω 3. DC ammeter (full scale: 2 A) 4. Voltmeter

### Lab 3 - DC Circuits and Ohm s Law

Lab 3 DC Circuits and Ohm s Law L3-1 Name Date Partners Lab 3 - DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in

### CHAPTER 2. Basic Electronics & Theory. (The rules behind all those little things)

CHAPTER 2 Basic Electronics & Theory (The rules behind all those little things) 1 Current, Voltage, Resistance Water flowing through a hose is a good way to imagine electricity. Water is like Electrons

### Experiment #6, Series and Parallel Circuits, Kirchhoff s Laws

Physics 182 Spring 2013 Experiment #6 1 Experiment #6, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding

### Lab 3 Ohm s Law and Resistors

` Lab 3 Ohm s Law and Resistors What You Need To Know: The Physics One of the things that students have a difficult time with when they first learn about circuits is the electronics lingo. The lingo and

### PHY222 Lab 3 Ohm s Law and Electric Circuits Ohm s Law; Series Resistors; Circuits Inside Three- and Four-Terminal Black Boxes

PHY222 Lab 3 Ohm s Law and Electric Circuits Ohm s Law; Series Resistors; Circuits Inside Three- and Four-Terminal Black Boxes Print Your Name Print Your Partners' Names Instructions February 5, 2015 Before

### PHYSICS 176 UNIVERSITY PHYSICS LAB II. Experiment 2 (two weeks) Direct Current Measurement and Ohm's Law

PHYSICS 176 UNIVERSITY PHYSICS LAB II Experiment 2 (two weeks) Direct Current Measurement and Ohm's Law Equipment: Supplies: VOM (volt-ohm-milliammeter), digital multimeter, power supply. 1/2 watt carbon

### Experiment 3 ~ Ohm's Law, Measurement of Voltage, Current and Resistance

Experiment 3 ~ Ohm's Law, Measurement of Voltage, Current and Resistance Objective: In this experiment you will learn to use the multi-meter to measure voltage, current and resistance. Equipment: Bread

### EE301 RESISTANCE AND OHM S LAW

Learning Objectives a. Describe the concept of resistance b. Use Ohm s law to calculate current, voltage, and resistance values in a circuit c. Discuss the difference between an open circuit and a short

### Lab 4 - Ohm s Law and Kirchhoff s Circuit Rules

Lab 4 Ohm s Law and Kirchhoff s Circuit Rules L41 Name Date Partners Lab 4 Ohm s Law and Kirchhoff s Circuit Rules OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the

### PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits

PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series

### EE101 - Lab 2: Resistive Circuits. Resistor Color Codes --- Note: carbon composition resistors will be used

EE101 - Lab 2: Resistive Circuits ALL PRELABS ARE TO BE COMPLETED ON SEPARATE PAPER AND TURNED IN AT THE BEGINNING OF THE LAB PERIOD (MAKE A COPY TO USE DURING THE LAB). ALL LAB EXERCISES MUST BE COMPLETED

### Ohm s and Kirchhoff s Circuit Laws. Abstract. Introduction and Theory. EE 101 Fall 2007 Date: Lab Section #: Lab #2

EE 101 Fall 2007 Date: Lab Section #: Lab #2 Name: Ohm s and Kirchhoff s Circuit Laws Abstract Rev. 20070725JPB Partner: Electrical circuits can be described with mathematical expressions. In fact, it

### Experiment NO.3 Series and parallel connection

Experiment NO.3 Series and parallel connection Object To study the properties of series and parallel connection. Apparatus 1. DC circuit training system 2. Set of wires. 3. DC Power supply 4. Digital A.V.O.

### Experiment 15: Ohm s Law

Experiment 15: Ohm s Law Figure 15.1: Simple Series Circuit EQUIPMENT Universal Circuit Board Power Supply (2) DMM s 150 Resistor (R 1 ) 330 Resistor (R 2 ) 560 Resistor (R 3 ) Miniature Light Bulb and

### Series & Parallel Circuits Challenge

Name: Part One: Series & Parallel Circuits Challenge 1. Build a circuit using two batteries and two light bulbs in a way to illuminate the two light bulbs so that if either light bulb is disconnected,

### Circuits and Resistivity

Circuits and Resistivity Look for knowledge not in books but in things themselves. W. Gilbert OBJECTIVES To learn the use of several types of electrical measuring instruments in DC circuits. To observe

### Intro to Circuits Lab #1

Intro to Circuits Lab #1 Anatomy of a Breadboard: The breadboard is where you will be assembling your circuits. The breadboard is composed of rows and columns of metal clips. These clips are housed in

### Resistors in Series and Parallel

Resistors in Series and Parallel INTRODUCTION Direct current (DC) circuits are characterized by the quantities current, voltage and resistance. Current is the rate of flow of charge. The SI unit is the

### EXPERIMENT 7 OHM S LAW, RESISTORS IN SERIES AND PARALLEL

260 7- I. THEOY EXPEIMENT 7 OHM S LAW, ESISTOS IN SEIES AND PAALLEL The purposes of this experiment are to test Ohm's Law, to study resistors in series and parallel, and to learn the correct use of ammeters

### Kirchhoff s Laws. Kirchhoff's Law #1 - The sum of the currents entering a node must equal the sum of the currents exiting a node.

Kirchhoff s Laws There are two laws necessary for solving circuit problems. For simple circuits, you have been applying these equations almost instinctively. Kirchhoff's Law #1 - The sum of the currents

### Goals. Introduction R = DV I (7.1)

Lab 7. Ohm s Law Goals To understand Ohm s law, used to describe the behavior of electrical conduction in many materials and circuits. To calculate the electrical power dissipated as heat in electrical

### very small Ohm s Law and DC Circuits Purpose: Students will become familiar with DC potentiometers circuits and Ohm s Law. Introduction: P31220 Lab

Ohm s Law and DC Circuits Purpose: Students will become familiar with DC potentiometers circuits and Ohm s Law. Introduction: Ohm s Law for electrical resistance, V = IR, states the relationship between

### Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws

Physics 182 Summer 2013 Experiment #5 1 Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding

### Introduction to Electric Circuits. Dr. William A. Stapleton Ingram School Of Engineering Texas State University San Marcos

Introduction to Electric Circuits Dr. William A. Stapleton Ingram School Of Engineering Texas State University San Marcos Electrical Circuits (Over)simplified The simple model of matter is that it is made

### MEASUREMENT OF RESISTORS

MEASUREMENT OF RESISTORS Richard G. Lupa Benjamin M. Cadieux 9/17/2007 Objectives: Learn how to utilize and code with the resistor color code system Learn how to use a digital multimeter (DMM) and an analog

### ECE201 Laboratory 1 Basic Electrical Equipment and Ohm s and Kirchhoff s Laws (Created by Prof. Walter Green, Edited by Prof. M. J.

ECE201 Laboratory 1 Basic Electrical Equipment and Ohm s and Kirchhoff s Laws (Created by Prof. Walter Green, Edited by Prof. M. J. Roberts) Objectives The objectives of Laboratory 1 are learn to operate

### esiexperiment 1: Electrical Resistance and the Resistor

esiexperiment : Electrical Resistance and the Resistor Introduction Ohm s law is the most fundamental equation in electric circuit analysis. It states that the amount of electric current flowing in a circuit

### Electric Circuits II

Electric Circuits II Experiment 4: Resistances in Circuits Equipment needed: - AC/DC Electronic Lab Board: Resistors - Multimeter Purpose The purpose of this lab is to begin experimenting with the variables

### D.C. Circuits. 1. To determine the resistance of resistors using (a) a multimeter, and (b) Ohm s Law,

D.C. Circuits 1 Objectives 1. To determine the resistance of resistors using (a) a multimeter, and (b) Ohm s Law, 2. To verify the equivalent resistance formulae for series and parallel resistor combinations,

### Name Date: Course number: MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START EXPERIMENT 9. Superconductivity & Ohm s Law

Laboratory Section: Last Revised on January 6, 2016 Partners Names: Grade: EXPERIMENT 9 Superconductivity & Ohm s Law 0. Pre-Laboratory Work [2 pts] 1. Define the critical temperature for a superconducting

### PHYSICS 176. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm).

PHYSICS 176 Experiment 3 Kirchhoff's Laws Equipment: Supplies: Digital Multimeter, Power Supply (0-20 V.). Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm). A. Kirchhoff's Loop Law Suppose that

### = 1 R 1 + (2) + 1 R R 2

PHYS 140 General Physics II EXPERIMENT 4 SERIES AND PARALLEL RESISTANCE CIRCUITS I. OBJECTIVE: The objective of this experiment is the study of series and parallel resistive circuits. The student will

### THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT YOUR NAME LAB MEETING TIME Reference: C.W. Alexander and M.N.O Sadiku, Fundamentals

### Chapter 2 Objectives

Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

### OHM S LAW 05 AUGUST 2014

OHM S LAW 05 AUGUST 2014 In this lesson, we: Current Lesson Description Revise the definitions of current, potential difference and emf Explore Ohm s law Identify the characteristics of ohmic and non-ohmic

### PHY 101 Lab 7 on Electric circuits: Direct current circuits Your name: Other team members:

PHY 101 Lab 7 on Electric circuits: Direct current circuits Your name: Other team members: Goals: To explore the basic principles of electric circuits, and how to measure them. Materials: Electrical resistors

### 8.3. Resistance and Ohm s Law. Did You Know? Resistance and the Flow of Electrons. Words to Know

8.3 Resistance and Ohm s Law Resistance slows down the flow of electrons and transforms electrical energy. Resistance is measured in ohms ( ). We calculate resistance by applying a voltage and measuring

### ENGR 1181 Lab 3: Circuits

ENGR 1181 Lab 3: Circuits Lab Procedure Report Guidelines 2 Goal of the Circuits: The Circuits Lab introduces series and parallel circuit which are used by engineers. Students will review this document

### PHYS245 Lab: Light bulb and resistor ΙΙ: Current voltage (I-V) curves

Purpose: PHYS245 Lab: Light bulb and resistor ΙΙ: Current voltage (I-V) curves Measure the current voltage curve of a light bulb and a resistor using a variable d.c. power supply. Understanding of Ohm

### Ohm s Law and Simple Electrical Connections

Ohm s Law and Simple Electrical Connections Purpose: To experimentally verify Ohm s Law and to provide experience in making series and parallel electrical connections. TO OD RUNNG FUSES CHECK LL CRCUT

### Analog and Digital Meters

Analog and Digital Meters Devices and Measurements Objective At the conclusion of this presentation the student will describe and identify: Safety precautions when using test equipment Analog Multimeters

### Parallel Resistance, Series/Parallel Circuit Combinations, and Power Consumption

Lab #18 Parallel/Series Resistors page 1 Parallel Resistance, Series/Parallel Circuit Combinations, and Power Consumption Reading: Giambatista, Richardson, and Richardson Chapter 18 (18.1-18.9, 18.11).

### 1) 10. V 2) 20. V 3) 110 V 4) 220 V

1. The diagram below represents an electric circuit consisting of a 12-volt battery, a 3.0-ohm resistor, R 1, and a variable resistor, R 2. 3. What is the total resistance of the circuit 1) 6.6 Ω 2) 10

### Electronic Trainer. Combined Series and Parallel Circuits

Electronic Trainer Combined Series and Parallel Circuits In this lab you will work with a circuit combining series and parallel elements. You will use six resistors to create a circuit with two parallel

### Chapter 6. Experiment 4: Electric Currents and Circuits. 6.1 Introduction The Electric Current

Chapter 6 Experiment 4: Electric Currents and Circuits 6.1 Introduction The resistance to the flow of an electric current is essential in the design of electronic devices and electric circuits generally.

### Electric Circuits II. Physics 133 Experiments Electric Circuits II 1

Physics 133 Experiments Electric Circuits II 1 Electric Circuits II GOALS To examine Ohm's Law: the pivotal relationship between voltage and current for resistors To closely study what current does when

### Basic DC Circuits. Electrical Quantity Description Unit Water Analogy Voltage or Potential Difference

Basic DC Circuits Current and voltage can be difficult to understand, because the flow of electrons and potential differences cannot be observed by the unaided human eye. To clarify these terms, some people

### RUTGERS UNIVERSITY The State University Of New Jersey School Of Engineering Department Of Electrical And Computer Engineering

1 RUTGERS UNIVERSITY The State University Of New Jersey School Of Engineering Department Of Electrical And Computer Engineering 332:223 Principles of Electrical Engineering I Laboratory Experiment #1 Title:

### `Ohm s Law III -- Resistors in Series and Parallel

`Ohm s Law III -- esistors in Series and Parallel by Dr. ames E. Parks Department of Physics and Astronomy 40 Nielsen Physics Building he University of ennessee Knoxville, ennessee 7996-00 Copyright August,

### Lab 9 Kirchhoff s Laws and Wheatstone Bridge

Lab 9 Kirchhoff s Laws and Wheatstone Bridge Learning Goals to explore Kirchhoff s two laws of electrical circuits to use a voltage sensor, current sensor, and the DataStudio software to measure the voltage

### Lab 1: DC Measurements (R, V, I)

Lab 1: DC Measurements (R, V, I) Introduction Resistors are the most common component found in all electrical and electronic circuits. Resistors are found in many shapes, sizes, and values. The most common

### PHYS-2212 LAB Ohm s Law and Measurement of Resistance

Objectives PHYS-2212 LAB Ohm s Law and Measurement of Resistance Part I: Comparing the relationship between electric current and potential difference (voltage) across an ohmic resistor with the voltage-current

### Electrical Fundamentals Module 3: Parallel Circuits

Electrical Fundamentals Module 3: Parallel Circuits PREPARED BY IAT Curriculum Unit August 2008 Institute of Applied Technology, 2008 ATE310- Electrical Fundamentals 2 Module 3 Parallel Circuits Module

### Kirchhoff s Voltage Law and RC Circuits

Kirchhoff s oltage Law and RC Circuits Apparatus 2 1.5 batteries 2 battery holders DC Power Supply 1 multimeter 1 capacitance meter 2 voltage probes 1 long bulb and 1 round bulb 2 sockets 1 set of alligator

### Lab E1: Introduction to Circuits

E1.1 Lab E1: Introduction to Circuits The purpose of the this lab is to introduce you to some basic instrumentation used in electrical circuits. You will learn to use a DC power supply, a digital multimeter

### Section 4. Ohm s Law: Putting up a Resistance. What Do You See? What Do You Think? Investigate. Learning Outcomes

Section 4: Ohm s Law: Putting up a Resistance Section 4 Ohm s Law: Putting up a Resistance What Do You See? Learning Outcomes In this section, you will Calculate the resistance of an unknown resistor given

### BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-4 SOME USEFUL LAWS IN BASIC ELECTRONICS

BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-4 SOME USEFUL LAWS IN BASIC ELECTRONICS Hello everybody! In a series of lecture on basic electronics, learning by doing, we now

### UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 6 Precision Resistance Measurements Introduction: It is sometimes necessary to make resistance

### Preview of Period 12: Electric Circuits

Preview of Period 2: Electric Circuits 2. Voltage, Current, and esistance How are voltage, current, and resistance related? 2.2 esistance and Voltage of esistors in Connected in Series How does current

### People s Physics Book

The Big Ideas: The name electric current is given to the phenomenon that occurs when an electric field moves down a wire at close to the speed of light. Voltage is the electrical energy density (energy

### Series and Parallel Circuits

Series and Parallel Circuits Ver. 1.2 In this experiment we will investigate the properties of several resistors connected in series and parallel. Our purpose is to verify the simple equations for the

### Experiment #3, Ohm s Law

Experiment #3, Ohm s Law 1 Purpose Physics 182 - Summer 2013 - Experiment #3 1 To investigate the -oltage, -, characteristics of a carbon resistor at room temperature and at liquid nitrogen temperature,

### After completing this chapter, the student will be able to:

Resistance OBJECTIVES After completing this chapter, the student will be able to: Define resistance and explain its affect in a circuit. Determine the tolerance range of a resistor. Identify carbon composition,

### EXPERIMENT #2: DC Circuits and Tools

Name/NetID: Teammate/NetID: EXPERIMENT #2: DC Circuits and Tools Laboratory Outline In today s lab we ll begin developing the fundamental knowledge and skills you ll need to conduct basic experiments.

### Measurements in electric circuits and Ohms Law

Measurements in electric circuits and Ohms Law Objective Learn to use voltmeter and amperemeter to perform measurement of voltage and current in simple electric circuits, learn and examine Ohm s law in

### Reading 15 METERS. Ron Bertrand VK2DQ Figure 1. Page 1

Reading 15 Ron Bertrand VK2DQ http://www.radioelectronicschool.com METERS Though you will not be asked in the exam to describe the operation of a moving coil meter, I do believe it is a good idea to study

### Q1. (a) The diagram shows the voltage-current graphs for three different electrical components.

Q. (a) The diagram shows the voltage-current graphs for three different electrical components. Which one of the components A, B or C could be a 3 volt filament lamp? Explain the reason for your choice...................

### CHAPTER12. Electricity. Multiple Choice Questions. Fig. 12.1

CHAPTER12 Electricity Multiple Choice Questions 1. A cell, a resistor, a key and ammeter are arranged as shown in the circuit diagrams of Figure12.1. The current recorded in the ammeter will be Fig. 12.1

### Activity 1: Light Emitting Diodes (LEDs)

Activity 1: Light Emitting Diodes (LEDs) Time Required: 45 minutes Materials List Group Size: 2 Each pair needs: One each of the following: One Activity 1 bag containing: o Red LED o Yellow LED o Green

### Chapter 7 Direct-Current Circuits

Chapter 7 Direct-Current Circuits 7. Introduction...7-7. Electromotive Force...7-3 7.3 Resistors in Series and in Parallel...7-5 7.4 Kirchhoff s Circuit Rules...7-7 7.5 Voltage-Current Measurements...7-9

### AP* Electric Circuits Free Response Questions

AP* Electric Circuits Free Response Questions 1996 Q4 (15 points) A student is provided with a 12.0-V battery of negligible internal resistance and four resistors with the following resistances: 100 Ω,

### Experiment #4: Basic Electrical Circuits

Purpose: Equipment: Discussion: Experiment #4: Basic Electrical Circuits Rev. 07042006 To construct some simple electrical circuits which illustrate the concepts of current, potential, and resistance,

### LAB2 Resistors, Simple Resistive Circuits in Series and Parallel Objective:

LAB2 Resistors, Simple Resistive Circuits in Series and Parallel Objective: In this lab, you will become familiar with resistors and potentiometers and will learn how to measure resistance. You will also

### 11 Internal resistance, series and parallel circuits, and the potential divider Exam practice questions

Pages 68-72 Start by working out the resistance of each of the combinations: W: In series R = R + R 2 + R 3 = 5 Ω + 5 Ω + 5 Ω = 45 Ω X: Start by adding the two series resistors: 5 Ω + 5 Ω = 30 Ω Then combine

### STUDY MATERIAL FOR CLASS 10+2 - Physics- CURRENT ELECTRICITY. The flow of electric charges in a particular direction constitutes electric current.

Chapter : 3 Current Electricity Current Electricity The branch of Physics which deals with the study of electric charges in motion is called current electricity. Electric current The flow of electric charges

### Ohmic and Non Ohmic Devices

Experiment 1 17 Kuwait University Physics 107 Physics Department Ohmic and Non Ohmic Devices Introduction In this experiment, you will study Ohm s law by examining the I-V characteristics of a fixed resistor,

### ME : Electronics and Instrumentation Lab 1: Basic Resistor Circuits and DC Power

ME 530.241: Electronics and Instrumentation Lab 1: Basic Resistor Circuits and DC Power Louis L. Whitcomb and Kyle B. Reed Department of Mechanical Engineering The Johns Hopkins University Spring 2009

### Verification of Ohm s Law, Kirchoff s Voltage Law and Kirchoff s Current Law Brad Peirson

Verification of Ohm s Law, Kirchoff s Voltage Law and Kirchoff s Current Law Brad Peirson 2-24-05 EGR 214 Circuit Analysis I Laboratory Section 04 Prof. Blauch Abstract The purpose of this report is to