Oscilloscope, Function Generator, and Voltage Division
|
|
|
- Dwain Felix Long
- 10 years ago
- Views:
Transcription
1 1. Introduction Oscilloscope, Function Generator, and Voltage Division In this lab the student will learn to use the oscilloscope and function generator. The student will also verify the concept of voltage division through measurements. 2. Background This lab presents the basic controls of the oscilloscope and the function generator. Since the primary goal is orientation with the settings of each device that will be used throughout the semester, the following describes the features and options that are most important to know. Please read them thoroughly when you feel comfortable with them, obtain your lab instructor s signature after you explain them to him/her Oscilloscope General Comments for the Oscilloscope: Tan buttons bring up different menus with options. Pressing the auto button will usually capture a clean visual for a periodic waveform. Run/stop is self explanatory. Divisions on the oscilloscope (x and y axes) are dotted lines. Channels: There are two (2) input channels Channel 1 (Yellow) & Channel 2 (Blue). There is also a Math channel (Red) that allows arithmetic between references (White) and/or channels. References are previously saved signals. The off key turns each channel off when that specific channel is selected. Vertical Scaling: The larger knob controls the Volts/div (assuming voltages are being measured) and is displayed in the lower left. The smaller knob controls the offset (from the x-axis) of the signal. In the vertical scaling menu, this is specified as the position. The probe setup option of the vertical scaling menu allows you to select voltage vs. current measurement and allows scaling. Make sure the probe is set to 1x. The vertical scaling menu also contains the coupling and impedance options you should choose the type of signal for coupling and always have 1MΩ selected unless otherwise stated. Horizontal Scaling: If the signal is shifted, the delay light will be lit auto capturing a waveform often does this to line up a jump in the signal with the origin. The larger knob controls the time/div (the seconds per division are shown next to the M ). The smaller knob controls the time shift. ECE Department Page 1 January 29&31, 2007
2 Measurements: Auto measurements can be selected using the measurement menu. Specific measurements can also be taken with the cursors (press the corresponding tan button). You must select the horizontal or vertical cursor bars there are two for each. Movement of the bars is done through the measurement knob while select toggles between the two cursors for a given orientation. The change between the two cursors and value for the cursor that is currently selected are displayed. Display Menu: The display can be one or two dimensional. Turn XY off to display the input waveform(s) with respect to time. The grid lines can also be turned off if desired. Important: To capture screen shots, you can either save them directly to a floppy disk by pressing the print button (looks like a printer) or you can open up a web browser on any of the computers on that side of the lab and type in the oscilloscope s IP address Function Generator General Comments for the Function Generator: You should always use the output terminal, not the sync. Pressing the blue keypad first will allow you to access options specified in blue colors above the corresponding keypads. If the oscilloscope does not show the correct waveform when the function generation is directly connected as an input, check the Output Terminal Option under the System Menu it should be set to High Z (impedance) usually. Characteristics Settings: The type of waveform can be selected from the top row of keypads. The characteristics can be selected from the lower row of keypads. You can adjust the settings in two ways via the gray dial or manually by first pressing the Enter Number, then entering the digits (in green above the corresponding keypads), and lastly selecting the appropriate units which are also in green above the arrow keypads (e.g. khz). V PP refers to the peak-to-peak voltage, i.e. the difference between the maximum and minimum voltage values of the waveform. V RMS refers to the root-mean-square voltage, which will be discussed later. The duty cycle (% of the time spent at the high voltage) can be set via the blue key option this applies only to square waves. ECE Department Page 2 January 29&31, 2007
3 3. Experimental Procedure 3.1. Equipment Tektronix TDS 3012B Digital Phosphor Oscilloscope Agilent E3631A DC Power Supply Agilent 33120A Waveform Generator (2) 10 kω Resistors, (1) 5 kω Resistor 3.2. Function Verification with the Oscilloscope Connect the function generator output directly to one of the inputs of the oscilloscope. Select a 10 Hz square wave as output on the function generator with a 2 Volt Peak-to- Peak amplitude and a 60% duty cycle. Use your cursors to display the period and peak-to-peak voltage on the oscilloscope. Save a screenshot (a picture, e.g. jpg is recommended) showing these measurements and include it in your lab write-up. + V R1 R 1 V S V 1 + V R2 + R 2 Figure 1: Voltage Division Circuit 3.3. Verification of Voltage Division with a DC Voltage Source A circuit that will be used to verify voltage division is shown in Figure 1. Turn on the DC power supply and measure the output with the Digital MultiMeter (DMM). Adjust the output until the DMM reads 5 Volts this will correspond to V S in Figure 1. Select 10 kω resistors for R 1 and R 2 and measure them each using the DMM. Record these values in Tables 1 and 2. Use the equation for voltage division to calculate the theoretical voltages across the two resistors and record these values in Table 1. Next use the DMM to measure the actual voltages across R 1 and R 2 and record these values in Table 2. Replace R 2 with a 5 kω resistor, repeat the process and record your values in the bottom row of Tables 1 and Voltage Division with a Waveform Voltage Source Set the function generator to output a 20 Hz sine wave with a 10 Volt Peak-to-Peak amplitude. Verify these characteristics on the oscilloscope. Using the same resistor ECE Department Page 3 January 29&31, 2007
4 values as before, replace the DC power supply with the function generator in Figure 1 (V S ). Use a set of clamps to measure the V S waveform on Channel 1 of the oscilloscope. Use another set of clamps to measure the V R2 voltage waveform on Channel 2. In addition to these two channels, use the math function to display the V R1 voltage waveform in red (Hint: use KVL to figure out what V R1 is equal to in terms of the other voltages shown in Figure 1). For each of the two same resistor combinations, measure the frequency and peak-to-peak amplitudes of each waveform, display them on the oscilloscope, and take a screenshot of them. Include these screenshots in your lab write-up and record the measurements in Table Conclusions This concludes Lab 2. If time permits, you are encouraged to explore other settings on the oscilloscope and function generator. Please return all components to their appropriate places. This week you are not required to complete a full report. Instead, you will be writing a memo. The memo must include: The recipient (i.e. TA) and his/her general company (University) information The writer (you) and your general company (University) information The date The purpose of writing the memo (i.e. conveying your lab results) A brief discussion of your results in a clear manner Greeting and conclusion The memo should also include the following as attachment and refer to them in the body of the memo: The Data Entry and Lab Instructor Signature Page with all recorded numbers. Any snapshots, circuit diagrams, and/or calculations requested in the procedure. Lastly, answer the following questions in your memo make sure to numerically justify your answers where possible. 1. Explain any functions of the oscilloscope that were found easy or difficult. 2. Explain whether the voltage division equation was verified by your results. Did the equation hold true with a DC voltage source? With a waveform voltage source? What are some reasons for any differences between the theoretical and measured values? 3. How do the equations for voltage division and current division differ? 4. Why is it useful to know the voltage division equation when we already have the other equations necessary to determine each of the voltages? (i.e. Ohm s law, Kirchoff s Voltage Law, and the fact that elements in series have the same current) ECE Department Page 4 January 29&31, 2007
5 Data Entry and Lab Instructor Signature Page Attach this page to your lab write-up. Lab Signature for Section 2 & 3.2 Student Demonstrates Controls Table 1: Theoretical Calculations (DC Voltage Source) V S (Volts) R 1 (kω) R 2 (kω) V R1 (Volts) V R2 (Volts) Table 2: Measured Values (DC Voltage Source) V S (Volts) R 1 (kω) R 2 (kω) V R1 (Volts) V R2 (Volts) Table 3: Measured Values (Waveform Voltage Source) V S (V PP ) R 1 (kω) R 2 (kω) V R1 (V PP ) V R2 (V PP ) Lab Signature for Section 3.3 & 3.4 Student Explains Voltage Division ECE Department Page 5 January 29&31, 2007
RC & RL Transient Response
EE 2006 University of Minnesota Duluth ab 8 1. Introduction R & R Transient Response The student will analyze series R and R circuits. A step input will excite these respective circuits, producing a transient
EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS
1 EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides
MATERIALS. Multisim screen shots sent to TA.
Page 1/8 Revision 0 9-Jun-10 OBJECTIVES Learn new Multisim components and instruments. Conduct a Multisim transient analysis. Gain proficiency in the function generator and oscilloscope. MATERIALS Multisim
RC Circuits and The Oscilloscope Physics Lab X
Objective RC Circuits and The Oscilloscope Physics Lab X In this series of experiments, the time constant of an RC circuit will be measured experimentally and compared with the theoretical expression for
Electrical Resonance
Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION
Lab 3 Rectifier Circuits
ECET 242 Electronic Circuits Lab 3 Rectifier Circuits Page 1 of 5 Name: Objective: Students successfully completing this lab exercise will accomplish the following objectives: 1. Learn how to construct
Lab 1: The Digital Oscilloscope
PHYSICS 220 Physical Electronics Lab 1: The Digital Oscilloscope Object: To become familiar with the oscilloscope, a ubiquitous instrument for observing and measuring electronic signals. Apparatus: Tektronix
Experiment 2 Diode Applications: Rectifiers
ECE 3550 - Practicum Fall 2007 Experiment 2 Diode Applications: Rectifiers Objectives 1. To investigate the characteristics of half-wave and full-wave rectifier circuits. 2. To recognize the usefulness
EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP
1 EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP Purpose: To demonstrate the relationship between the voltage and current of a capacitor. Theory: A capacitor is a linear circuit element whose
AC Measurements Using the Oscilloscope and Multimeter by Mr. David Fritz
AC Measurements Using the Oscilloscope and Multimeter by Mr. David Fritz 1 Sine wave with a DC offset f = frequency in Hz A = DC offset voltage (average voltage) B = Sine amplitude Vpp = 2B Vmax = A +
Fundamentals of Signature Analysis
Fundamentals of Signature Analysis An In-depth Overview of Power-off Testing Using Analog Signature Analysis www.huntron.com 1 www.huntron.com 2 Table of Contents SECTION 1. INTRODUCTION... 7 PURPOSE...
Annex: VISIR Remote Laboratory
Open Learning Approach with Remote Experiments 518987-LLP-1-2011-1-ES-KA3-KA3MP Multilateral Projects UNIVERSITY OF DEUSTO Annex: VISIR Remote Laboratory OLAREX project report Olga Dziabenko, Unai Hernandez
Beginners Guide to the TDS 210 and TDS 220 Oscilloscopes
Beginners Guide to the TDS 210 and TDS 220 Oscilloscopes By David S. Lay P. Eng Foreword This guide contains information to help you become familiar with using digital oscilloscopes. You should work through
Inductors in AC Circuits
Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum
ε: Voltage output of Signal Generator (also called the Source voltage or Applied
Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and
Lab E1: Introduction to Circuits
E1.1 Lab E1: Introduction to Circuits The purpose of the this lab is to introduce you to some basic instrumentation used in electrical circuits. You will learn to use a DC power supply, a digital multimeter
Calibration and Use of a Strain-Gage-Instrumented Beam: Density Determination and Weight-Flow-Rate Measurement
Chapter 2 Calibration and Use of a Strain-Gage-Instrumented Beam: Density Determination and Weight-Flow-Rate Measurement 2.1 Introduction and Objectives This laboratory exercise involves the static calibration
RLC Series Resonance
RLC Series Resonance 11EM Object: The purpose of this laboratory activity is to study resonance in a resistor-inductor-capacitor (RLC) circuit by examining the current through the circuit as a function
SERIES-PARALLEL DC CIRCUITS
Name: Date: Course and Section: Instructor: EXPERIMENT 1 SERIES-PARALLEL DC CIRCUITS OBJECTIVES 1. Test the theoretical analysis of series-parallel networks through direct measurements. 2. Improve skills
Using an Oscilloscope
Using an Oscilloscope The oscilloscope is used to measure a voltage that changes in time. It has two probes, like a voltmeter. You put these probes on either side of the thing that you want to measure
EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits
EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits 1. Introduction and Goal: Exploring transient behavior due to inductors and capacitors in DC circuits; gaining experience with lab instruments.
Laboratory Manual for AC Electrical Circuits
AC Electrical Circuits Laboratory Manual James M. Fiore 2 Laboratory Manual for AC Electrical Circuits Laboratory Manual for AC Electrical Circuits by James M. Fiore Version 1.3.1, 01 March 2016 Laboratory
Ph 3504 Nuclear Magnetic Resonance and Electron Spin Resonance
Ph 3504 Nuclear Magnetic Resonance and Electron Spin Resonance Required background reading Tipler, Llewellyn, section 12-3 (you only need to read the part labeled Nuclear Magnetic Resonance on pages 596-597
Lab 4 - Data Acquisition
Spring 11 Lab 4 - Data Acquisition Lab 4-1 Lab 4 - Data Acquisition Format This lab will be conducted during your regularly scheduled lab time in a group format. Each student is responsible for learning
Dash 18X / Dash 18 Data Acquisition Recorder
75 Dash 18X / Dash 18 Data Acquisition Recorder QUICK START GUIDE Supports Recorder System Software Version 3.1 1. INTRODUCTION 2. GETTING STARTED 3. HARDWARE OVERVIEW 4. MENUS & BUTTONS 5. USING THE DASH
AC CIRCUITS - CAPACITORS AND INDUCTORS
EXPRIMENT#8 AC CIRCUITS - CAPACITORS AND INDUCTORS NOTE: Two weeks are allocated for this experiment. Before performing this experiment, review the Proper Oscilloscope Use section of Experiment #7. Objective
School of Electrical and Information Engineering. The Remote Laboratory System. Electrical and Information Engineering Project 2006.
School of Electrical and Information Engineering The Remote Laboratory System Electrical and Information Engineering Project 2006 By Ben Loud Project Number: Supervisors: 2006A Jan Machotka Zorica Nedic
FREQUENCY RESPONSE OF AN AUDIO AMPLIFIER
2014 Amplifier - 1 FREQUENCY RESPONSE OF AN AUDIO AMPLIFIER The objectives of this experiment are: To understand the concept of HI-FI audio equipment To generate a frequency response curve for an audio
Lab #9: AC Steady State Analysis
Theory & Introduction Lab #9: AC Steady State Analysis Goals for Lab #9 The main goal for lab 9 is to make the students familar with AC steady state analysis, db scale and the NI ELVIS frequency analyzer.
Figure 1: Multiple unsynchronized snapshots of the same sinusoidal signal.
1 Oscilloscope Guide Introduction An oscilloscope is a device used to observe and measure time-dependent electronic signals. It is essentially an enhanced voltmeter which displays a graph of potential
Step Response of RC Circuits
Step Response of RC Circuits 1. OBJECTIVES...2 2. REFERENCE...2 3. CIRCUITS...2 4. COMPONENTS AND SPECIFICATIONS...3 QUANTITY...3 DESCRIPTION...3 COMMENTS...3 5. DISCUSSION...3 5.1 SOURCE RESISTANCE...3
Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)
Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Concept: circuits Time: 30 m SW Interface: 750 Windows file: RLC.SWS EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage
User s Manual of OWON Colour Digital Storage Oscilloscope
Copy Right in this Manual Lilliput Company. All rights have been reserved. The Lilliput s products are under the protection of the patent rights in America and other countries, including ones which have
22.302 Experiment 5. Strain Gage Measurements
22.302 Experiment 5 Strain Gage Measurements Introduction The design of components for many engineering systems is based on the application of theoretical models. The accuracy of these models can be verified
DCM555 - Data Communications Lab 8 Time Division Multiplexing (TDM) Part 1 - T1/DS1 Signals
DCM555 - Data Communications Lab 8 Time Division Multiplexing (TDM) Part 1 - T1/DS1 Signals Name: St. #: Section: (Note: Show all of your calculations, express your answer to the appropriate number of
RIGOL Data Sheet. DS1000E, DS1000D Series Digital Oscilloscopes DS1102E, DS1052E, DS1102D, DS1052D. Product Overview. Applications. Easy to Use Design
RIGOL Data Sheet DS1000E, DS1000D Series Digital Oscilloscopes DS1102E, DS1052E, DS1102D, DS1052D Product Overview DS1000E, DS1000D series are kinds of economical digital oscilloscope with high-performance.
Dash 8Xe / Dash 8X Data Acquisition Recorder
75 Dash 8Xe / Dash 8X Data Acquisition Recorder QUICK START GUIDE Supports Recorder System Software Version 2.0 1. INTRODUCTION 2. GETTING STARTED 3. HARDWARE OVERVIEW 4. MENUS & BUTTONS 5. USING THE DASH
Laboratory Start-Up Procedure
Laboratory Start-Up Procedure Turn-on the Computer Start the PC by turning on the power. When the startup display appears enter the username and password: Username: students, Password: power. Turn-on the
Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224)
6 OP AMPS II 6 Op Amps II In the previous lab, you explored several applications of op amps. In this exercise, you will look at some of their limitations. You will also examine the op amp integrator and
Lab 5 Operational Amplifiers
Lab 5 Operational Amplifiers By: Gary A. Ybarra Christopher E. Cramer Duke University Department of Electrical and Computer Engineering Durham, NC. Purpose The purpose of this lab is to examine the properties
Math for the General Class Ham Radio Operator. A prerequisite math refresher for the math phobic ham
Math for the General Class Ham Radio Operator A prerequisite math refresher for the math phobic ham What We Will Cover Write these down! Ohm s Law Power Circle What We Will Cover Write these down! What
UT4000. Series USER MANUAL. Digital Storage Oscilloscope
UT4000 Series USER MANUAL Digital Storage Oscilloscope UT4000 Series Digital Storage Oscilloscope User Manual General Safety Rules This unit is designed and manufactured strictly in accordance with GB4793
ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEM 102 INTRODUCTION TO ELECTRICAL ENGINEERING EXPERIMENT 9: DIODES AND DC POWER SUPPLY OBJECTIVE: To observe how a diode functions
User s Guide DDS-3X25 USB ARBITRARY FUNCTION GENERATOR
User s Guide DDS-3X25 USB ARBITRARY FUNCTION GENERATOR Content General safety summary...1 Introduction...2 Chapter 1 Getting started...3 System Requirements...4 Installing Hardware...5 Installing Software...8
Physics 15b Lab 4: Responses to Time Dependent Voltages
Physics 15b Lab 4: Responses to Time Dependent Voltages Chapter 8 in Purcell covers AC circuit. The chapter focuses on the response to sinusoidal signals V = Vo cos(wt). If a circuit containing only resistors,
= V peak 2 = 0.707V peak
BASIC ELECTRONICS - RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard
LABORATORY 2 THE DIFFERENTIAL AMPLIFIER
LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common
DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b
DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,
Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1
Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment
User Manual. TDS 200-Series Digital Real-Time Oscilloscope 071-0398-03
User Manual TDS 200-Series Digital Real-Time Oscilloscope 071-0398-03 This document supports firmware version FV:v1.00 and above. www.tektronix.com Copyright Tektronix, Inc. All rights reserved. Tektronix
MATRIX TECHNICAL NOTES
200 WOOD AVENUE, MIDDLESEX, NJ 08846 PHONE (732) 469-9510 FAX (732) 469-0418 MATRIX TECHNICAL NOTES MTN-107 TEST SETUP FOR THE MEASUREMENT OF X-MOD, CTB, AND CSO USING A MEAN SQUARE CIRCUIT AS A DETECTOR
Physics 42 Lab 4 Fall 2012 Cathode Ray Tube (CRT)
Physics 42 Lab 4 Fall 202 Cathode Ray Tube (CRT) PRE-LAB Read the background information in the lab below and then derive this formula for the deflection. D = LPV defl 2 SV accel () Redraw the diagram
DSO-1062D/DSO-1102D/DSO-1202D different bandwidths. Digital Oscilloscope User Manual
DSO-1062D/DSO-1102D/DSO-1202D different bandwidths Digital Oscilloscope User Manual Contents Contents Contents... i Copyright Declaration... iv Chapter 1 Safety Tips... 1 1.1 General Safety Summary...
Creative Inquiry Electronics Project Lab Manual. NI mydaq
Creative Inquiry Electronics Project Lab Manual NI mydaq TABLE OF CONTENTS Introduction... 5 LabVIEW Package and Driver Installation Tutorial for ENGR 90... 5 Basic Troubleshooting... 6 Files on ENGR90_VIs.zip...
Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz
Author: Don LaFontaine Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz Abstract Making accurate voltage and current noise measurements on op amps in
Experiment # (4) AM Demodulator
Islamic University of Gaza Faculty of Engineering Electrical Department Experiment # (4) AM Demodulator Communications Engineering I (Lab.) Prepared by: Eng. Omar A. Qarmout Eng. Mohammed K. Abu Foul Experiment
GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law
GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law OBJECTIVES: To verify Ohm s law, the mathematical relationship among current, voltage or potential difference, and resistance, in a simple circuit.
PropScope USB Oscilloscope
USB Oscilloscope v1.0 December 2009 Manual by Hanno Sander 3 Table of Contents ForeWord... Part I Welcome... 4 Part II Getting... Started 6 2.1 Installation... 7 2.2 8 Connect...
TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin
TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin (Updated 7/19/08 to delete sine wave output) I constructed the 1 MHz square wave generator shown in the Appendix. This
Chapter 4 Using Line Power Analysis
Chapter 4 Using Line Power Analysis Line Power Analysis Overview The Line Power Analysis section of PMA1 provides the user with tools to measure 50 and 60 Hz line voltage (V RMS ), line current I RMS ),
Lab Exercise 1: Acoustic Waves
Lab Exercise 1: Acoustic Waves Contents 1-1 PRE-LAB ASSIGNMENT................. 2 1-3.1 Spreading Factor: Spherical Waves........ 2 1-3.2 Interference In 3-D................. 3 1-4 EQUIPMENT........................
Iowa State University Electrical and Computer Engineering. E E 452. Electric Machines and Power Electronic Drives. Laboratory #3 Figures of Merit
Electrical and Computer Engineering E E 452. Electric Machines and Power Electronic Drives Laboratory #3 Figures of Merit Summary Simple experiments will be conducted. Experimental waveforms will be measured,
Tutorial 2: Using Excel in Data Analysis
Tutorial 2: Using Excel in Data Analysis This tutorial guide addresses several issues particularly relevant in the context of the level 1 Physics lab sessions at Durham: organising your work sheet neatly,
ADINSTRUMENTS. making science easier. LabChart 7. Student Quick Reference Guide
ADINSTRUMENTS making science easier LabChart 7 Student Quick Reference Guide How to use this guide The LabChart Student Quick Reference Guide is a resource for users of PowerLab systems in the classroom
Experiment 8 : Pulse Width Modulation
Name/NetID: Teammate/NetID: Experiment 8 : Pulse Width Modulation Laboratory Outline In experiment 5 we learned how to control the speed of a DC motor using a variable resistor. This week, we will learn
Experiment1: Introduction to laboratory equipment and basic components.
Experiment1: Introduction to laboratory equipment and basic components. 1 OBJECTIVES. This experiment will provide exposure to the various test equipment to be used in subsequent experiments. A primary
Keysight 14585A Control and Analysis Software
Keysight 14585A Control and Analysis Software Quick Start Guide Legal Notices Keysight Technologies 2010, 2012, 2014 No part of this document may be photocopied, reproduced, or translated to another
The Time Constant of an RC Circuit
The Time Constant of an RC Circuit 1 Objectives 1. To determine the time constant of an RC Circuit, and 2. To determine the capacitance of an unknown capacitor. 2 Introduction What the heck is a capacitor?
DSO Nano v3 - Wiki. Contents. Introduction
1 of 8 28/02/2013 02:29 a. m. DSO Nano v3 From Wiki Contents 1 Introduction 2 Features 3 General Safety Rules 4 Specifications 4.1 Key Specs 4.2 Structure 5 Usage 5.1 Basic Operation 5.2 User Interface
Lab #4 Thevenin s Theorem
In this experiment you will become familiar with one of the most important theorems in circuit analysis, Thevenin s Theorem. Thevenin s Theorem can be used for two purposes: 1. To calculate the current
1.1 The 7493 consists of 4 flip-flops with J-K inputs unconnected. In a TTL chip, unconnected inputs
CALIFORNIA STATE UNIVERSITY LOS ANGELES Department of Electrical and Computer Engineering EE-246 Digital Logic Lab EXPERIMENT 1 COUNTERS AND WAVEFORMS Text: Mano, Digital Design, 3rd & 4th Editions, Sec.
Manual for the sound card oscilloscope V1.24 C. Zeitnitz english translation by P. van Gemmeren and K. Grady
Manual for the sound card oscilloscope V1.24 C. Zeitnitz english translation by P. van Gemmeren and K. Grady C. Zeitnitz 04/2008 This Software and all previous versions are NO Freeware! The use of the
Step response of an RLC series circuit
School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 5 Step response of an RLC series circuit 1 Introduction Objectives
1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal.
CHAPTER 3: OSCILLOSCOPE AND SIGNAL GENERATOR 3.1 Introduction to oscilloscope 1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal. 2. The graph show signal change
USER S MANUAL. Hantek6022BE. www.hantek.com V1.0.3
USER S MANUAL Hantek6022BE V1.0.3 www.hantek.com Content General Safety Summary... 1 Chapter 1 Getting Start... 2 1.1 System Requirement... 3 1.2 Install Software... 4 1.3 Install Driver... 7 1.4 General
See Horenstein 4.3 and 4.4
EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes by Drs. A.V. Radun and K.D. Donohue (2/14/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated
Lab 3 - DC Circuits and Ohm s Law
Lab 3 DC Circuits and Ohm s Law L3-1 Name Date Partners Lab 3 - DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in
Cell Phone Vibration Experiment
Objective Cell Phone Vibration Experiment Most cell phones are designed to vibrate. But at what frequency do they vibrate? With an accelerometer, data acquisition and signal analysis the vibration frequency
Lab 3: Introduction to Data Acquisition Cards
Lab 3: Introduction to Data Acquisition Cards INTRODUCTION: In this lab, you will be building a VI to display the input measured on a channel. However, within your own VI you will use LabVIEW supplied
Pulse Width Modulation (PWM) LED Dimmer Circuit. Using a 555 Timer Chip
Pulse Width Modulation (PWM) LED Dimmer Circuit Using a 555 Timer Chip Goals of Experiment Demonstrate the operation of a simple PWM circuit that can be used to adjust the intensity of a green LED by varying
EE 242 EXPERIMENT 5: COMPUTER SIMULATION OF THREE-PHASE CIRCUITS USING PSPICE SCHEMATICS 1
EE 242 EXPERIMENT 5: COMPUTER SIMULATION OF THREE-PHASE CIRCUITS USING PSPICE SCHEMATICS 1 Objective: To build, simulate, and analyze three-phase circuits using OrCAD Capture Pspice Schematics under balanced
electronics fundamentals
electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA Lesson 1: Diodes and Applications Center-Tapped Full-wave Rectifier The center-tapped (CT) full-wave rectifier
The Basics of Digital Multimeters
IDEAL INDUSTRIES INC. The Basics of Digital Multimeters A guide to help you understand the basic Features and Functions of a Digital Multimeter. Author: Patrick C Elliott Field Sales Engineer IDEAL Industries,
Laboratory 4: Feedback and Compensation
Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 20-24) and Week 10 (Oct. 27-31) Due Week 11 (Nov. 3-7) 1 Pre-Lab This Pre-Lab should be completed before attending your regular
Electronics. Basic Concepts. Yrd. Doç. Dr. Aytaç GÖREN Yrd. Doç. Dr. Levent ÇETİN
Electronics Basic Concepts Electric charge Ordinary matter is made up of atoms which have positively charged nuclei and negatively charged electrons surrounding them. Charge is quantized as the subtraction
Agilent 54621A/22A/24A/41A/42A Oscilloscopes and Agilent 54621D/22D/41D/42D Mixed-Signal Oscilloscopes. User s Guide
User s Guide Publication Number 54622-97036 September 2002 For Safety Information and Regulatory information, see the pages behind the Index. Copyright Agilent Technologies 2000-2002 All Rights Reserved
DSO8000E SERIES HANDHELD OSCILLOSCOPE
DSO8000E SERIES HANDHELD OSCILLOSCOPE USER S MANUAL 8072E/8102E/8152E/8202E (V1.0.1) Contents Contents Contents... i Copyright Declaration... iii Chapter 1 Safety Tips... 1 1.1 General Safety Summary...
LAB2 Resistors, Simple Resistive Circuits in Series and Parallel Objective:
LAB2 Resistors, Simple Resistive Circuits in Series and Parallel Objective: In this lab, you will become familiar with resistors and potentiometers and will learn how to measure resistance. You will also
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC
U1602A Handheld Oscilloscopes, 20 MHz
Products & Services Technical Support Buy Industries About Agilent United States Home >... > Oscilloscopes > U1600A Series handheld oscilloscopes (2 models) > U1602A Handheld Oscilloscopes, 20 MHz Product
INTERFERENCE OF SOUND WAVES
2011 Interference - 1 INTERFERENCE OF SOUND WAVES The objectives of this experiment are: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves. To observe interference phenomena
Electronic WorkBench tutorial
Electronic WorkBench tutorial Introduction Electronic WorkBench (EWB) is a simulation package for electronic circuits. It allows you to design and analyze circuits without using breadboards, real components
RIGOL Data Sheet. DS1000E, DS1000D Series Digital Oscilloscopes DS1102E, DS1052E, DS1102D, DS1052D. Product Overview. Applications. Easy to Use Design
RIGOL Data Sheet DS1000E, DS1000D Series Digital Oscilloscopes DS1102E, DS1052E, DS1102D, DS1052D Product Overview DS1000E, DS1000D series are kinds of economical digital oscilloscope with high-performance.
Department of Information Technology. Microsoft Outlook 2013. Outlook 101 Basic Functions
Department of Information Technology Microsoft Outlook 2013 Outlook 101 Basic Functions August 2013 Outlook 101_Basic Functions070713.doc Outlook 101: Basic Functions Page 2 Table of Contents Table of
[F/T] [5] [KHz] [AMP] [3] [V] 4 ) To set DC offset to -2.5V press the following keys [OFS] [+/-] [2] [.] [5] [V]
FG085 minidds Function Generator Manual of Operation Applicable Models: 08501, 08501K, 08502K, 08503, 08503K Applicable Firmware Version: 1 ) 113-08501-100 or later (for U5) 2 ) 113-08502-030 or later
ELECTRON SPIN RESONANCE Last Revised: July 2007
QUESTION TO BE INVESTIGATED ELECTRON SPIN RESONANCE Last Revised: July 2007 How can we measure the Landé g factor for the free electron in DPPH as predicted by quantum mechanics? INTRODUCTION Electron
Series and Parallel Resistive Circuits Physics Lab VIII
Series and Parallel Resistive Circuits Physics Lab VIII Objective In the set of experiments, the theoretical expressions used to calculate the total resistance in a combination of resistors will be tested
Basic oscilloscope operation
asic oscilloscope operation This worksheet and all related files are licensed under the Creative Commons ttribution License, version.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/.0/,
Table of Contents. SAFETY INSTRUCTION...6 Safety Symbols... 6 Safety Guidelines... 7 Power cord for the United Kingdom... 9
TABLE OF CONTENTS Table of Contents SAFETY INSTRUCTION...6 Safety Symbols... 6 Safety Guidelines... 7 Power cord for the United Kingdom... 9 GETTING STARTED... 10 Main Features...10 Panel Overview...11
