# Oscilloscope, Function Generator, and Voltage Division

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 1. Introduction Oscilloscope, Function Generator, and Voltage Division In this lab the student will learn to use the oscilloscope and function generator. The student will also verify the concept of voltage division through measurements. 2. Background This lab presents the basic controls of the oscilloscope and the function generator. Since the primary goal is orientation with the settings of each device that will be used throughout the semester, the following describes the features and options that are most important to know. Please read them thoroughly when you feel comfortable with them, obtain your lab instructor s signature after you explain them to him/her Oscilloscope General Comments for the Oscilloscope: Tan buttons bring up different menus with options. Pressing the auto button will usually capture a clean visual for a periodic waveform. Run/stop is self explanatory. Divisions on the oscilloscope (x and y axes) are dotted lines. Channels: There are two (2) input channels Channel 1 (Yellow) & Channel 2 (Blue). There is also a Math channel (Red) that allows arithmetic between references (White) and/or channels. References are previously saved signals. The off key turns each channel off when that specific channel is selected. Vertical Scaling: The larger knob controls the Volts/div (assuming voltages are being measured) and is displayed in the lower left. The smaller knob controls the offset (from the x-axis) of the signal. In the vertical scaling menu, this is specified as the position. The probe setup option of the vertical scaling menu allows you to select voltage vs. current measurement and allows scaling. Make sure the probe is set to 1x. The vertical scaling menu also contains the coupling and impedance options you should choose the type of signal for coupling and always have 1MΩ selected unless otherwise stated. Horizontal Scaling: If the signal is shifted, the delay light will be lit auto capturing a waveform often does this to line up a jump in the signal with the origin. The larger knob controls the time/div (the seconds per division are shown next to the M ). The smaller knob controls the time shift. ECE Department Page 1 January 29&31, 2007

3 3. Experimental Procedure 3.1. Equipment Tektronix TDS 3012B Digital Phosphor Oscilloscope Agilent E3631A DC Power Supply Agilent 33120A Waveform Generator (2) 10 kω Resistors, (1) 5 kω Resistor 3.2. Function Verification with the Oscilloscope Connect the function generator output directly to one of the inputs of the oscilloscope. Select a 10 Hz square wave as output on the function generator with a 2 Volt Peak-to- Peak amplitude and a 60% duty cycle. Use your cursors to display the period and peak-to-peak voltage on the oscilloscope. Save a screenshot (a picture, e.g. jpg is recommended) showing these measurements and include it in your lab write-up. + V R1 R 1 V S V 1 + V R2 + R 2 Figure 1: Voltage Division Circuit 3.3. Verification of Voltage Division with a DC Voltage Source A circuit that will be used to verify voltage division is shown in Figure 1. Turn on the DC power supply and measure the output with the Digital MultiMeter (DMM). Adjust the output until the DMM reads 5 Volts this will correspond to V S in Figure 1. Select 10 kω resistors for R 1 and R 2 and measure them each using the DMM. Record these values in Tables 1 and 2. Use the equation for voltage division to calculate the theoretical voltages across the two resistors and record these values in Table 1. Next use the DMM to measure the actual voltages across R 1 and R 2 and record these values in Table 2. Replace R 2 with a 5 kω resistor, repeat the process and record your values in the bottom row of Tables 1 and Voltage Division with a Waveform Voltage Source Set the function generator to output a 20 Hz sine wave with a 10 Volt Peak-to-Peak amplitude. Verify these characteristics on the oscilloscope. Using the same resistor ECE Department Page 3 January 29&31, 2007

5 Data Entry and Lab Instructor Signature Page Attach this page to your lab write-up. Lab Signature for Section 2 & 3.2 Student Demonstrates Controls Table 1: Theoretical Calculations (DC Voltage Source) V S (Volts) R 1 (kω) R 2 (kω) V R1 (Volts) V R2 (Volts) Table 2: Measured Values (DC Voltage Source) V S (Volts) R 1 (kω) R 2 (kω) V R1 (Volts) V R2 (Volts) Table 3: Measured Values (Waveform Voltage Source) V S (V PP ) R 1 (kω) R 2 (kω) V R1 (V PP ) V R2 (V PP ) Lab Signature for Section 3.3 & 3.4 Student Explains Voltage Division ECE Department Page 5 January 29&31, 2007

### RC & RL Transient Response

EE 2006 University of Minnesota Duluth ab 8 1. Introduction R & R Transient Response The student will analyze series R and R circuits. A step input will excite these respective circuits, producing a transient

### EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS

1 EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides

### I. Purpose. 1. Introduce the measurement of sinusoids (ac voltages) using the oscilloscope 2. Introduce the operation of the function generator

Updated 17 AUG 2016 Name: Section: I. Purpose. 1. Introduce the measurement of sinusoids (ac voltages) using the oscilloscope 2. Introduce the operation of the function generator II. Equipment. Keysight

### The Oscilloscope, the Signal Generator and Your Filter s Test Setup SGM 5/29/2013

The Oscilloscope, the Signal Generator and Your Filter s Test Setup SGM 5/29/2013 1. Oscilloscope A multimeter is an appropriate device to measure DC voltages, however, when a signal alternates at relatively

### PHYSICS 176 UNIVERSITY PHYSICS LAB II. Experiment 4. Alternating Current Measurement

PHYSICS 176 UNIVERSITY PHYSICS LAB II Experiment 4 Alternating Current Measurement Equipment: Supplies: Oscilloscope, Function Generator. Filament Transformer. A sine wave A.C. signal has three basic properties:

### MATERIALS. Multisim screen shots sent to TA.

Page 1/8 Revision 0 9-Jun-10 OBJECTIVES Learn new Multisim components and instruments. Conduct a Multisim transient analysis. Gain proficiency in the function generator and oscilloscope. MATERIALS Multisim

### INTRODUCTION TO ARBITRARY/FUNCTION GENERATOR

Page 1 of 7 INTRODUCTION TO ARBITRARY/FUNCTION GENERATOR BEFORE YOU BEGIN PREREQUISITE LABS Introduction to MATLAB Introduction to Oscilloscope EXPECTED KNOWLEDGE Ohm s law & Kirchhoff s laws Operation

### Lab 1: The Digital Oscilloscope

PHYSICS 220 Physical Electronics Lab 1: The Digital Oscilloscope Object: To become familiar with the oscilloscope, a ubiquitous instrument for observing and measuring electronic signals. Apparatus: Tektronix

### RC Circuits and The Oscilloscope Physics Lab X

Objective RC Circuits and The Oscilloscope Physics Lab X In this series of experiments, the time constant of an RC circuit will be measured experimentally and compared with the theoretical expression for

### Electrical Resonance

Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION

### EXPERIMENT 6 CLIPPING AND CLAMPING DIODE CIRCUITS

EXPERIMENT 6 CLIPPING AND CLAMPING DIODE CIRCUITS OBJECTIVES To understand the theory of operation of the clipping and clamping diode circuits. To design wave shapes that meet different circuits needs.

### EECS 100/43 Lab 2 Function Generator and Oscilloscope

1. Objective EECS 100/43 Lab 2 Function Generator and Oscilloscope In this lab you learn how to use the oscilloscope and function generator 2. Equipment a. Breadboard b. Wire cutters c. Wires d. Oscilloscope

### Physics 2306 Experiment 7: Time-dependent Circuits, Part 1

Name ID number Date Lab CRN Lab partner Lab instructor Objectives Physics 2306 Experiment 7: Time-dependent Circuits, Part 1 To study the time dependent behavior of the voltage and current in circuits

### SainSmart DDS Series User Manual (Software)

SainSmart DDS Series User Manual (Software) For Oscilloscope, Signal Generator and Logic Analyzer Updated software and user manual can be downloaded from http://www.sainsmart.com/tools-equipments/oscilloscope-dso/sainsmart-dds.html

### The RC Circuit. Pre-lab questions. Introduction. The RC Circuit

The RC Circuit Pre-lab questions 1. What is the meaning of the time constant, RC? 2. Show that RC has units of time. 3. Why isn t the time constant defined to be the time it takes the capacitor to become

### EXPERIMENT 4:- MEASUREMENT OF REACTANCE OFFERED BY CAPACITOR IN DIFFERENT FREQUENCY FOR R-C CIRCUIT

Kathmandu University Department of Electrical and Electronics Engineering BASIC ELECTRICAL LAB (ENGG 103) EXPERIMENT 4:- MEASUREMENT OF REACTANCE OFFERED BY CAPACITOR IN DIFFERENT FREQUENCY FOR R-C CIRCUIT

### EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP

1 EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP Purpose: To demonstrate the relationship between the voltage and current of a capacitor. Theory: A capacitor is a linear circuit element whose

### Experiment 2 Diode Applications: Rectifiers

ECE 3550 - Practicum Fall 2007 Experiment 2 Diode Applications: Rectifiers Objectives 1. To investigate the characteristics of half-wave and full-wave rectifier circuits. 2. To recognize the usefulness

### HALF WAVE AND FULL WAVE RECTIFIER CIRCUITS

FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA KAMPUS SKUDAI JOHOR SKMM 2921 ELECTRIC LABORATORY EXPERIMENT-2 HALF WAVE AND FULL WAVE RECTIFIER CIRCUITS Prepared by: 1. Dr. Bambang Supriyo

### Lab 3 Rectifier Circuits

ECET 242 Electronic Circuits Lab 3 Rectifier Circuits Page 1 of 5 Name: Objective: Students successfully completing this lab exercise will accomplish the following objectives: 1. Learn how to construct

### Experiment 1 Familiarization with Laboratory Instruments: Oscilloscope, Function Generator, Digital Multimeter, and DC Power Supply

Experiment 1 Familiarization with Laboratory Instruments: Oscilloscope, Function Generator, Digital Multimeter, and DC Power Supply A. OSCILLOSCOPE Oscilloscope is probably the single most versatile and

### 33120A. Function Waveform Generator Operating Instructions

33120A Function Waveform Generator Operating Instructions Page 1 of 10 33120A Function Waveform Generator Operating Instructions This pamphlet is intended to give you (the student) an overview on the use

### ENGR 210 Lab 4 Use of the Function Generator & Oscilloscope

ENGR 210 Lab 4 Use of the Function Generator & Oscilloscope In this laboratory you will learn to use two additional instruments in the laboratory, namely the function/arbitrary waveform generator, which

### Laboratory #2: AC Circuits, Impedance and Phasors Electrical and Computer Engineering EE University of Saskatchewan

Authors: Denard Lynch Date: Aug 30 - Sep 28, 2012 Sep 23, 2013: revisions-djl Description: This laboratory explores the behaviour of resistive, capacitive and inductive elements in alternating current

### PHYS 2426 Engineering Physics II (Revised July 7, 2011) AC CIRCUITS: RLC SERIES CIRCUIT

PHYS 2426 Engineering Physics II (Revised July 7, 2011) AC CIRCUITS: RLC SERIES CIRCUIT INTRODUCTION The objective of this experiment is to study the behavior of an RLC series circuit subject to an AC

### DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 1250 Lab 6 Generate Voltages using a Function Generator and Measure Voltages using an Oscilloscope Building: Digital Circuit Build an Electronic Candle Overview: In Lab 6 you will: Build an electronic

### EE 1202 Experiment #2 Resistor Circuits

EE 1202 Experiment #2 Resistor Circuits 1. ntroduction and Goals: Demonstrates the voltage-current relationships in DC and AC resistor circuits. Providing experience in using DC power supply, digital multimeter,

### LRC Circuits. Purpose. Principles PHYS 2211L LAB 7

Purpose This experiment is an introduction to alternating current (AC) circuits. Using the oscilloscope, we will examine the voltage response of inductors, resistors and capacitors in series circuits driven

### ENGR 210 Lab 11 Frequency Response of Passive RC Filters

ENGR 210 Lab 11 Response of Passive RC Filters The objective of this lab is to introduce you to the frequency-dependent nature of the impedance of a capacitor and the impact of that frequency dependence

### EXPERIMENT 3 DIODE AS RECTIFIER

EXPERIMENT 3 DIODE AS RECTIFIER 1. OBJECTIVES 1.1 To understand the application of diode. 1.2 To demonstrate the characteristics of three different diode rectifier circuits: halfwave rectifier, center-tapped

### Introduction to Oscilloscopes Lab Experiment

A collection of lab exercises to introduce you to the basic controls of a digital oscilloscope in order to make common electronic measurements. Revision 1.0 Page 1 of 18 Table of Contents LABORATORY EXPERIMENT

### The R-C series circuit

School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 4 The C series circuit 1 Introduction Objectives To study the

### CHARGING and DISCHARGING CAPACITORS

Lab 4 Oscilloscopes, Electrocardiograms, Discharging Capacitors LAB 4a LAB 4b Lab 4c THE OSCILLOSCOPE ELECTROCARDIOGRAMS (ECG or EKG) CHARGING and DISCHARGING CAPACITORS EXPERIMENTAL QUESTION In this lab,

### CIRCUITS AND SYSTEMS LABORATORY EXERCISE 6 TRANSIENT STATES IN RLC CIRCUITS AT DC EXCITATION

CIRCUITS AND SYSTEMS LABORATORY EXERCISE 6 TRANSIENT STATES IN RLC CIRCUITS AT DC EXCITATION 1. DEVICES AND PANELS USED IN EXERCISE The following devices are to be used in this exercise: oscilloscope HP

### ECE207 Electrical Engineering Fall Lab 1 Nodal Analysis, Capacitor and Inductor Models

Lab 1 Nodal Analysis, Capacitor and Inductor Models Objectives: At the conclusion of this lab, students should be able to: use the NI mydaq to power a circuit using the power supply and function generator

### Figure 1. Front Panel of Function Generator

Equipment Introduction: Part I - Introduction to the Function Generator Overview: The function generator is used to generate a wide range of alternating-current (AC) signals. A diagram of the Leader LFG-1300S

### AC Measurements Using the Oscilloscope and Multimeter by Mr. David Fritz

AC Measurements Using the Oscilloscope and Multimeter by Mr. David Fritz 1 Sine wave with a DC offset f = frequency in Hz A = DC offset voltage (average voltage) B = Sine amplitude Vpp = 2B Vmax = A +

### Beginners Guide to the TDS 210 and TDS 220 Oscilloscopes

Beginners Guide to the TDS 210 and TDS 220 Oscilloscopes By David S. Lay P. Eng Foreword This guide contains information to help you become familiar with using digital oscilloscopes. You should work through

### EE 442. Lab Experiment No. 1 1/12/2007. Introduction to the Function Generator and the Oscilloscope

EE 442 Lab Experiment No. 1 1/12/2007 Introduction to the Function Generator and the Oscilloscope 1 I. INTRODUCTION EE 442 Laboratory Experiment 1 The purpose of this lab is to learn the basic operation

### The Oscilloscope and the Function Generator:

The Oscilloscope and the Function Generator: Some introductory exercises for students in the advanced labs Introduction So many of the experiments in the advanced labs make use of oscilloscopes and function

### RC Circuits. The purpose of this lab is to understand how capacitors charge and discharge.

Department of Physics and Geology Purpose Circuits Physics 2402 The purpose of this lab is to understand how capacitors charge and discharge. Materials Decade Resistance Box (CENCO), 0.1 µf, 0.5µF, and

### EEL 3123 NETWORKS AND SYSTEMS

LABORATORY MANUAL EEL 3123 NETWORKS AND SYSTEMS DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF CENTRAL FLORIDA Prepared by Dr. PARVEEN WAHID Ms. YA SHEN MAY 2013 PREFACE This lab manual

### Lab 3 Finding the value of an unknown capacitor. By Henry Lin, Hani Mehrpouyan

Lab 3 Finding the value of an unknown By Henry Lin, Hani Mehrpouyan First, get familiar with the oscilloscope It is a powerful tool for looking at waveforms This allows voltages to be measured as a function

### ECE201 Laboratory 1 Basic Electrical Equipment and Ohm s and Kirchhoff s Laws (Created by Prof. Walter Green, Edited by Prof. M. J.

ECE201 Laboratory 1 Basic Electrical Equipment and Ohm s and Kirchhoff s Laws (Created by Prof. Walter Green, Edited by Prof. M. J. Roberts) Objectives The objectives of Laboratory 1 are learn to operate

### Electrical Resonance RLC circuits

Purpose: To investigate resonance phenomena that result from forced motion near a system's natural frequency. In this case the system will be a variety of RLC circuits. Theory: You are already familiar

### Annex: VISIR Remote Laboratory

Open Learning Approach with Remote Experiments 518987-LLP-1-2011-1-ES-KA3-KA3MP Multilateral Projects UNIVERSITY OF DEUSTO Annex: VISIR Remote Laboratory OLAREX project report Olga Dziabenko, Unai Hernandez

### EE 1202 Experiment #7 Signal Amplification

EE 1202 Experiment #7 Signal Amplification 1. Introduction and Goal: s increase the power (amplitude) of an electrical signal. They are used in audio and video systems and appliances. s are designed to

### ECE 2201 PRELAB 2 DIODE APPLICATIONS

ECE 2201 PRELAB 2 DIODE APPLICATIONS P1. Review this experiment IN ADVANCE and prepare Circuit Diagrams, Tables, and Graphs in your notebook, prior to coming to lab. P2. Hand Analysis: (1) For the zener

### ε: Voltage output of Signal Generator (also called the Source voltage or Applied

Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and

### Lab 4 Op Amp Filters

Lab 4 Op Amp Filters Figure 4.0. Frequency Characteristics of a BandPass Filter Adding a few capacitors and resistors to the basic operational amplifier (op amp) circuit can yield many interesting analog

### Inductors in AC Circuits

Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum

### Fundamentals of Signature Analysis

Fundamentals of Signature Analysis An In-depth Overview of Power-off Testing Using Analog Signature Analysis www.huntron.com 1 www.huntron.com 2 Table of Contents SECTION 1. INTRODUCTION... 7 PURPOSE...

### Software Manual. for Oscilloscope

Software Manual for Oscilloscope 1 Welcome... 1 2 Version... 1 3 System requirement... 2 4 Using for the first time... 3 4.1 Windows XP driver installation... 3 4.2 Windows 7 driver installation... 5 5

### Lab 3. Transistor and Logic Gates

Lab 3. Transistor and Logic Gates Laboratory Instruction Today you will learn how to use a transistor to amplify a small AC signal as well as using it as a switch to construct digital logic circuits. Introduction

### Calibration and Use of a Strain-Gage-Instrumented Beam: Density Determination and Weight-Flow-Rate Measurement

Chapter 2 Calibration and Use of a Strain-Gage-Instrumented Beam: Density Determination and Weight-Flow-Rate Measurement 2.1 Introduction and Objectives This laboratory exercise involves the static calibration

### Fourier Series Analysis

School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II aboratory Experiment 6 Fourier Series Analysis 1 Introduction Objectives The aim

### University of Alberta Department of Electrical and Computer Engineering. EE 250 Laboratory Experiment #5 Diodes

University of Alberta Department of Electrical and Computer Engineering EE 250 Laboratory Experiment #5 Diodes Objective: To introduce basic diode concepts. Introduction: The diode is the most fundamental

### Lab 2 Intro to Digital Logic and Transistors

University of Pennsylvania Department of Electrical and Systems Engineering ESE 111 Intro to ESE Lab 2 Intro to Digital Logic and Transistors Introduction: Up until now, everything that you have done has

### SERIES-PARALLEL DC CIRCUITS

Name: Date: Course and Section: Instructor: EXPERIMENT 1 SERIES-PARALLEL DC CIRCUITS OBJECTIVES 1. Test the theoretical analysis of series-parallel networks through direct measurements. 2. Improve skills

### RLC Series Resonance

RLC Series Resonance 11EM Object: The purpose of this laboratory activity is to study resonance in a resistor-inductor-capacitor (RLC) circuit by examining the current through the circuit as a function

### Laboratory Manual for AC Electrical Circuits

AC Electrical Circuits Laboratory Manual James M. Fiore 2 Laboratory Manual for AC Electrical Circuits Laboratory Manual for AC Electrical Circuits by James M. Fiore Version 1.3.1, 01 March 2016 Laboratory

### CIRCUIT DIAGRAMS AND COMPONENT DRAWINGS

CIRCUIT DIAGRAMS AND COMPONENT DRAWINGS Dr. Victor Giurgiutiu Page 70 1/17/01 BASIC MULTIMIETER OPERATION BASIC MULTIMETER INFORMATION Multimeter is a measuring instrument. It can be used to measure voltage,

### King Fahd University of Petroleum & Minerals. Department of Electrical Engineering EE201. Electric Circuits. Laboratory Manual.

King Fahd University of Petroleum & Minerals Department of Electrical Engineering EE201 Electric Circuits Laboratory Manual August 2003 Prepared by Dr. A. H. Abdur-Rahim Noman Tasadduq Preface The EE 201

### UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 5 - Gain-Bandwidth Product and Slew Rate Overview: In this laboratory the student will explore

### Experiment 10 Inductors in AC Circuits

Experiment 1 Inductors in AC Circuits Preparation Prepare for this week's experiment by looking up inductors, self inductance, enz's aw, inductive reactance, and R circuits Principles An inductor is made

### R1 R2 R3. Figure1. Resistances in series V1 I. Figure 2. Equivalent circuit of figure 1 if RE= R1+R2+R3 VRE =V

Supplementary Notes for Unit 2 - Part A (Unit 3 and 4 exams also includes the topics detailed in this note) Series circuits A series circuit is a circuit in which resistors are arranged in a chain, so

### " = R # C. Create your sketch so that Q(t=τ) is sketched above the delineated tic mark. Your sketch. 1" e " t & (t) = Q max

Physics 241 Lab: Circuits DC Source http://bohr.physics.arizona.edu/~leone/ua/ua_spring_2010/phys241lab.html Name: Section 1: 1.1. Today you will investigate two similar circuits. The first circuit is

### Experiment No. 10 DIGITAL CIRCUIT DESIGN

Experiment No. 10 DIGITAL CIRCUIT DESIGN 1. Objective: The objective of this experiment is to study three fundamental digital circuits. These three circuits form the basis of all other digital circuits,

### Name Date Day/Time of Lab Partner(s) Lab TA

Name Date Day/Time of Lab Partner(s) Lab TA Objectives LAB 7: AC CIRCUITS To understand the behavior of resistors, capacitors, and inductors in AC Circuits To understand the physical basis of frequency-dependent

### Lab E1: Introduction to Circuits

E1.1 Lab E1: Introduction to Circuits The purpose of the this lab is to introduce you to some basic instrumentation used in electrical circuits. You will learn to use a DC power supply, a digital multimeter

### Teacher s Guide Physics Labs with Computers, Vol C P52: LRC Circuit. Teacher s Guide - Activity P52: LRC Circuit (Voltage Sensor)

Teacher s Guide Physics Labs with Computers, Vol. 2 012-06101C P52: LRC Circuit Teacher s Guide - Activity P52: LRC Circuit (Voltage Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win)

### BME 3512 Biomedical Electronics Laboratory Three - Diode (1N4001)

BME 3512 Biomedical Electronics Laboratory Three Diode () Learning Objectives: Understand the concept of PN junction diodes, their application as rectifiers, the nature and application of halfwave and

### EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits

EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits 1. Introduction and Goal: Exploring transient behavior due to inductors and capacitors in DC circuits; gaining experience with lab instruments.

### Digital to Analog Conversion Using Pulse Width Modulation

Digital to Analog Conversion Using Pulse Width Modulation Samer El-Haj-Mahmoud Electronics Engineering Technology Program Texas A&M University Instructor s Portion Summary The purpose of this lab is to

### Laboratory 1 Ohm's Law

Laboratory 1 Ohm's Law Key Concepts: Measuring resistance, DC voltage and DC current Investigating Ohmic (I = V/R) and non-ohmic components Equipment Needed: Digital Multimeter (2) Variable DC power supply

### Lab 8: Basic Filters: Low- Pass and High Pass

Lab 8: Basic Filters: Low- Pass and High Pass Names: 1.) 2.) 3.) Beginning Challenge: Build the following circuit. Charge the capacitor by itself, and then discharge it through the inductor. Measure the

### Filters and Waveform Shaping

Physics 333 Experiment #3 Fall 211 Filters and Waveform Shaping Purpose The aim of this experiment is to study the frequency filtering properties of passive (R, C, and L) circuits for sine waves, and the

### Ph 3504 Nuclear Magnetic Resonance and Electron Spin Resonance

Ph 3504 Nuclear Magnetic Resonance and Electron Spin Resonance Required background reading Tipler, Llewellyn, section 12-3 (you only need to read the part labeled Nuclear Magnetic Resonance on pages 596-597

### series Connecting a voltage source across two resistors in parallel forces the voltage to be the same across both resistors.

I. Objective To discover how DC values are measured using various tools in the laboratory. This includes the basic design of multimeters and oscilloscopes, and how to model these circuits using Spice.

### Figure 1: Multiple unsynchronized snapshots of the same sinusoidal signal.

1 Oscilloscope Guide Introduction An oscilloscope is a device used to observe and measure time-dependent electronic signals. It is essentially an enhanced voltmeter which displays a graph of potential

### ELEC 2020 EXPERIMENT 6 Zener Diodes and LED's

ELEC 2020 EXPERIMENT 6 Zener Diodes and LED's Objectives: The experiments in this laboratory exercise will provide an introduction to diodes. You will use the Bit Bucket breadboarding system to build and

### COURSE NOTES Techniques for Measuring Drain Voltage and Current

COURSE NOTES Techniques for Measuring Drain Voltage and Current Introduction These course notes are to be read in association with the PI University video course, Techniques for Measuring Drain Voltage

### Lab 6 Transistor Amplifiers

ECET 242 Electronic Circuits Lab 6 Transistor Amplifiers Page 1 of 5 Name: Objective: Lab Report: Equipment: Students successfully completing this lab exercise will accomplish the following objectives:

### Lab #9: AC Steady State Analysis

Theory & Introduction Lab #9: AC Steady State Analysis Goals for Lab #9 The main goal for lab 9 is to make the students familar with AC steady state analysis, db scale and the NI ELVIS frequency analyzer.

### Lab 4 - Data Acquisition

Spring 11 Lab 4 - Data Acquisition Lab 4-1 Lab 4 - Data Acquisition Format This lab will be conducted during your regularly scheduled lab time in a group format. Each student is responsible for learning

### Electronic Instrumentation ENGR-4300 Experiment 1. Experiment 1 Signals, Instrumentation, Basic Circuits and Capture/PSpice

Experiment Signals, Instrumentation, Basic Circuits and Capture/PSpice Purpose: The objective of this exercise is to gain some experience with the electronic test and measuring equipment and the analysis

### Faculty of Engineering and Information Technology. Lab 2 Diode Circuits

Faculty of Engineering and Information Technology Subject: 48521 Fundamentals of Electrical Engineering Assessment Number: 2 Assessment Title: Lab 2 Diode Circuits Tutorial Group: Students Name(s) and

### Using an Oscilloscope

Using an Oscilloscope The oscilloscope is used to measure a voltage that changes in time. It has two probes, like a voltmeter. You put these probes on either side of the thing that you want to measure

### EELE445 - Lab 2 Pulse Signals

EELE445 - Lab 2 Pulse Signals PURPOSE The purpose of the lab is to examine the characteristics of some common pulsed waveforms in the time and frequency domain. The repetitive pulsed waveforms used are

### ENGR 1181 Lab 3: Circuits

ENGR 1181 Lab 3: Circuits Lab Procedure Report Guidelines 2 Goal of the Circuits: The Circuits Lab introduces series and parallel circuit which are used by engineers. Students will review this document

### Lab 3 - Using the Agilent 54621A Digital Oscilloscope as a Spectrum Analyzer Electronics Fundamentals using the Agilent 54621A Oscilloscope

Lab 3 - Using the Agilent 54621A Digital Oscilloscope as a Spectrum Analyzer Electronics Fundamentals using the Agilent 54621A Oscilloscope By: Walter Banzhaf University of Hartford Ward College of Technology

### EasyScope PC Oscilloscope Software User Manual

EasyScope PC Oscilloscope Software User Manual EasyScope User Manual created by USB Instruments, 2003 Contents Copyright (c) 2003, EasySync Ltd EasyScope User Manual 2003... USB-Instruments.com All rights

### APPLICATION NOTE 29 Testing Capacitors with High DC Bias

APPLICATION NOTE 29 Testing Capacitors with High DC Bias This application note will describe the process of analysing the impedance of a capacitor when subjected to high DC bias voltages. This particular

### Designing a Poor Man s Square Wave Signal Generator. EE-100 Lab: Designing a Poor Man s Square Wave Signal Generator - Theory

EE-100 Lab: - Theory 1. Objective The purpose of this laboratory is to introduce nonlinear circuit measurement and analysis. Your measurements will focus mainly on limiters and clamping amplifiers. During

### Report Write down your measured values, and figures, in this booklet and report to the teacher during the laboration.

Circuit Analyses. Laboration 3 Oscilloscope and function generator This booklet, signed by the teacher, serves as a receipt for passing the lab. Each student must have a booklet of his own with solid preparation

### AC CIRCUITS - CAPACITORS AND INDUCTORS

EXPRIMENT#8 AC CIRCUITS - CAPACITORS AND INDUCTORS NOTE: Two weeks are allocated for this experiment. Before performing this experiment, review the Proper Oscilloscope Use section of Experiment #7. Objective

### Lab 2: AC Measurements Capacitors and Inductors

Lab 2: AC Measurements Capacitors and Inductors Introduction The second most common component after resistors in electronic circuits is the capacitor. It is a two-terminal device that stores an electric

### Step Response of RC Circuits

Step Response of RC Circuits 1. OBJECTIVES...2 2. REFERENCE...2 3. CIRCUITS...2 4. COMPONENTS AND SPECIFICATIONS...3 QUANTITY...3 DESCRIPTION...3 COMMENTS...3 5. DISCUSSION...3 5.1 SOURCE RESISTANCE...3