EFFICIENT ROOT FINDING OF POLYNOMIALS OVER FIELDS OF CHARACTERISTIC 2

Size: px
Start display at page:

Download "EFFICIENT ROOT FINDING OF POLYNOMIALS OVER FIELDS OF CHARACTERISTIC 2"

Transcription

1 EFFICIENT ROOT FINDING OF POLYNOMIALS OVER FIELDS OF CHARACTERISTIC 2 Vincent Herbert (Joint work with Bhaskar Biswas) WEWoRC 2009 INRIA Paris Rocquencourt V. Herbert (WEWoRC 2009) SECRET Project Team # 1

2 Agenda 1 Motivation for code-based cryptography 2 Algorithms & Complexities 3 Speed Up McEliece Decryption 4 Results & Analysis V. Herbert (WEWoRC 2009) SECRET Project Team # 2

3 Motivation for code-based cryptography Why do we study Polynomial Root Finding? We face this problem in code-based cryptography. Indeed, McEliece-type cryptosystems are often based on Binary Goppa codes. Root finding is the most time-consuming step, in the implementation of algebraic decoding of Binary Goppa codes. R.J. McEliece. A public-key cryptosystem based on algebraic coding theory. JPL DSN Progress Report, pages , V. Herbert (WEWoRC 2009) SECRET Project Team # 3

4 Motivation for code-based cryptography What is McEliece Public Key Cryptosystem? Let us have an insight of the original version of McEliece. Public key : A binary linear [n,k] code C, i.e. a k-dimensional linear F 2 -subspace of F n 2, described by a generator matrix G. Private key : An efficient decoding algorithm for C up to the error correcting capacity t. Encryption : Map the k bits plaintext x to the codeword x.g, add e, an uniformly random error of length n and weight t. Decryption : Correct the t errors, unmap to get the message. This process is also called decoding. V. Herbert (WEWoRC 2009) SECRET Project Team # 4

5 Motivation for code-based cryptography What is a Binary Goppa Code? Let m > 0, n 2 m and a = (a 1,..., a n ) F n 2. The n-length binary Goppa code Γ(L, g) is defined by : Support L = (α 1,..., α n ) n-tuple of distinct elements of F 2 m ; Goppa polynomial g(z) F 2 m[z], square-free, monic of degree t > 0 with no root in L. Γ(L, g) is a subfield subcode over F 2 of a particular Goppa code over the binary field F 2 m. We have a Γ(L, g) if and only if : R a (z) := n i=1 a i z α i = 0 over F 2 m[z]/(g(z)). V. Herbert (WEWoRC 2009) SECRET Project Team # 5

6 Algorithms & Complexities How to decode Binary Goppa Codes? Let e, x, y be n-length binary vectors. We have to find x, the sent codeword knowing y = x + e where y is the received word and e the error word. We can correct up to t errors. Algebraic decoding is carried out in three steps : 1 Syndrome computation R y (z) = R e (z) = n i=1 e i z α i over F 2 m[z]/(g(z)). 2 Solving the Key Equation to obtain the error locator polynomial R e (z) σ e (z) = σ e(z) over F 2 m[z]/(g(z)). 3 Error Locator Polynomial Root Finding n σ e (z) := (z α i ) e i ; σ e (α i ) = 0 e i 0. i=1 V. Herbert (WEWoRC 2009) SECRET Project Team # 6

7 Algorithms & Complexities How to find the roots efficiently? Several approaches are possible, their efficiency depends on the size of parameters m and t. Chien search computes roots by evaluating artfully the polynomial in all points of L. This method is recommended for hardware implementations and coding theory applications in which m is small. BTA is a recursive algorithm using trace function properties. It is a faster method for secure parameters in McEliece-type cryptosystems. V. Herbert (WEWoRC 2009) SECRET Project Team # 7

8 Algorithms & Complexities What is the cost of the decryption? Let us recall, in practice, n = 2 m and mt n. Theoretical Complexity = number of binary operations required to decrypt in the worst case. Syndrome computation O(mnt) Key Equation Solving (w/ Patterson algorithm) O(mt 2 ) Error Locator Polynomial Root Finding Chien search O(mnt) Berlekamp Trace Algorithm (abbr. BTA) O(m 2 t 2 ) Experimental Complexity = average running time for the decryption. For recommended parameters (i.e. m = 11, t = 32), root finding with BTA (resp. Chien search) takes 72% (resp. 86%) of the total decryption time. V. Herbert (WEWoRC 2009) SECRET Project Team # 8

9 Algorithms & Complexities How does BTA work? Trace function Tr( ) : F 2 m F 2 Tr(z) := z + z 2 + z z 2m 1. The function Tr( ) is F 2 -linear and onto. We know that : i F 2, Tr(z) i = (z γ). γ s.t. Tr(γ)=i Moreover, we have : z 2m z = Tr(z) (Tr(z) 1). V. Herbert (WEWoRC 2009) SECRET Project Team # 9

10 Algorithms & Complexities How does BTA work? (contd) Let B = (β 1,..., β m ) a basis of F 2 m over F 2. Every α F 2 m is uniquely represented by the m-tuple : (Tr(β 1 α),..., Tr(β m α)). BTA splits any f F 2 m[z] s.t. f (z) (z 2m z) into linear factors by computing iteratively on β B and recursively on f : g(z) := gcd(f (z), Tr(β z)) and h(z) := f (z) g(z). BTA always successfully returns the linear factors of f. First call : f = σ e and β = β 1. V. Herbert (WEWoRC 2009) SECRET Project Team # 10

11 Speed Up McEliece Decryption How to reduce time complexity? The drawback of BTA is the large number of recursive calls when the system parameters grow. We reduce it by mixing BTA and Zinoviev s algorithms which are ad-hoc methods for finding roots of polynomials of degree 10 over F 2 m. We call this process BTZ in the following. BTZ depends on a parameter d max which is the maximum degree up to which we use Zinoviev s methods. V.A. Zinoviev, On the solution of equations of degree 10 over finite fields GF(2 m ), Research Report INRIA n 2829, 1996 V. Herbert (WEWoRC 2009) SECRET Project Team # 11

12 Speed Up McEliece Decryption Pseudocode of a simplified version of BTZ Algorithm 1 - BTZ(f, d, i) First call : f σ e ; d d max {2,..., 10} ; i 1. if degree(f ) d then return ZINOVIEV(f, d); else g gcd(f, Tr(β i z)); h f /g; return BTZ(g, d, i + 1) BTZ(h, d, i + 1) ; end if V. Herbert (WEWoRC 2009) SECRET Project Team # 12

13 Speed Up McEliece Decryption What are Zinoviev s algorithms? Zinoviev s methods find an affine multiple of any polynomial of degree 10 over F 2 m. The methods differ according to this degree. Affine Polynomial A(z) = L(z) + c where L is a linearized polynomial, c F q m. Linearized Polynomial L(z) = n l i z qi with q a prime power, l i F q m and l n = 1. In our case, q = 2. After that, finding roots of affine polynomial is easier than in the general case. i=0 V. Herbert (WEWoRC 2009) SECRET Project Team # 13

14 Speed Up McEliece Decryption Get an affine multiple of a polynomial of degree 2 or 3 Let us have an equation : z 2 + αz + β = 0, α, β F 2 m. Notice z 2 + αz is already a linearized polynomial. Nothing to do here. Now consider the equation : z 3 + az 2 + bz + c = 0, We have to decimate the non-linear terms. a, b, c F 2 m For this, we add one particular root by multiplying the left side by (z + a). We obtain z 4 + dz 2 + ez + f = 0 with d = a 2 + b, e = ab + c, f = ac. We get what we want, an affine multiple of a polynomial of degree 3. V. Herbert (WEWoRC 2009) SECRET Project Team # 14

15 Results & Analysis What results do we obtain? We specify a recurrence complexity formula for BTZ. We then use dynamic programming to estimate its theoretical complexity in the worst case. We thus determine the best d max to use to have the optimal efficiency on the following range of parameters : m = 8, 11, 12, 13, 14, 15, 16, 20, 30, 40 ; t = ; d max = Let K be the cost function of any operation over F 2 m. We take K(+) = 1 ; K( ) = 1 or K( ) = m. V. Herbert (WEWoRC 2009) SECRET Project Team # 15

16 Results & Analysis Conclusions & Perspectives For m = 11, t = 32, theory recommends d max = 5. Theoretical gain, in terms of number of operations over F 2 m, of BTZ with d max = 5 over BTA is 46%, the one over Chien method is 93%. The higher is t, the higher is the optimal d max, according to the theory. Practice confirms theory up to degree 3 at least. For instance with m = 11, t = 32 and d max = 2, BTZ takes 65% of the total time decryption against 72% for BTA and 86% for Chien. Implementation is in progress for greater parameters d max. V. Herbert (WEWoRC 2009) SECRET Project Team # 16

17 Danke schön WEWoRC 2009! Any questions or comments? Any further remarks or suggestions can be adressed at : Vincent.Herbert@inria.fr Slides will be available in a short time on : V. Herbert (WEWoRC 2009) SECRET Project Team # 17

18 Bonus Slides Why is it easier to find roots of an affine polynomial? Let us have an affine polynomial A(z) = L(z) + c = m 1 i=0 l i z 2i + c. Consider (α 1,, α m ) is a F 2 -basis of F 2 m, (l i ) 1 i m, c and x are elements of F 2 m. Guess x is a root of A. A(x) = 0 L(x) = c m m x i L(α i ) = c i α i (using linearity of L) i=1 m i=1 m x i l i,j α i = i=1 j=1 i=1 m c i α i (linear system in x i ) V. Herbert (WEWoRC 2009) SECRET Project Team # 18

19 Bonus Slides How does Chien search operate? Chien search is a recursive algorithm. We can say it s a clever exhaustive search. Let α be a generator of F 2 m and let f (x) = a 0 + a 1 x + + a t x t be a polynomial over F 2 m. f (α i ) = a 0 + a 1 α i + + a t (α i ) t f (α i+1 ) = a 0 + a 1 α i a t (α i+1 ) t = a 0 + a 1 α i α + + a t (α i ) t α t Set a i,j = a j (α i ) j. It is easy to obtain f (α i+1 ) from f (α i ) since we have that a i+1,j = a i,j α j. Moreover, if t j=0 a i,j = 0, then α i is a root of f. V. Herbert (WEWoRC 2009) SECRET Project Team # 19

20 Bonus Slides Let m > 0 and n 2 m. Second description of a Binary Goppa Code The n-length binary Goppa code Γ(L, g) is defined by : Support L = (α 1,..., α n ) n-tuple of distinct elements of F 2 m ; Goppa polynomial g(z) F 2 m[z], square-free, monic of degree t > 0 with no roots in L ; Γ(L, g) is a subfield subcode over F 2 of a particular Goppa code over binary field F 2 m which have parity-check matrix H. H := 1 g(α 1 ) 1 g(α 2 ). 1 g(α n) α 1 g(α 1 ) α 2 g(α 2 ). α n g(α n) α t 1 1 g(α 1 ) α t 1 2 g(α 2 ). α t 1 n g(α n) M n,t (F 2 m). Thus, we have a Γ(L, g) if and only if a.h = 0 and a F n 2. V. Herbert (WEWoRC 2009) SECRET Project Team # 20

Quotient Rings and Field Extensions

Quotient Rings and Field Extensions Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

More information

Introduction to Hill cipher

Introduction to Hill cipher Introduction to Hill cipher We have explored three simple substitution ciphers that generated ciphertext C from plaintext p by means of an arithmetic operation modulo 26. Caesar cipher: The Caesar cipher

More information

Post-Quantum Cryptography #2

Post-Quantum Cryptography #2 Post-Quantum Cryptography #2 Prof. Claude Crépeau McGill University 49 Post-Quantum Cryptography Finite Fields based cryptography Codes Multi-variate Polynomials Integers based cryptography Approximate

More information

Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)

Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) MAT067 University of California, Davis Winter 2007 Linear Maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) As we have discussed in the lecture on What is Linear Algebra? one of

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

Lecture 13 - Basic Number Theory.

Lecture 13 - Basic Number Theory. Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted

More information

Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Module No. # 01 Lecture No. # 05 Classic Cryptosystems (Refer Slide Time: 00:42)

More information

2.3 Solving Equations Containing Fractions and Decimals

2.3 Solving Equations Containing Fractions and Decimals 2. Solving Equations Containing Fractions and Decimals Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Solve equations containing fractions

More information

Lightweight code-based identification and signature

Lightweight code-based identification and signature Lightweight code-based identification and signature Philippe Gaborit XLIM-DMI, Université de Limoges, 123 av Albert Thomas, 87000, Limoges, France Email: gaborit@unilimfr Marc Girault France Télécom Division

More information

The van Hoeij Algorithm for Factoring Polynomials

The van Hoeij Algorithm for Factoring Polynomials The van Hoeij Algorithm for Factoring Polynomials Jürgen Klüners Abstract In this survey we report about a new algorithm for factoring polynomials due to Mark van Hoeij. The main idea is that the combinatorial

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

Modern Block Cipher Standards (AES) Debdeep Mukhopadhyay

Modern Block Cipher Standards (AES) Debdeep Mukhopadhyay Modern Block Cipher Standards (AES) Debdeep Mukhopadhyay Assistant Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur INDIA -721302 Objectives Introduction

More information

Masao KASAHARA. Public Key Cryptosystem, Error-Correcting Code, Reed-Solomon code, CBPKC, McEliece PKC.

Masao KASAHARA. Public Key Cryptosystem, Error-Correcting Code, Reed-Solomon code, CBPKC, McEliece PKC. A New Class of Public Key Cryptosystems Constructed Based on Reed-Solomon Codes, K(XII)SEPKC. Along with a presentation of K(XII)SEPKC over the extension field F 2 8 extensively used for present day various

More information

Hill s Cipher: Linear Algebra in Cryptography

Hill s Cipher: Linear Algebra in Cryptography Ryan Doyle Hill s Cipher: Linear Algebra in Cryptography Introduction: Since the beginning of written language, humans have wanted to share information secretly. The information could be orders from a

More information

Linear Codes. Chapter 3. 3.1 Basics

Linear Codes. Chapter 3. 3.1 Basics Chapter 3 Linear Codes In order to define codes that we can encode and decode efficiently, we add more structure to the codespace. We shall be mainly interested in linear codes. A linear code of length

More information

Boolean Functions for Cryptography and Error Correcting Codes

Boolean Functions for Cryptography and Error Correcting Codes Boolean Functions for Cryptography and Error Correcting Codes Claude Carlet LAGA, University of Paris 8, France; e-mail: claude.carlet@univ-paris8.fr. 1 Contents 1 Introduction 5 Generalities on Boolean

More information

1 Review of Newton Polynomials

1 Review of Newton Polynomials cs: introduction to numerical analysis 0/0/0 Lecture 8: Polynomial Interpolation: Using Newton Polynomials and Error Analysis Instructor: Professor Amos Ron Scribes: Giordano Fusco, Mark Cowlishaw, Nathanael

More information

Solutions of Linear Equations in One Variable

Solutions of Linear Equations in One Variable 2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools

More information

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Recall that two vectors in are perpendicular or orthogonal provided that their dot Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

More information

ECE 842 Report Implementation of Elliptic Curve Cryptography

ECE 842 Report Implementation of Elliptic Curve Cryptography ECE 842 Report Implementation of Elliptic Curve Cryptography Wei-Yang Lin December 15, 2004 Abstract The aim of this report is to illustrate the issues in implementing a practical elliptic curve cryptographic

More information

NSM100 Introduction to Algebra Chapter 5 Notes Factoring

NSM100 Introduction to Algebra Chapter 5 Notes Factoring Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the

More information

minimal polyonomial Example

minimal polyonomial Example Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We

More information

Public Key Cryptography: RSA and Lots of Number Theory

Public Key Cryptography: RSA and Lots of Number Theory Public Key Cryptography: RSA and Lots of Number Theory Public vs. Private-Key Cryptography We have just discussed traditional symmetric cryptography: Uses a single key shared between sender and receiver

More information

Vieta s Formulas and the Identity Theorem

Vieta s Formulas and the Identity Theorem Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion

More information

Factoring Algorithms

Factoring Algorithms Institutionen för Informationsteknologi Lunds Tekniska Högskola Department of Information Technology Lund University Cryptology - Project 1 Factoring Algorithms The purpose of this project is to understand

More information

Factorization Algorithms for Polynomials over Finite Fields

Factorization Algorithms for Polynomials over Finite Fields Degree Project Factorization Algorithms for Polynomials over Finite Fields Sajid Hanif, Muhammad Imran 2011-05-03 Subject: Mathematics Level: Master Course code: 4MA11E Abstract Integer factorization is

More information

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a

More information

Equations, Inequalities & Partial Fractions

Equations, Inequalities & Partial Fractions Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

More information

Principles of Public Key Cryptography. Applications of Public Key Cryptography. Security in Public Key Algorithms

Principles of Public Key Cryptography. Applications of Public Key Cryptography. Security in Public Key Algorithms Principles of Public Key Cryptography Chapter : Security Techniques Background Secret Key Cryptography Public Key Cryptography Hash Functions Authentication Chapter : Security on Network and Transport

More information

Advanced Cryptography

Advanced Cryptography Family Name:... First Name:... Section:... Advanced Cryptography Final Exam July 18 th, 2006 Start at 9:15, End at 12:00 This document consists of 12 pages. Instructions Electronic devices are not allowed.

More information

3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes

3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same

More information

COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012

COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012 Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about

More information

Cryptography and Network Security. Prof. D. Mukhopadhyay. Department of Computer Science and Engineering. Indian Institute of Technology, Kharagpur

Cryptography and Network Security. Prof. D. Mukhopadhyay. Department of Computer Science and Engineering. Indian Institute of Technology, Kharagpur Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 12 Block Cipher Standards

More information

Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables

Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,

More information

Cryptography and Network Security Chapter 9

Cryptography and Network Security Chapter 9 Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 9 Public Key Cryptography and RSA Every Egyptian received two names,

More information

Factoring - Solve by Factoring

Factoring - Solve by Factoring 6.7 Factoring - Solve by Factoring Objective: Solve quadratic equation by factoring and using the zero product rule. When solving linear equations such as 2x 5 = 21 we can solve for the variable directly

More information

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

More information

Lecture 3: Finding integer solutions to systems of linear equations

Lecture 3: Finding integer solutions to systems of linear equations Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture

More information

An efficient and provably secure public key encryption scheme based on coding theory

An efficient and provably secure public key encryption scheme based on coding theory SECUITY AND COMMUNICATION NETWOKS Security Comm. Networks (2010) Published online in Wiley Online Library (wileyonlinelibrary.com)..274 ESEACH ATICLE An efficient and provably secure public key encryption

More information

Public Key Cryptography. c Eli Biham - March 30, 2011 258 Public Key Cryptography

Public Key Cryptography. c Eli Biham - March 30, 2011 258 Public Key Cryptography Public Key Cryptography c Eli Biham - March 30, 2011 258 Public Key Cryptography Key Exchange All the ciphers mentioned previously require keys known a-priori to all the users, before they can encrypt

More information

KALE: A High-Degree Algebraic-Resistant Variant of The Advanced Encryption Standard

KALE: A High-Degree Algebraic-Resistant Variant of The Advanced Encryption Standard KALE: A High-Degree Algebraic-Resistant Variant of The Advanced Encryption Standard Dr. Gavekort c/o Vakiopaine Bar Kauppakatu 6, 41 Jyväskylä FINLAND mjos@iki.fi Abstract. We have discovered that the

More information

RSA Attacks. By Abdulaziz Alrasheed and Fatima

RSA Attacks. By Abdulaziz Alrasheed and Fatima RSA Attacks By Abdulaziz Alrasheed and Fatima 1 Introduction Invented by Ron Rivest, Adi Shamir, and Len Adleman [1], the RSA cryptosystem was first revealed in the August 1977 issue of Scientific American.

More information

The application of prime numbers to RSA encryption

The application of prime numbers to RSA encryption The application of prime numbers to RSA encryption Prime number definition: Let us begin with the definition of a prime number p The number p, which is a member of the set of natural numbers N, is considered

More information

LINEAR EQUATIONS IN TWO VARIABLES

LINEAR EQUATIONS IN TWO VARIABLES 66 MATHEMATICS CHAPTER 4 LINEAR EQUATIONS IN TWO VARIABLES The principal use of the Analytic Art is to bring Mathematical Problems to Equations and to exhibit those Equations in the most simple terms that

More information

Inner product. Definition of inner product

Inner product. Definition of inner product Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product

More information

Squaring, Cubing, and Cube Rooting

Squaring, Cubing, and Cube Rooting Squaring, Cubing, and Cube Rooting Arthur T. Benjamin Harvey Mudd College Claremont, CA 91711 benjamin@math.hmc.edu I still recall my thrill and disappointment when I read Mathematical Carnival [4], by

More information

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013 Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,

More information

CSE 135: Introduction to Theory of Computation Decidability and Recognizability

CSE 135: Introduction to Theory of Computation Decidability and Recognizability CSE 135: Introduction to Theory of Computation Decidability and Recognizability Sungjin Im University of California, Merced 04-28, 30-2014 High-Level Descriptions of Computation Instead of giving a Turing

More information

Cryptography and Network Security

Cryptography and Network Security Cryptography and Network Security Fifth Edition by William Stallings Chapter 9 Public Key Cryptography and RSA Private-Key Cryptography traditional private/secret/single key cryptography uses one key shared

More information

Factoring polynomials over finite fields

Factoring polynomials over finite fields Factoring polynomials over finite fields Summary and et questions 12 octobre 2011 1 Finite fields Let p an odd prime and let F p = Z/pZ the (unique up to automorphism) field with p-elements. We want to

More information

Lecture 10: Distinct Degree Factoring

Lecture 10: Distinct Degree Factoring CS681 Computational Number Theory Lecture 10: Distinct Degree Factoring Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi Overview Last class we left of with a glimpse into distant degree factorization.

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

7 Gaussian Elimination and LU Factorization

7 Gaussian Elimination and LU Factorization 7 Gaussian Elimination and LU Factorization In this final section on matrix factorization methods for solving Ax = b we want to take a closer look at Gaussian elimination (probably the best known method

More information

Arithmetic algorithms for cryptology 5 October 2015, Paris. Sieves. Razvan Barbulescu CNRS and IMJ-PRG. R. Barbulescu Sieves 0 / 28

Arithmetic algorithms for cryptology 5 October 2015, Paris. Sieves. Razvan Barbulescu CNRS and IMJ-PRG. R. Barbulescu Sieves 0 / 28 Arithmetic algorithms for cryptology 5 October 2015, Paris Sieves Razvan Barbulescu CNRS and IMJ-PRG R. Barbulescu Sieves 0 / 28 Starting point Notations q prime g a generator of (F q ) X a (secret) integer

More information

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

More information

Factoring Polynomials

Factoring Polynomials Factoring Polynomials Hoste, Miller, Murieka September 12, 2011 1 Factoring In the previous section, we discussed how to determine the product of two or more terms. Consider, for instance, the equations

More information

Mathematics of Internet Security. Keeping Eve The Eavesdropper Away From Your Credit Card Information

Mathematics of Internet Security. Keeping Eve The Eavesdropper Away From Your Credit Card Information The : Keeping Eve The Eavesdropper Away From Your Credit Card Information Department of Mathematics North Dakota State University 16 September 2010 Science Cafe Introduction Disclaimer: is not an internet

More information

How To Prove The Dirichlet Unit Theorem

How To Prove The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

Factoring pq 2 with Quadratic Forms: Nice Cryptanalyses

Factoring pq 2 with Quadratic Forms: Nice Cryptanalyses Factoring pq 2 with Quadratic Forms: Nice Cryptanalyses Phong Nguyễn http://www.di.ens.fr/~pnguyen & ASIACRYPT 2009 Joint work with G. Castagnos, A. Joux and F. Laguillaumie Summary Factoring A New Factoring

More information

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information

Lecture Note 5 PUBLIC-KEY CRYPTOGRAPHY. Sourav Mukhopadhyay

Lecture Note 5 PUBLIC-KEY CRYPTOGRAPHY. Sourav Mukhopadhyay Lecture Note 5 PUBLIC-KEY CRYPTOGRAPHY Sourav Mukhopadhyay Cryptography and Network Security - MA61027 Modern/Public-key cryptography started in 1976 with the publication of the following paper. W. Diffie

More information

Lecture Note 8 ATTACKS ON CRYPTOSYSTEMS I. Sourav Mukhopadhyay

Lecture Note 8 ATTACKS ON CRYPTOSYSTEMS I. Sourav Mukhopadhyay Lecture Note 8 ATTACKS ON CRYPTOSYSTEMS I Sourav Mukhopadhyay Cryptography and Network Security - MA61027 Attacks on Cryptosystems Up to this point, we have mainly seen how ciphers are implemented. We

More information

K80TTQ1EP-??,VO.L,XU0H5BY,_71ZVPKOE678_X,N2Y-8HI4VS,,6Z28DDW5N7ADY013

K80TTQ1EP-??,VO.L,XU0H5BY,_71ZVPKOE678_X,N2Y-8HI4VS,,6Z28DDW5N7ADY013 Hill Cipher Project K80TTQ1EP-??,VO.L,XU0H5BY,_71ZVPKOE678_X,N2Y-8HI4VS,,6Z28DDW5N7ADY013 Directions: Answer all numbered questions completely. Show non-trivial work in the space provided. Non-computational

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

Chair for Network Architectures and Services Department of Informatics TU München Prof. Carle. Network Security. Chapter 13

Chair for Network Architectures and Services Department of Informatics TU München Prof. Carle. Network Security. Chapter 13 Chair for Network Architectures and Services Department of Informatics TU München Prof. Carle Network Security Chapter 13 Some More Secure Channel Issues Outline In the course we have yet only seen catastrophic

More information

Basic Algorithms In Computer Algebra

Basic Algorithms In Computer Algebra Basic Algorithms In Computer Algebra Kaiserslautern SS 2011 Prof. Dr. Wolfram Decker 2. Mai 2011 References Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, 1993. Cox, D.; Little,

More information

ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS

ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS DANIEL RABAYEV AND JACK SONN Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q p for

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

A SOFTWARE COMPARISON OF RSA AND ECC

A SOFTWARE COMPARISON OF RSA AND ECC International Journal Of Computer Science And Applications Vol. 2, No. 1, April / May 29 ISSN: 974-13 A SOFTWARE COMPARISON OF RSA AND ECC Vivek B. Kute Lecturer. CSE Department, SVPCET, Nagpur 9975549138

More information

1 Short Introduction to Time Series

1 Short Introduction to Time Series ECONOMICS 7344, Spring 202 Bent E. Sørensen January 24, 202 Short Introduction to Time Series A time series is a collection of stochastic variables x,.., x t,.., x T indexed by an integer value t. The

More information

1 Solving LPs: The Simplex Algorithm of George Dantzig

1 Solving LPs: The Simplex Algorithm of George Dantzig Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

More information

Basics of Polynomial Theory

Basics of Polynomial Theory 3 Basics of Polynomial Theory 3.1 Polynomial Equations In geodesy and geoinformatics, most observations are related to unknowns parameters through equations of algebraic (polynomial) type. In cases where

More information

160 CHAPTER 4. VECTOR SPACES

160 CHAPTER 4. VECTOR SPACES 160 CHAPTER 4. VECTOR SPACES 4. Rank and Nullity In this section, we look at relationships between the row space, column space, null space of a matrix and its transpose. We will derive fundamental results

More information

is identically equal to x 2 +3x +2

is identically equal to x 2 +3x +2 Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3

More information

Critical points via monodromy and local methods

Critical points via monodromy and local methods Critical points via monodromy and local methods Abraham Martín del Campo joint w/ Jose Rodriguez (U. Notre Dame) SIAM Conference on Applied Algebraic Geometry August 3, 2015 Abraham Martín del Campo (IST)

More information

On the coefficients of the polynomial in the number field sieve

On the coefficients of the polynomial in the number field sieve On the coefficients of the polynomial in the number field sieve Yang Min a, Meng Qingshu b,, Wang Zhangyi b, Li Li a, Zhang Huanguo b a International School of Software, Wuhan University, Hubei, China,

More information

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively. Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry

More information

Discrete Mathematics, Chapter 4: Number Theory and Cryptography

Discrete Mathematics, Chapter 4: Number Theory and Cryptography Discrete Mathematics, Chapter 4: Number Theory and Cryptography Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 4 1 / 35 Outline 1 Divisibility

More information

FACTORING LARGE NUMBERS, A GREAT WAY TO SPEND A BIRTHDAY

FACTORING LARGE NUMBERS, A GREAT WAY TO SPEND A BIRTHDAY FACTORING LARGE NUMBERS, A GREAT WAY TO SPEND A BIRTHDAY LINDSEY R. BOSKO I would like to acknowledge the assistance of Dr. Michael Singer. His guidance and feedback were instrumental in completing this

More information

Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 17. Orthogonal Matrices and Symmetries of Space Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length

More information

Factoring Algorithms

Factoring Algorithms Factoring Algorithms The p 1 Method and Quadratic Sieve November 17, 2008 () Factoring Algorithms November 17, 2008 1 / 12 Fermat s factoring method Fermat made the observation that if n has two factors

More information

The Characteristic Polynomial

The Characteristic Polynomial Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem

More information

is identically equal to x 2 +3x +2

is identically equal to x 2 +3x +2 Partial fractions.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as + for any

More information

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without

More information

Factoring. Factoring 1

Factoring. Factoring 1 Factoring Factoring 1 Factoring Security of RSA algorithm depends on (presumed) difficulty of factoring o Given N = pq, find p or q and RSA is broken o Rabin cipher also based on factoring Factoring like

More information

Cryptography for the paranoid. Daniel J. Bernstein (University of Illinois at Chicago, Technische Universiteit Eindhoven)

Cryptography for the paranoid. Daniel J. Bernstein (University of Illinois at Chicago, Technische Universiteit Eindhoven) Cryptography for the paranoid Daniel J. Bernstein (University of Illinois at Chicago, Technische Universiteit Eindhoven) Based on joint work with: Tanja Lange (Technische Universiteit Eindhoven) Christiane

More information

The Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) The Advanced Encryption Standard (AES) Conception - Why A New Cipher? Conception - Why A New Cipher? DES had outlived its usefulness Vulnerabilities were becoming known 56-bit key was too small Too slow

More information

1720 - Forward Secrecy: How to Secure SSL from Attacks by Government Agencies

1720 - Forward Secrecy: How to Secure SSL from Attacks by Government Agencies 1720 - Forward Secrecy: How to Secure SSL from Attacks by Government Agencies Dave Corbett Technical Product Manager Implementing Forward Secrecy 1 Agenda Part 1: Introduction Why is Forward Secrecy important?

More information

8.2. Solution by Inverse Matrix Method. Introduction. Prerequisites. Learning Outcomes

8.2. Solution by Inverse Matrix Method. Introduction. Prerequisites. Learning Outcomes Solution by Inverse Matrix Method 8.2 Introduction The power of matrix algebra is seen in the representation of a system of simultaneous linear equations as a matrix equation. Matrix algebra allows us

More information

MATH1231 Algebra, 2015 Chapter 7: Linear maps

MATH1231 Algebra, 2015 Chapter 7: Linear maps MATH1231 Algebra, 2015 Chapter 7: Linear maps A/Prof. Daniel Chan School of Mathematics and Statistics University of New South Wales danielc@unsw.edu.au Daniel Chan (UNSW) MATH1231 Algebra 1 / 43 Chapter

More information

APP INVENTOR. Test Review

APP INVENTOR. Test Review APP INVENTOR Test Review Main Concepts App Inventor Lists Creating Random Numbers Variables Searching and Sorting Data Linear Search Binary Search Selection Sort Quick Sort Abstraction Modulus Division

More information

How To Encrypt Data With A Power Of N On A K Disk

How To Encrypt Data With A Power Of N On A K Disk Towards High Security and Fault Tolerant Dispersed Storage System with Optimized Information Dispersal Algorithm I Hrishikesh Lahkar, II Manjunath C R I,II Jain University, School of Engineering and Technology,

More information

RSA and Primality Testing

RSA and Primality Testing and Primality Testing Joan Boyar, IMADA, University of Southern Denmark Studieretningsprojekter 2010 1 / 81 Correctness of cryptography cryptography Introduction to number theory Correctness of with 2

More information

Linear Codes and Applications in Cryptography

Linear Codes and Applications in Cryptography Linear Codes and Applications in Cryptography MASTER S THESIS submitted in partial fulfillment of the requirements for the degree of Master of Science (MSc) in Mathematics in Computer Science by Matthias

More information

Notes on Network Security Prof. Hemant K. Soni

Notes on Network Security Prof. Hemant K. Soni Chapter 9 Public Key Cryptography and RSA Private-Key Cryptography traditional private/secret/single key cryptography uses one key shared by both sender and receiver if this key is disclosed communications

More information

Practical Cryptanalysis of SFLASH

Practical Cryptanalysis of SFLASH Practical Cryptanalysis of SFLASH Vivien Dubois 1, Pierre-Alain Fouque 1, Adi Shamir 1,2, and Jacques Stern 1 1 École normale supérieure Département d Informatique 45, rue d Ulm 75230 Paris cedex 05, France

More information

Math Common Core Sampler Test

Math Common Core Sampler Test High School Algebra Core Curriculum Math Test Math Common Core Sampler Test Our High School Algebra sampler covers the twenty most common questions that we see targeted for this level. For complete tests

More information

SECRET sharing schemes were introduced by Blakley [5]

SECRET sharing schemes were introduced by Blakley [5] 206 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 1, JANUARY 2006 Secret Sharing Schemes From Three Classes of Linear Codes Jin Yuan Cunsheng Ding, Senior Member, IEEE Abstract Secret sharing has

More information

MATH 168: FINAL PROJECT Troels Eriksen. 1 Introduction

MATH 168: FINAL PROJECT Troels Eriksen. 1 Introduction MATH 168: FINAL PROJECT Troels Eriksen 1 Introduction In the later years cryptosystems using elliptic curves have shown up and are claimed to be just as secure as a system like RSA with much smaller key

More information