Introduction to Hill cipher

Save this PDF as:

Size: px
Start display at page:

Transcription

1 Introduction to Hill cipher We have explored three simple substitution ciphers that generated ciphertext C from plaintext p by means of an arithmetic operation modulo 26. Caesar cipher: The Caesar cipher is an additive cipher. C = p + ( key)mod 26. The number of keys is 26 one of which produces plaintext. Decryption is accomplished by adding the additive inverse of the key to ciphertext p = C + ( key)mod 26. Multiplicative cipher: C = ( key) p mod 26. The number of keys is 12 one of which produces plaintext. Decryption is accomplished by multiplying ciphertext by the multiplicative inverse of the key p = C ( key) 1 mod 26. Affine cipher: The affine cipher composes the multiplicative cipher and the Caesar cipher. (We will do the multiplicative cipher first and the Caesar cipher second.) C = ( multiplicative key) p + ( additive key)mod 26. The number of keys is = one of which produces plaintext. Each of these can be attacked by frequency analysis each ciphertext letter inherits all the frequency characteristics of the plaintext letter it replaces. It is easy to spot high frequency letters (e, t, a, o, i, n, s). a standard guess if that the highest frequency ciphertext letter corresponds to plaintext e and the next highest to plaintext t. For the Caesar cipher or the multiplicative cipher, it is only necessary to know one plaintext/cipehrtext correspondence (e?) to solve for the key. For the affine cipher, only two plaintext/ciphertext correspondences are necessary to multiplicative key, additive key. A bit of trial and error solve for the keypair ( ) usually produces the key. One way to destroy the value of frequency analysis is to encrypt a string of letters as one block.

2 Here is an additive cipher that encrypts a block of four letters. Our plaintext messages split into blocks of four is n o r t h e r n k e n t u c k y Numbers are substituted for letters by a = 1, b = 2,, z = 26. n o r t h e r n k er n t u c k y The key adds to each component of the block thought of as a column vector component-wise. For example, if the key were The block nort encrypts as QJAK. Our message encrypts as: 3 21 : 9 17 n Q o J + = mod 26 r A t K n o r t h e r n k e n t u c k y Q J A K K Z A E N Z W K X X T P Decryption is accomplished by adding the additive inverse of the (vector) key to the ciphertext plaintext CIPHERTEXT To encrypt a four-letter block, the key is a 4 1 matrix. There are 26 = possible keys one of which produces plaintext.

3 If we know one plaintext/ciphertext block correspondence, we can solve for the key. This additive cipher is not truly a block cipher because changing one plaintext letter of a plaintext block changes only one letter of the corresponding ciphertext block. A multiplicative cipher using matrices produces a true block cipher. Consider and our message encrypts as n o 25 = r t 24 R Y mod 26 X X n o r t h e r n k e n t u c k y R Y X X Z X D H E I I F J P L I Changing one letter of the plaintext block can change the entire ciphertext block because matrix multiplication mixes plaintext. Each plaintext letter is used in the calculation of each ciphertext letter. Claude Shannon in his 1949 paper Communications Theory of Secrecy Systems called this property diffusion. Recall that for our simple substitution multiplicative cipher not all of the elements of the integers modulo 26 (i.e., 1, 2,, 26) could be used as keys. That is because only those 12 elements that are relatively prime to 26 have multiplicative inverses modulo 26 (1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25). A similar problem arises here; not all 4 4matrices can be used as multiplicative encryption keys. Recall that a matrix has an inverse if and only if its determinant has an inverse. For the integers modulo 26 that means that a matrix can be a multiplicative key if and only if its determinant is one of 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, or 25. For the key above, the determinant is 23. The method that we have just described is called the Hill cipher. It was described in a 1929 paper Cryptography in an algebraic alphabet by Lester S. Hill, who was a member of the mathematics faculty of Hunter College in New York City. The paper appeared in The American Mathematical Monthly.

4 Notice that if four four-block plaintext/ciphertext correspondences are known, then the resulting system of linear equations can be solved for the 16 entries in the encryption key. How many encryption keys are there? For our example, there are = 43,608,742,899,428,874,059, matrices. The number of invertible matrices can be determined using results found in a paper that appeared in Cryptologia in January 2005 by Overby, Traves, and Wojdylo On the keyspace of the Hill cipher. For 4 4matrices there are possible keys. 12,303,585,972,327,392,870,400 In a 1931 paper also in the Monthly Hill extends his ideas. He suggests using involutory (self-inverse) matrices as keys. This severely restricts the size of the keyspace. (See the paper by Overby, Traves, and Wojdylo.) Why would Hill suggest involutory keys? The answer is that the calculation of the key inverse from the key is burdensome. Recall how the inverse of a matrix is constructed. Here is an example using a 2 2 encryption key. Say, the encryption key is It is easy to verify that d b 1 a b ad bc ad bc c d =. c a ad bc ad bc

5 a Notice that to calculate the inverse of the matrix c b we must be able to divide d a b by the determinant of = ad bc; i.e., we must have a multiplicative inverse c d for the determinant ad bc. Because we are working modulo 26, that means that the determinant ad bc must be one of 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, or 25. Otherwise, the multiplication cannot be undone; encryption cannot be undone. 9 4 The determinant of 5 7 is = = 43 17mod 26. Because 17 has a multiplicative inverse modulo 26, this matrix has an inverse. The inverse of the matrix is mod Dividing by 17 modulo 26 is the same as multiplying by the multiplicative inverse of 17 modulo 26. Recall that the multiplicative inverse of 17 is 23 modulo 26. So, the inverse of the matrix is mod 26 = mod = mod 26 = mod

6 9 4 For the encryption key 5 7 the decryption key is plaintext CIPHERTEXT Calculating the determinant of an n n matrix with n > 2 and is more difficult, and calculating the inverse of an n n matrix with n > 2 differs from calculating the inverse of a 2 2 matrix. In his 1931 paper, Hill also extended his ideas to affine encryption. For example, Y1 3 7 x1 8 Y = x Where the plaintext block is xx 1 2and the ciphertext block is YY 1 2.

Solutions to Problem Set 1

YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467b: Cryptography and Computer Security Handout #8 Zheng Ma February 21, 2005 Solutions to Problem Set 1 Problem 1: Cracking the Hill cipher Suppose

Hill s Cipher: Linear Algebra in Cryptography

Ryan Doyle Hill s Cipher: Linear Algebra in Cryptography Introduction: Since the beginning of written language, humans have wanted to share information secretly. The information could be orders from a

Multiplicative Ciphers. Cryptography of Multiplicative Ciphers

Fall 2006 Chris Christensen MAT/CSC 483 Multiplicative Ciphers It is evident from the relative ease with which the Caesar Cipher or its generalization to an arbitrary number of positions of shift has been

Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Module No. # 01 Lecture No. # 05 Classic Cryptosystems (Refer Slide Time: 00:42)

3. Applications of Number Theory

3. APPLICATIONS OF NUMBER THEORY 163 3. Applications of Number Theory 3.1. Representation of Integers. Theorem 3.1.1. Given an integer b > 1, every positive integer n can be expresses uniquely as n = a

Cryptography - Day 1: Introduction and the Caesar Cipher

Cryptography - Day 1: Introduction and the Caesar Cipher MA 111: Intro to Contemporary Math September 27, 2013 Definition: Cryptography In the most general sense, Cryptography is the process (and mathematical

Definition A square matrix M is invertible (or nonsingular) if there exists a matrix M 1 such that

0. Inverse Matrix Definition A square matrix M is invertible (or nonsingular) if there exists a matrix M such that M M = I = M M. Inverse of a 2 2 Matrix Let M and N be the matrices: a b d b M =, N = c

Section 2.1: Shift Ciphers and Modular Arithmetic

1 Section 2.1: Shift Ciphers and Modular Arithmetic Practice HW from Barr Textbook (not to hand in) p.66 # 1, 2, 3-6, 9-12, 13, 15 The purpose of this section is to learn about modular arithmetic, which

An Introduction to Hill Ciphers Using Linear Algebra

An Introduction to Hill Ciphers Using inear Algebra Brian Worthington October 26, 2010 University of North Texas MATH 2700.002 1 Contents 1 Introduction 3 1.1 Substitution Ciphers.........................

Family Name:... First Name:... Section:... Advanced Cryptography Final Exam July 18 th, 2006 Start at 9:15, End at 12:00 This document consists of 12 pages. Instructions Electronic devices are not allowed.

MODULAR ARITHMETIC KEITH CONRAD. Introduction We will define the notion of congruent integers (with respect to a modulus) and develop some basic ideas of modular arithmetic. Applications of modular arithmetic

Related Idea: RSA Encryption Step 1

Related Idea: RSA Encryption Step 1 Example (RSA Encryption: Step 1) Here is how Alice and Bob can do to share a secret from Carl: What Alice Does 1. Alice chooses two (large) prime numbers p and q, which

Cryptography and Cryptanalysis

Cryptography and Cryptanalysis Feryâl Alayont University of Arizona December 9, 2003 1 Cryptography: derived from the Greek words kryptos, meaning hidden, and graphos, meaning writing. Cryptography is

Data Encryption A B C D E F G H I J K L M N O P Q R S T U V W X Y Z. we would encrypt the string IDESOFMARCH as follows:

Data Encryption Encryption refers to the coding of information in order to keep it secret. Encryption is accomplished by transforming the string of characters comprising the information to produce a new

Secret Writing. Introduction to Cryptography. Encryption. Decryption. Kerckhoffs s ( ) Principle. Security of Cryptographic System

Introduction to Cryptography ECEN 1200, Telecommunications 1 Secret Writing Cryptography is the science and study of secret writing. More specifically, cryptography is concerned with techniques for enciphering

Topic 1: Cryptography

1 Introduction to Cryptography: 1.1 Science SCIE1000 Project, Semester 1 2011 Topic 1: Cryptography Cryptography is the science of using mathematics to hide information. Cryptography allows us to store

1) A very simple example of RSA encryption

Solved Examples 1) A very simple example of RSA encryption This is an extremely simple example using numbers you can work out on a pocket calculator (those of you over the age of 35 45 can probably even

Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may

Number Theory Divisibility and Primes Definition. If a and b are integers and there is some integer c such that a = b c, then we say that b divides a or is a factor or divisor of a and write b a. Definition

Modular Arithmetic Exponent Law 1

Modular Arithmetic Exponent Law 1 Definition (Modular Arithmetic Exponent Law) Applying exponents in modular arithmetic can be done before or after simplifying! In symbols this says that for any integer

Chapter 2 Homework 2-5, 7, 9-11, 13-18, 24. (9x + 2)(mod 26) y 1 1 (x 2)(mod 26) 3(x 2)(mod 26) U : y 1 = 3(20 2)(mod 26) 54(mod 26) 2(mod 26) c

Chapter 2 Homework 2-5, 7, 9-11, 13-18, 24 2. The ciphertext UCR was encrypted using the affine function (9x + 2)(mod 26) Find the plaintext. First, we find the numerical values corresponding to UCR. U

Hill Cipher Project K80TTQ1EP-??,VO.L,XU0H5BY,_71ZVPKOE678_X,N2Y-8HI4VS,,6Z28DDW5N7ADY013 Directions: Answer all numbered questions completely. Show non-trivial work in the space provided. Non-computational

Mathematics of Cryptography Modular Arithmetic, Congruence, and Matrices. A Biswas, IT, BESU SHIBPUR

Mathematics of Cryptography Modular Arithmetic, Congruence, and Matrices A Biswas, IT, BESU SHIBPUR McGraw-Hill The McGraw-Hill Companies, Inc., 2000 Set of Integers The set of integers, denoted by Z,

The Euclidean algorithm for integers leads to the notion of congruence of two integers modulo a given integer.

Integers Modulo m The Euclidean algorithm for integers leads to the notion of congruence of two integers modulo a given integer. Congruence Modulo m Two integers a and b are congruent modulo m if and only

Cryptography ALICE BOB DECRYPT ENCRYPT OSCAR

Cryptography What is cryptography? Formal Definition: The art or science concerning the principles, means, and methods for rendering plain information unintelligible, and for restoring encrypted information

Cryptography. Helmer Aslaksen Department of Mathematics National University of Singapore

Cryptography Helmer Aslaksen Department of Mathematics National University of Singapore aslaksen@math.nus.edu.sg www.math.nus.edu.sg/aslaksen/sfm/ 1 Basic Concepts There are many situations in life where

Cryptography and Network Security

Cryptography and Network Security Xiang-Yang Li Introduction The art of war teaches us not on the likelihood of the enemy s not coming, but on our own readiness to receive him; not on the chance of his

Definition: Group A group is a set G together with a binary operation on G, satisfying the following axioms: a (b c) = (a b) c.

Algebraic Structures Abstract algebra is the study of algebraic structures. Such a structure consists of a set together with one or more binary operations, which are required to satisfy certain axioms.

Shift Cipher. Ahmet Burak Can Hacettepe University. Substitution Cipher. Enigma Machine. How perfect secrecy can be satisfied?

One Time Pad, Block Ciphers, Encryption Modes Ahmet Burak Can Hacettepe University abc@hacettepe.edu.tr Basic Ciphers Shift Cipher Brute-force attack can easily break Substitution Cipher Frequency analysis

Shared Secret = Trust

Trust The fabric of life! Holds civilizations together Develops by a natural process Advancement of technology results in faster evolution of societies Weakening the natural bonds of trust From time to

9 Modular Exponentiation and Cryptography

9 Modular Exponentiation and Cryptography 9.1 Modular Exponentiation Modular arithmetic is used in cryptography. In particular, modular exponentiation is the cornerstone of what is called the RSA system.

NUMBER THEORY AND CRYPTOGRAPHY

NUMBER THEORY AND CRYPTOGRAPHY KEITH CONRAD 1. Introduction Cryptography is the study of secret messages. For most of human history, cryptography was important primarily for military or diplomatic purposes

CS 758: Cryptography / Network Security

CS 758: Cryptography / Network Security offered in the Fall Semester, 2003, by Doug Stinson my office: DC 3122 my email address: dstinson@uwaterloo.ca my web page: http://cacr.math.uwaterloo.ca/~dstinson/index.html

Mathematics of Cryptography Part I

CHAPTER 2 Mathematics of Cryptography Part I (Solution to Odd-Numbered Problems) Review Questions 1. The set of integers is Z. It contains all integral numbers from negative infinity to positive infinity.

FAREY FRACTION BASED VECTOR PROCESSING FOR SECURE DATA TRANSMISSION

FAREY FRACTION BASED VECTOR PROCESSING FOR SECURE DATA TRANSMISSION INTRODUCTION GANESH ESWAR KUMAR. P Dr. M.G.R University, Maduravoyal, Chennai. Email: geswarkumar@gmail.com Every day, millions of people

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Karagpur

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Karagpur Lecture No. #06 Cryptanalysis of Classical Ciphers (Refer

MATH 105: Finite Mathematics 2-6: The Inverse of a Matrix

MATH 05: Finite Mathematics 2-6: The Inverse of a Matrix Prof. Jonathan Duncan Walla Walla College Winter Quarter, 2006 Outline Solving a Matrix Equation 2 The Inverse of a Matrix 3 Solving Systems of

Cryptography Worksheet The Affine Cipher 1

Cryptography Worksheet The Affine Cipher 1 The Affine Cipher is a cipher that uses Maths to encode the message. It works by conver ng every le er in the alphabet into a number, performing a func on on

Symmetric Key cryptosystem

SFWR C03: Computer Networks and Computer Security Mar 8-11 200 Lecturer: Kartik Krishnan Lectures 22-2 Symmetric Key cryptosystem Symmetric encryption, also referred to as conventional encryption or single

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #10 Symmetric Key Ciphers (Refer

Homework 7. Using the monoalphabetic cipher in Figure 8.3, encode the message This is an easy problem. Decode the message rmij u uamu xyj.

Problems: 1 to 11. Homework 7 Question: 1 Using the monoalphabetic cipher in Figure 8.3, encode the message This is an easy problem. Decode the message rmij u uamu xyj. This is an easy problem. > uasi

Computer Science A Cryptography and Data Security. Claude Crépeau

Computer Science 308-547A Cryptography and Data Security Claude Crépeau These notes are, largely, transcriptions by Anton Stiglic of class notes from the former course Cryptography and Data Security (308-647A)

Question 2: How do you solve a matrix equation using the matrix inverse?

Question : How do you solve a matrix equation using the matrix inverse? In the previous question, we wrote systems of equations as a matrix equation AX B. In this format, the matrix A contains the coefficients

Chapter 10 Asymmetric-Key Cryptography

Chapter 10 Asymmetric-Key Cryptography Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 10.1 Chapter 10 Objectives To distinguish between two cryptosystems: symmetric-key

ΕΠΛ 674: Εργαστήριο 3

ΕΠΛ 674: Εργαστήριο 3 Ο αλγόριθμος ασύμμετρης κρυπτογράφησης RSA Παύλος Αντωνίου Department of Computer Science Private-Key Cryptography traditional private/secret/single key cryptography uses one key

159.334 Computer Networks. Network Security 1. Professor Richard Harris School of Engineering and Advanced Technology

Network Security 1 Professor Richard Harris School of Engineering and Advanced Technology Presentation Outline Overview of Identification and Authentication The importance of identification and Authentication

Cyber Security Workshop Encryption Reference Manual

Cyber Security Workshop Encryption Reference Manual May 2015 Basic Concepts in Encoding and Encryption Binary Encoding Examples Encryption Cipher Examples 1 P a g e Encoding Concepts Binary Encoding Basics

We know a formula for and some properties of the determinant. Now we see how the determinant can be used.

Cramer s rule, inverse matrix, and volume We know a formula for and some properties of the determinant. Now we see how the determinant can be used. Formula for A We know: a b d b =. c d ad bc c a Can we

6 Introduction to Cryptography

6 Introduction to Cryptography This section gives a short introduction to cryptography. It is based on the recent tutorial by Jörg Rothe. For an in-depth treatment of cryptography, please consult the Handbook

POLYTECHNIC UNIVERSITY Department of Computer and Information Science. The Hill Cipher. K. Ming Leung

POLYTECHNIC UNIVERSITY Department of Computer and Information Science The Hill Cipher K. Ming Leung Abstract: The Hill cipher in cryptography is used to illustrate the application of matrices defined over

Department of Mathematics Exercises G.1: Solutions

Department of Mathematics MT161 Exercises G.1: Solutions 1. We show that a (b c) = (a b) c for all binary strings a, b, c B. So let a = a 1 a 2... a n, b = b 1 b 2... b n and c = c 1 c 2... c n, where

Security in Distributed Systems. Network Security

Security in Distributed Systems Introduction Cryptography Authentication Key exchange Computer Science Lecture 18, page 1 Network Security Intruder may eavesdrop remove, modify, and/or insert messages

Cryptography and Network Security. Prof. D. Mukhopadhyay. Department of Computer Science and Engineering. Indian Institute of Technology, Kharagpur

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 12 Block Cipher Standards

Network Security. Computer Networking Lecture 08. March 19, 2012. HKU SPACE Community College. HKU SPACE CC CN Lecture 08 1/23

Network Security Computer Networking Lecture 08 HKU SPACE Community College March 19, 2012 HKU SPACE CC CN Lecture 08 1/23 Outline Introduction Cryptography Algorithms Secret Key Algorithm Message Digest

Use of Linear Algebra in Cryptography

Use of Linear Algebra in Cryptography Hong-Jian Lai Department of Mathematics West Virginia University Morgantown, WV p. 1/?? Creating a Matrix Problem: To create a matrix A = 1 2 3 4 5 6 7 8 10. p. 2/??

Elementary Number Theory We begin with a bit of elementary number theory, which is concerned

CONSTRUCTION OF THE FINITE FIELDS Z p S. R. DOTY Elementary Number Theory We begin with a bit of elementary number theory, which is concerned solely with questions about the set of integers Z = {0, ±1,

Hill Ciphers and Modular Linear Algebra

Hill Ciphers and Modular Linear Algebra Murray Eisenberg November 3, 1999 Hill ciphers are an application of linear algebra to cryptology (the science of making and breaking codes and ciphers). Below we

An Introduction to the RSA Encryption Method

April 17, 2012 Outline 1 History 2 3 4 5 History RSA stands for Rivest, Shamir, and Adelman, the last names of the designers It was first published in 1978 as one of the first public-key crytographic systems

Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010

CS 494/594 Computer and Network Security Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 1 Introduction to Cryptography What is cryptography?

Network Security: Cryptography CS/SS G513 S.K. Sahay

Network Security: Cryptography CS/SS G513 S.K. Sahay BITS-Pilani, K.K. Birla Goa Campus, Goa S.K. Sahay Network Security: Cryptography 1 Introduction Network security: measure to protect data/information

The Advanced Encryption Standard (AES) Conception - Why A New Cipher? Conception - Why A New Cipher? DES had outlived its usefulness Vulnerabilities were becoming known 56-bit key was too small Too slow

Today ENCRYPTION. Cryptography example. Basic principles of cryptography

Today ENCRYPTION The last class described a number of problems in ensuring your security and privacy when using a computer on-line. This lecture discusses one of the main technological solutions. The use

Exercise 1 Perfect Secrecy

Exercise 1 Perfect Secrecy Let us consider the following cryptosystem P = {a, b, c}; Pr(a) = 1/2; Pr(b) = 1/3; Pr(c) = 1/6 K = {k1, k2, k3}; Pr(k1) = Pr(k2) = Pr(k2) = 1/3; P=Plaintext C=Ciphertext K=Key

Mathematics of Cryptography

CHAPTER 2 Mathematics of Cryptography Part I: Modular Arithmetic, Congruence, and Matrices Objectives This chapter is intended to prepare the reader for the next few chapters in cryptography. The chapter

PUBLIC KEY ENCRYPTION

PUBLIC KEY ENCRYPTION http://www.tutorialspoint.com/cryptography/public_key_encryption.htm Copyright tutorialspoint.com Public Key Cryptography Unlike symmetric key cryptography, we do not find historical

Public-Key Cryptography. Oregon State University

Public-Key Cryptography Çetin Kaya Koç Oregon State University 1 Sender M Receiver Adversary Objective: Secure communication over an insecure channel 2 Solution: Secret-key cryptography Exchange the key

C Simplified DES. William Stallings Copyright 2006

APPENDIX C Simplified DES C.1 Overview...2 C.2 S-DES Key Generation...3 C.3 S-DES Encryption...3 Initial and Final Permutations...3 The Function... The Switch Function...5 C. Analysis of Simplified DES...5

CRYPTOGRAPHIC ALGORITHMS (AES, RSA)

CALIFORNIA STATE POLYTECHNIC UNIVERSITY, POMONA CRYPTOGRAPHIC ALGORITHMS (AES, RSA) A PAPER SUBMITTED TO PROFESSOR GILBERT S. YOUNG IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE COURSE CS530 : ADVANCED

Introduction To Security and Privacy Einführung in die IT-Sicherheit I

Introduction To Security and Privacy Einführung in die IT-Sicherheit I Prof. Dr. rer. nat. Doğan Kesdoğan Institut für Wirtschaftsinformatik kesdogan@fb5.uni-siegen.de http://www.uni-siegen.de/fb5/itsec/

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without

Lecture 3: One-Way Encryption, RSA Example

ICS 180: Introduction to Cryptography April 13, 2004 Lecturer: Stanislaw Jarecki Lecture 3: One-Way Encryption, RSA Example 1 LECTURE SUMMARY We look at a different security property one might require

Lecture 10 - Cryptography and Information Theory

Lecture 10 - Cryptography and Information Theory Jan Bouda FI MU May 18, 2012 Jan Bouda (FI MU) Lecture 10 - Cryptography and Information Theory May 18, 2012 1 / 14 Part I Cryptosystem Jan Bouda (FI MU)

Cryptography. Course 2: attacks against RSA. Jean-Sébastien Coron. September 26, Université du Luxembourg

Course 2: attacks against RSA Université du Luxembourg September 26, 2010 Attacks against RSA Factoring Equivalence between factoring and breaking RSA? Mathematical attacks Attacks against plain RSA encryption

Notes for Recitation 5

6.042/18.062J Mathematics for Computer Science September 24, 2010 Tom Leighton and Marten van Dijk Notes for Recitation 5 1 Exponentiation and Modular Arithmetic Recall that RSA encryption and decryption

Network Security. Security Attacks. Normal flow: Interruption: 孫 宏 民 hmsun@cs.nthu.edu.tw Phone: 03-5742968 國 立 清 華 大 學 資 訊 工 程 系 資 訊 安 全 實 驗 室

Network Security 孫 宏 民 hmsun@cs.nthu.edu.tw Phone: 03-5742968 國 立 清 華 大 學 資 訊 工 程 系 資 訊 安 全 實 驗 室 Security Attacks Normal flow: sender receiver Interruption: Information source Information destination

Introduction to Cryptography CS 355

Introduction to Cryptography CS 355 Lecture 2 Classical Cryptography: Shift Cipher and Substitution Cipher CS 355 Fall 2005/Lecture 2 1 Announcements Join class mailing list CS355_Fall2005@cs.purdue.edu

Symmetric and asymmetric cryptography overview

Symmetric and asymmetric cryptography overview Modern cryptographic methods use a key to control encryption and decryption Two classes of key-based encryption algorithms symmetric (secret-key) asymmetric

Network Security. Security. Security Services. Crytographic algorithms. privacy authenticity Message integrity. Public key (RSA) Message digest (MD5)

Network Security Security Crytographic algorithms Security Services Secret key (DES) Public key (RSA) Message digest (MD5) privacy authenticity Message integrity Secret Key Encryption Plain text Plain

IT Networks & Security CERT Luncheon Series: Cryptography

IT Networks & Security CERT Luncheon Series: Cryptography Presented by Addam Schroll, IT Security & Privacy Analyst 1 Outline History Terms & Definitions Symmetric and Asymmetric Algorithms Hashing PKI

Encryption. June 10, Studiengang Informatik Universität Hamburg. Encryption. Nicolaus Moeller. Introduction. Cryptography.

Encryption Studiengang Informatik Universität Hamburg June 10, 2015 1 / 26 Contents 1 2 3 4 5 2 / 26 Privacy is important for... democracy. the control of our lives. can be... complex. a lot of fun! 3

Network Security. HIT Shimrit Tzur-David

Network Security HIT Shimrit Tzur-David 1 Goals: 2 Network Security Understand principles of network security: cryptography and its many uses beyond confidentiality authentication message integrity key

Applied Cryptography Public Key Algorithms

Applied Cryptography Public Key Algorithms Sape J. Mullender Huygens Systems Research Laboratory Universiteit Twente Enschede 1 Public Key Cryptography Independently invented by Whitfield Diffie & Martin

Cryptography CS 555. Topic 3: One-time Pad and Perfect Secrecy. CS555 Spring 2012/Topic 3 1

Cryptography CS 555 Topic 3: One-time Pad and Perfect Secrecy CS555 Spring 2012/Topic 3 1 Outline and Readings Outline One-time pad Perfect secrecy Limitation of perfect secrecy Usages of one-time pad

For decimal numbers we have 10 digits available (0, 1, 2, 3, 9) For binary numbers we have 2 digits available, 0 and 1.

Math 167 Ch 17 Review 1 (c) Janice Epstein, 2014 CHAPTER 17 INFORMATION SCIENCE Binary and decimal numbers a short review: For decimal numbers we have 10 digits available (0, 1, 2, 3, 9) 4731 = For binary

MA2C03 Mathematics School of Mathematics, Trinity College Hilary Term 2016 Lecture 59 (April 1, 2016) David R. Wilkins

MA2C03 Mathematics School of Mathematics, Trinity College Hilary Term 2016 Lecture 59 (April 1, 2016) David R. Wilkins The RSA encryption scheme works as follows. In order to establish the necessary public

Security and Cryptography 1. Stefan Köpsell, Thorsten Strufe. Module 4: Basic Crypto, Stream Ciphers

Security and Cryptography 1 Stefan Köpsell, Thorsten Strufe Module 4: Basic Crypto, Stream Ciphers Disclaimer: Günter Schäfer, Mark Manulis, large parts from Dan Boneh Dresden, WS 16/17 Reprise from the

Overview/Questions. What is Cryptography? The Caesar Shift Cipher. CS101 Lecture 21: Overview of Cryptography

CS101 Lecture 21: Overview of Cryptography Codes and Ciphers Overview/Questions What is cryptography? What are the challenges of data encryption? What factors make an encryption strategy successful? What

ALGEBRAIC CRYPTANALYSIS OF AES: AN OVERVIEW

ALGEBRAIC CRYPTANALYSIS OF AES: AN OVERVIEW HARRIS NOVER Abstract. In this paper, we examine algebraic attacks on the Advanced Encryption Standard (AES, also known as Rijndael). We begin with a brief review

Students will operate in pairs and teams of four to decipher and encipher information.

Title: SHHHHHH! It s a Secret Link to Outcomes: Patterns and Relationships Cooperation Connections Technology Problem Solving Algebra Writing Students will discover the need for a common understanding

The Mathematics of RSA

The Mathematics of RSA Dimitri Papaioannou May 24, 2007 1 Introduction Cryptographic systems come in two flavors. Symmetric or Private key encryption and Asymmetric or Public key encryption. Strictly speaking,

Mathematics of Internet Security. Keeping Eve The Eavesdropper Away From Your Credit Card Information

The : Keeping Eve The Eavesdropper Away From Your Credit Card Information Department of Mathematics North Dakota State University 16 September 2010 Science Cafe Introduction Disclaimer: is not an internet

Advanced Analogue and Digital Encryption Methods. Presented by: Dr. S. Sarpal

Advanced Analogue and Digital Encryption Methods Presented by: Dr. S. Sarpal Background Term given to a mathematical algorithm OR a set of known sequences. Mixed with message to hide the meaning of content.

Outline. Cryptography. Bret Benesh. Math 331

Outline 1 College of St. Benedict/St. John s University Department of Mathematics Math 331 2 3 The internet is a lawless place, and people have access to all sorts of information. What is keeping people

CSCE 465 Computer & Network Security

CSCE 465 Computer & Network Security Instructor: Dr. Guofei Gu http://courses.cse.tamu.edu/guofei/csce465/ Public Key Cryptogrophy 1 Roadmap Introduction RSA Diffie-Hellman Key Exchange Public key and

ADVANCED ENCRYPTION STANDARD (AES) Tran Song Dat Phuc Department of Computer Science and Engineering Seoul National University of Science and Technology 2013-2014 Outline AES History AES Operations Advanced

Chapter 10 Asymmetric-Key Cryptography

Chapter 10 Asymmetric-Key Cryptography Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 10.1 Chapter 10 Objectives Present asymmetric-key cryptography. Distinguish

UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure

UNIT 2 MATRICES - I Matrices - I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress

Chapter 9 Public Key Cryptography and RSA

Chapter 9 Public Key Cryptography and RSA Cryptography and Network Security: Principles and Practices (3rd Ed.) 2004/1/15 1 9.1 Principles of Public Key Private-Key Cryptography traditional private/secret/single

Cryptography and Network Security Chapter 9

Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 9 Public Key Cryptography and RSA Every Egyptian received two names,