Kinetic and Potential Energy


 Arline Waters
 1 years ago
 Views:
Transcription
1 Kinetic and Potential Energy Objective: Prove or Disprove Galileo Free Falling Body Experiment Determine the energies involved of a free falling body Combine Kinetic and Gravitational Potential energy equation to solve complex problems. Introduce Period and Angular Momentum for measurement of a Pendulum. Purpose: Understanding energy is the key to physics and the universe around us. It does not matter what course work anyone studies there is always a component of energy. This lab will introduce two aspects of energy and how to solve some complex problems with just calculating the energy involved. Aristotle was approached with a question of which will fall faster between two rocks. After pondering the question for a period of time, he concluded that the heavier object would fall at a faster rate. Galileo challenged this concept about 2000 years later. In a previous lab we discuss the Free Falling body experiment. We saw in the experiment that object will fall at the same rate with a different mass as long as the volume is the same for each object; therefore mass is not relevant in a free falling body.
2 Newton was the next person to approach this problem using his equations of motion, mainly the Universal Gravitation equation. Though this equation is good for measuring the force, but in order to have any force there must be energy transferred from one place to another. Kinetic Energy is a very versatile equation to figure out how much energy a moving object has. The term Kinetic means an object in motion. A Static object is one that is at rest (not moving). The above equation is used to solve the Kinetic Energy of an object. The m is the mass of the object and v is the velocity of the object in motion. This raises the question of how is mass irrelevant as explained above? If you are solely looking at the kinetic energy of a moving object such as a car; then the mass is very important. As we saw in the previous lab this equation can solve for the change in kinetic energy you can figure out the work done. We will use kinetic energy in another facet in this lab. There is another way in order to determine the change in kinetic energy by looking a new concept called Gravitation Potential Energy. Here m is still the mass, g is gravity (not to be associated with the acceleration due to gravity because g is a scalar) and h is the maximum height of the object of your reference frame. As the name suggests this is going to be the energy stored in the object while at rest. At rest the GPE will be a maximum. As the object moves towards the center of the gravitation force the GPE will start to decrease. What happens to the energy if the GPE is decreasing? There is a Law dealing with changing of energy and how it works in the universe. This law is called the Conservation of Energy. Law of Conservation of Energy Within some problem domain, the amount of energy remains constant and energy is neither created nor destroyed. Energy can be converted from one form to another (potential energy can be converted to kinetic energy) but the total energy within the domain remains fixed. (Glen Research Center NASA) \
3 Here we can see that the energy will be the same, to see how this works you will add all the energies of the system together. In this experiment we will prove the conservation of energy using kinetic energy and gravitational potential energy. This is known as a conservative concept. When the energies or forces do not remain fixed in a system then this will be called a nonconservative concept. Conservation of change in kinetic energy In our last lab we saw that a change in kinetic energy will also solve for the work done by or on a system. This is another way to solve the same problems as in the last lab. Try repeating some of the questions from the last lab using the conservation of change in kinetic energy and see if you still get the same results. Materials: (1) Pasco Scientific Projectile Launcher (ME6800) (1) Pasco Scientific Drop Shoot Accessory (ME9859) (1) Pasco Scientific Time of Flight Accessory (1) Pasco Scientific PhotoGate with interface cord (2) Steel ball (65g) (1) Steel ball (25g) Procedure: Part I (1) Gather all necessary equipment to complete this lab (2) Attach the Drop Shoot Accessory to the Projectile launcher by sliding the nut on the accessory into the bottom slide of the projectile launcher. (3) Make sure the accessory is flush with the barrel of the launcher and tighten the nut on to secure the accessory in place. (4) Unscrew the retaining nut on the steel bolt. (5) Place the opening on the back of the photogate onto the steel screw (6) Replace the retaining nut to secure the photogate in place. (7) Plug in the telephonic connector into the back of the photogate. (8) Plug the RCA connector of the photogate into channel 1 on the interface.
4 (9) Plug the RCA connector on the Time of Flight accessory into channel 2 on the interface (10) Place the Time of Flight accessory underneath the Drop Shoot Accessory as show in the picture. (11) Open the file KE GPE in the capstone folder on your desk top. (12) Use the plum bob on the launcher to make sure the bob is resting at 0⁰ for this entire experiment. *Note* the angle will shift after repeated launches, it is important to check the angle after every launch. (13) Using two balls of the same mass (use scale if needed to check, a 10% variance is acceptable) (14) Load one steel ball into the launcher at the setting SHORT RANGE (15) Attached the other steel ball to the base of the black bolt. *NOTE* the base of the black bolt is magnetic and will hold the ball in place. (16) Using the picture on the side of the launcher that explains the position of the ball inside the launcher, Adjust the height of the black bolt so that both balls are at the same height. (17) Click the button in capstone (18) Pull up in the yellow string to fire the launcher
5 (19) Click in capstone. (20) Repeat steps for a total of 5 (five) runs (run#15). Collect data for FREE FALL *NOTE* Not all five runs will be displayed at the same time, we will correct this later. (21) Move the time of flight accessory to gather the data for the PROJECTILE MOTION ball. (22) Adjust the distance with test launches before (Recording) any data. (23) Repeat steps for a total of 5 (five) runs (run#610). (24) In the table you will see that all fields have the same RUN # (25) Left Click each field and a drop down menu shows you all the RUN # s. (26) Starting on the far left assign each field its corresponding run, start with RUN 1, RUN2, and RUN3 and so on until you have reach TEN runs. (27) This is the complete table of times of flight for two objects of the same masses. (28) Print this table. (29) Select the UNEQUAL MASSES tab in capstone. (30) Replace one steel ball for the lighter mass steel ball (hollow) (31) The larger mass ball will be the only ball loaded into the launcher (32) The hollow steel ball will be attached to the magnet (33) Repeat steps with RUN #s (run# 1115) for free fall and (run # 1620) for projectile time. (34) Print both sets of tables. Part II (35) Select the higher mass ball and insert the ball into the Pendulum. There is a locking device so the ball will not leave the Pendulum randomly. (36) Gently remove the screw holding the pendulum to the stand. (37) Measure the complete mass of the Pendulum, ball, and masses attached. This will be your mass for your equation (38) Record the mass in the Excel workbook (39) Measure the length of the pendulum from top to the center of the ball. (40) Record the length in the Excel workbook (41) Record gravity in the Excel workbook
6 Questions: (42) Replace the pendulum by inserting the bolt removed and gently tighten the pendulum in place. DO NOT OVER TIGHTEN THE BOLT! (43) The angle indicator will tell you the angle in which the max height is reached. At rest the angle indicator should be at zero. If there is a issue in which this is not the case, continue with the experiment and adjust your angle measurement to compensate for the error. (44) Pull back on the pendulum (45) Release the pendulum with the objective of getting close to 10⁰. This does not need to be exactly 10⁰ but just close. (46) Record the angle on the angle indicator in the Excel work book. (47) Repeat steps (4345) for angles Remember this does not need to be exact to the angle, but it does need to be close.(within 5⁰) (48) Repeat Steps (4447) for the lighter mass ball. (49) Print Excel Graphs. (1) What is the importance of the free fall experiment? (2) Though the mass is not important will the Potential Energy and Kinetic Energy change with the free fall experiment? (3) You drop a ball from the roof of the library with a mass of.20kg at height of 30m; what is the velocity of the ball at impact with the ground? (4) What is the Potential and kinetic energy half way through the free fall in question (3)? (5) At what point is the Potential Energy at a maximum? (6) At what point is the Kinetic Energy at a maximum?
Kinetic and Potential Energy
Kinetic and Potential Energy Objective: Explore the relationship between Kinetic and Gravitational Energies Analyze the importance of Kinetic Energy in falling objects. Determine the energies involved
More informationTHE CONSERVATION OF ENERGY  PENDULUM 
THE CONSERVATION OF ENERGY  PENDULUM  Introduction The purpose of this experiment is to measure the potential energy and the kinetic energy of a mechanical system and to quantitatively compare the two
More informationProjectile Motion & Conservation of Energy
Projectile Motion & Conservation of Energy Equipment Qty Item Part Number 1 Mini Launcher ME6800 1 Metal Sphere Projectile 1 and 2 Meter Sticks 1 Large Metal Rod ME8741 1 Small Metal Rod ME8736 1 Support
More informationUniform Circular Motion
Uniform Circular Motion Object: To investigate the force required to move a mass along a circular path. Verify the theoretical expression for that force in terms of the frequency of rotation, the radius
More informationAcceleration of a Cart on an Inclined Plane. What happens to the acceleration of a cart as it moves up and down an inclined plane?
Name Date Acceleration of a Cart on an Inclined Plane Equipment Needed Qty Equipment Needed Qty Photogate and Bracket 1 Dynamics Cart (inc. w/ Track) 1 Bumper 1 Ruler 1 Base and Support Rod 1 1.2 m Track
More informationThe Ballistic Pendulum
1 The Ballistic Pendulum Introduction: By this time, you have probably become familiar with the concepts of work, energy, and potential energy, in the lecture part of the course. In this lab, we will be
More informationProjectile Motion. Prelab Assignment. Prelab Questions and Exercises. Introduction. Projectile Motion
Projectile Motion Prelab Assignment Derive algebraic expressions for the range and total timeofflight of a projectile launched with initial speed v o from a height h at an angle above horizontal. Hint:
More informationInstruction Manual and Experiment Guide for the PASCO scientific Model ME6825A A MINI LAUNCHER
90 60 50 30 of Ball Instruction Manual and Experiment Guide for the PASCO scientific Model ME6825A 01209562A MINI LAUNCHER 80 70 WEAR SAFETY GLASSES WHEN IN USE. 40 DO NOT PUSH PISTON WITH FINGER! 20
More informationName Class Date. Activity P25: Transforming Gravitational Potential Energy to Kinetic Energy (Rotary Motion Sensor)
Activity P25: Transforming Gravitational Potential Energy to Kinetic Energy (Rotary Motion Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Energy P25 GPE to KE.DS (See end of activity)
More informationBE VERY CAREFUL WHENEVER THE LAUNCHER IS IN THE COMPRESSED POSITION. ALWAYS NOTIFY THE CLASS BEFORE FIRING THE LAUNCHER.
OBJECTIVES: LAB #5: THE BALLISTIC PENDULUM To study the dynamics of a ballistic pendulum using the laws of conservation of momentum and energy. EQUIPMENT: Equipment Needed Qty Equipment Needed Qty Ballistic
More informationConcept Review. Physics 1
Concept Review Physics 1 Speed and Velocity Speed is a measure of how much distance is covered divided by the time it takes. Sometimes it is referred to as the rate of motion. Common units for speed or
More informationProving the Law of Conservation of Energy
Table of Contents List of Tables & Figures: Table 1: Data/6 Figure 1: Example Diagram/4 Figure 2: Setup Diagram/8 1. Abstract/2 2. Introduction & Discussion/3 3. Procedure/5 4. Results/6 5. Summary/6 Proving
More informationLab 3  Projectile Motion Scientific Data Collection and Analysis (with some experimental design)
Partner 1: Lab 3  Scientific Data Collection and Analysis (with some experimental design) Purpose: This Minilab is designed help you apply the skills you learned in the homework; that is, to collect data
More informationBallistic Pendulum / Projectile Launcher
Includes Teacher's Notes and Typical Experiment Results Instruction Manual and Experiment Guide for the PASCO scientific Model ME6830/ME6831 Ballistic Pendulum / Projectile Launcher 01205375B 2/99 WEAR
More informationGravity PreLab 1. Why do you need an inclined plane to measure the effects due to gravity?
AS 101 Lab Exercise: Gravity (Report) Your Name & Your Lab Partner s Name Due Date Gravity PreLab 1. Why do you need an inclined plane to measure the effects due to gravity? 2. What are several advantage
More informationLab 5: Conservation of Energy
Lab 5: Conservation of Energy Equipment SWS, 1meter stick, 2meter stick, heavy duty bench clamp, 90cm rod, 40cm rod, 2 double clamps, brass spring, 100g mass, 500g mass with 5cm cardboard square
More informationExperiment: Static and Kinetic Friction
PHY 201: General Physics I Lab page 1 of 6 OBJECTIVES Experiment: Static and Kinetic Friction Use a Force Sensor to measure the force of static friction. Determine the relationship between force of static
More informationLAB 4: MOMENTUM AND COLLISIONS
1 Name Date Day/Time of Lab Partner(s) Lab TA LAB 4: MOMENTUM AND COLLISIONS NEWTON S THIRD LAW OBJECTIVES To examine actionreaction force pairs To examine collisions and relate the law of conservation
More informationLab 7: Rotational Motion
Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME9472), string with loop at one end and small white bead at the other end (125
More informationLab 8: Ballistic Pendulum
Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally
More informationGENERAL SCIENCE LABORATORY 1110L Lab Experiment 3: PROJECTILE MOTION
GENERAL SCIENCE LABORATORY 1110L Lab Experiment 3: PROJECTILE MOTION Objective: To understand the motion of a projectile in the earth s gravitational field and measure the muzzle velocity of the projectile
More informationConservation of Momentum: Marble Collisions Teacher Version
Conservation of Momentum: Marble Collisions Teacher Version In this lab you will roll a marble down a ramp, and at the bottom of the ramp the marble will collide with another marble. You will measure the
More informationUnit 1: Vectors. a m/s b. 8.5 m/s c. 7.2 m/s d. 4.7 m/s
Multiple Choice Portion 1. A boat which can travel at a speed of 7.9 m/s in still water heads directly across a stream in the direction shown in the diagram above. The water is flowing at 3.2 m/s. What
More informationQ: Who established the law of universal gravitation? A: Newton. Q: What is a spring scale used for? A: To measure weight
Q: Who established the law of universal gravitation? A: Newton Q: What is a spring scale used for? A: To measure weight Q: What is the Law of Universal Gravitation? A: Everything in the universe has gravity.
More information( t) = gt. y( t) = 1 2 gt 2
Name Date Acceleration of a Freely Falling Picket Fence Equipment Needed Qty Equipment Needed Qty Smart Pulley System (ME6838) 1 Universal Table Clamp (ME9376) 1 Picket Fence (ME9377A) 1 What Do You
More informationProduct Instructions: Linear Air Track
FO060 The Linear Air Track facilitates the study of linear motion under conditions of low friction. Air track blower This pressure is released through the series of drilled holes along the track, creating
More informationPSI AP Physics B Kinematics MultipleChoice Questions
PSI AP Physics B Kinematics MultipleChoice Questions 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle.
More informationLecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014
Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,
More informationProjectile Motion. y  y o = v oy t  (1/2)gt 2 [2]
Projectile Motion In this experiment we will study motion in twodimensions. An object which has motion in both the X and Y direction has a two dimensional motion. We will first determine at what velocity
More informationOperating Instructions: 75425 CENCO Ballistic Pendulum
Operating Instructions: Product Contents Quantity Description 1 rigid arm pendulum with support rod 1 Brass ball with drilled hole 1 spring with gun release mechanism 1 Metal Base 1 Curved rack Other Suggested
More informationChapter 8: Conservation of Energy
Chapter 8: Conservation of Energy This chapter actually completes the argument established in the previous chapter and outlines the standing concepts of energy and conservative rules of total energy. I
More informationConservation of Momentum and Energy
Conservation of Momentum and Energy OBJECTIVES to investigate simple elastic and inelastic collisions in one dimension to study the conservation of momentum and energy phenomena EQUIPMENT horizontal dynamics
More informationPhysics 1020 Laboratory #6 Equilibrium of a Rigid Body. Equilibrium of a Rigid Body
Equilibrium of a Rigid Body Contents I. Introduction II. III. IV. Finding the center of gravity of the meter stick Calibrating the force probe Investigation of the angled meter stick V. Investigation of
More informationCatapult Engineering Pilot Workshop. LA Tech STEP 20072008
Catapult Engineering Pilot Workshop LA Tech STEP 20072008 Some Background Info Galileo Galilei (15641642) did experiments regarding Acceleration. He realized that the change in velocity of balls rolling
More informationThe quest to find how x(t) and y(t) depend on t is greatly simplified by the following facts, first discovered by Galileo:
Team: Projectile Motion So far you have focused on motion in one dimension: x(t). In this lab, you will study motion in two dimensions: x(t), y(t). This 2D motion, called projectile motion, consists of
More informationThe quest to find how x(t) and y(t) depend on t is greatly simplified by the following facts, first discovered by Galileo:
Team: Projectile Motion So far you have focused on motion in one dimension: x(t). In this lab, you will study motion in two dimensions: x(t), y(t). This 2D motion, called projectile motion, consists of
More informationThe moment of inertia of a rod rotating about its centre is given by:
Pendulum Physics 161 Introduction This experiment is designed to study the motion of a pendulum consisting of a rod and a mass attached to it. The period of the pendulum will be measured using three different
More informationFirst Semester Learning Targets
First Semester Learning Targets 1.1.Can define major components of the scientific method 1.2.Can accurately carry out conversions using dimensional analysis 1.3.Can utilize and convert metric prefixes
More informationSTATIC AND KINETIC FRICTION
STATIC AND KINETIC FRICTION LAB MECH 3.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult
More informationBallistics Car P33527
WWW.ARBORSCI.COM Ballistics Car P33527 BACKGROUND: The Ballistic Car demonstrates that the horizontal motion of an object is unaffected by forces which act solely in the vertical direction. It consists
More informationChapter 4. Kinematics  Velocity and Acceleration. 4.1 Purpose. 4.2 Introduction
Chapter 4 Kinematics  Velocity and Acceleration 4.1 Purpose In this lab, the relationship between position, velocity and acceleration will be explored. In this experiment, friction will be neglected.
More informationPhysical Science Chapter 2. Forces
Physical Science Chapter 2 Forces The Nature of Force By definition, a Force is a push or a pull. A Push Or A Pull Just like Velocity & Acceleration Forces have both magnitude and direction components
More informationGrade/Course: PreAP Physics Unit 2
Grade/Course: PreAP Physics Unit 2 Unit Concepts: Newton s Law of Motion, Forces, Equilibrium, Work, Power, & Energy, Simple Machines, Kinetic Energy & Potential Energy, Conservation of Energy, Momentum
More informationThe car is pulled up a long hill. 2. Does the roller coaster ever get higher than the first hill? No.
Roller Coaster Physics Answer Key Vocabulary: friction, gravitational potential energy, kinetic energy, momentum, velocity Prior Knowledge Questions (Do these BEFORE using the Gizmo.) [Note: The purpose
More informationRotational Kinetic Energy
Objective: The kinetic energy of a rotating disk and falling mass are found; the change in their kinetic energy is compared with the change in potential energy of the falling mass. The conservation of
More informationExperiment 5 ~ Friction
Purpose: Experiment 5 ~ Friction In this lab, you will make some basic measurements of friction. First you will measure the coefficients of static friction between several combinations of surfaces using
More informationNewton s Laws of Motion
Newton s Laws of Motion OBJECTIVES to validate Newton s Laws of Motion EQUIPMENT horizontal dynamic track and safety stopper on one end PASCO carts with a small reflector motion detector connected to the
More informationStatic and Kinetic Friction
Objectives Static and Kinetic Friction In this lab you will Equipment investigate how friction varies with the applied force. measure the coefficients of static and kinetic friction. learn how to use the
More informationChapter 12  Forces and Motion
Chapter 12  Forces and Motion A. What is a force? 1. It is a push or pull. 2. Force can cause resting objects to move. 3. Force can cause acceleration by changing the object s speed or direction. 4. Newtons
More informationSummary Notes. to avoid confusion it is better to write this formula in words. time
National 4/5 Physics Dynamics and Space Summary Notes The coloured boxes contain National 5 material. Section 1 Mechanics Average Speed Average speed is the distance travelled per unit time. distance (m)
More informationExperiment P007: Acceleration due to Gravity (Free Fall Adapter)
Experiment P007: Acceleration due to Gravity (Free Fall Adapter) EQUIPMENT NEEDED Science Workshop Interface Clamp, right angle Base and support rod Free fall adapter Balls, 13 mm and 19 mm Meter stick
More informationReavis High School Physics Honors Curriculum Snapshot
Reavis High School Physics Honors Curriculum Snapshot Unit 1: Mathematical Toolkit Students will be able to: state definition for physics; measure length using a meter stick; measure the time with a stopwatch
More informationWork, Energy and Power Practice Test 1
Name: ate: 1. How much work is required to lift a 2kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill
More informationPhysics Labs with Computers, Vol. 2 P38: Conservation of Linear Momentum 01207001A
Name Class Date Activity P38: Conservation of Linear Momentum (Motion Sensors) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Newton s Laws P38 Linear Momentum.DS P16 Cons. of Momentum
More information3.6 Solving Problems Involving Projectile Motion
INTRODUCTION 12 Physics and its relation to other fields introduction of physics, its importance and scope 15 Units, standards, and the SI System description of the SI System description of base and
More informationLABORATORY 9. Simple Harmonic Motion
LABORATORY 9 Simple Harmonic Motion Purpose In this experiment we will investigate two examples of simple harmonic motion: the massspring system and the simple pendulum. For the massspring system we
More informationThe Acceleration Due to Gravity
1 The Acceleration Due to Gravity Introduction: Acceleration is defined as the rate at which the velocity of a moving object changes with time. Accelerations are always caused by forces. In this laboratory
More informationWork and Energy. W =!KE = KE f
Activity 19 PS2826 Work and Energy Mechanics: workenergy theorem, conservation of energy GLX setup file: work energy Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS2002 1 PASPORT Motion
More informationLAB 6: GRAVITATIONAL AND PASSIVE FORCES
55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction
More informationPAScar Accessory Track Set (1.2m version)
Includes Teacher's Notes and Typical Experiment Results Instruction Manual and Experiment Guide for the PASCO scientific Model ME6955 01207557A 1/01 PAScar Accessory Track Set (1.2m version) Model ME9435
More informationPhysics 2101, First Exam, Fall 2007
Physics 2101, First Exam, Fall 2007 September 4, 2007 Please turn OFF your cell phone and MP3 player! Write down your name and section number in the scantron form. Make sure to mark your answers in the
More informationAcceleration of Gravity Lab Basic Version
Acceleration of Gravity Lab Basic Version In this lab you will explore the motion of falling objects. As an object begins to fall, it moves faster and faster (its velocity increases) due to the acceleration
More informationForce. Net Force Mass. Acceleration = Section 1: Weight. Equipment Needed Qty Equipment Needed Qty Force Sensor 1 Mass and Hanger Set 1 Balance 1
Department of Physics and Geology Background orce Physical Science 1421 A force is a vector quantity capable of producing motion or a change in motion. In the SI unit system, the unit of force is the Newton
More informationPhysics 125 Practice Exam #3 Chapters 67 Professor Siegel
Physics 125 Practice Exam #3 Chapters 67 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A container explodes and breaks into three fragments that fly off 120 apart from each
More informationExperiment 2: Conservation of Momentum
Experiment 2: Conservation of Momentum Learning Goals After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Use the equations
More informationLab 8 Impulse and Momentum
b Lab 8 Impulse and Momentum What You Need To Know: The Physics There are many concepts in physics that are defined purely by an equation and not by a description. In some cases, this is a source of much
More informationKinematics: The Gravity Lab Teacher Advanced Version (Grade Level: 8 12)
Kinematics: The Gravity Lab Teacher Advanced Version (Grade Level: 8 12) *** Experiment with Audacity and Excel to be sure you know how to do what s needed for the lab*** Kinematics is the study of how
More informationExplore 1: Playing with Toy Cars
Explore 1: Playing with Toy Cars Type of Lesson: Content with Process: Focus is on constructing knowledge through active learning. Learning Goal & Instructional Objectives Students conduct experiments
More informationPHY151H1F Experiment 2: The Range of a Projectile Fall 2013 Jason Harlow and Brian Wilson
PHY151H1F Experiment 2: The Range of a Projectile Fall 2013 Jason Harlow and Brian Wilson Today s Textbook Reference to review before lab: University Physics with Modern Physics 1 st Edition by W. Bauer
More informationPHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?
1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always
More informationThe Alarm Clock Turner Offer
The Alarm Clock Turner Offer Sasha Clark Caleb Davis Francisco Landaverde Corey Young Team A15 EF 151 4/22/2009 ii. Abstract: The goal of this team project was to create a Rube Goldberg device that turned
More informationExperiment 7 ~ Conservation of Linear Momentum
Experiment 7 ~ Conservation of Linear Momentum Purpose: The purpose of this experiment is to reproduce a simple experiment demonstrating the Conservation of Linear Momentum. Theory: The momentum p of an
More informationPrinciples and Laws of Motion
2009 19 minutes Teacher Notes: Ian Walter DipAppChem; TTTC; GDipEdAdmin; MEdAdmin (part) Program Synopsis This program begins by looking at the different types of motion all around us. Forces that cause
More informationExperiment 4 ~ Newton s Second Law: The Atwood Machine
xperiment 4 ~ Newton s Second Law: The twood Machine Purpose: To predict the acceleration of an twood Machine by applying Newton s 2 nd Law and use the predicted acceleration to verify the equations of
More informationB) 286 m C) 325 m D) 367 m Answer: B
Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of
More informationENERGYand WORK (PART I and II) 9MAC
ENERGYand WORK (PART I and II) 9MAC Purpose: To understand work, potential energy, & kinetic energy. To understand conservation of energy and how energy is converted from one form to the other. Apparatus:
More informationA Place Where Learning is Fun! Student Manual Elementary School
A Place Where Learning is Fun! Student Manual Elementary School 1 TO BE READ ON THE BUS ON YOUR WAY TO CAROWINDS! Your bus pulls up to the entrance of Carowinds and you are about to jump out of your seat
More informationPhys 111 Fall P111 Syllabus
Phys 111 Fall 2012 Course structure Five sections lecture time 150 minutes per week Textbook Physics by James S. Walker fourth edition (Pearson) Clickers recommended Coursework Complete assignments from
More informationExperiment P6 Friction Force
1 Experiment P6 Friction Force Objectives To learn about the relationship between force, normal force and coefficient. To observe changes in the force within different surfaces and different masses. To
More informationResonance. The purpose of this experiment is to observe and evaluate the phenomenon of resonance.
Resonance Objective: The purpose of this experiment is to observe and evaluate the phenomenon of resonance. Background: Resonance is a wave effect that occurs when an object has a natural frequency that
More informationEnergy and Momentum Conservation The Ballistic Pendulum
Energy and Momentum Conservation The Ballistic Pendulum I. Introduction. In this experiment we will test the principles of conservation of energy and conservation of momentum. A ball is shot into a cup
More informationQ1. (a) State the difference between vector and scalar quantities (1)
Q1. (a) State the difference between vector and scalar quantities....... (1) (b) State one example of a vector quantity (other than force) and one example of a scalar quantity. vector quantity... scalar
More informationSTAAR Science Tutorial 25 TEK 8.6C: Newton s Laws
Name: Teacher: Pd. Date: STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws TEK 8.6C: Investigate and describe applications of Newton's law of inertia, law of force and acceleration, and law of actionreaction
More informationPhysics Honors Page 1
1. An ideal standard of measurement should be. variable, but not accessible variable and accessible accessible, but not variable neither variable nor accessible 2. The approximate height of a 12ounce
More informationUnit (Section 3) Represent and analyze the motion of an object graphically. Analyze the speed of two objects in terms of distance and time
Curriculum: Physics A Curricular Unit: One Dimensional Kinematics Instructional Unit: A. Describe the relationship of an object s position, velocity and acceleration over time when it moves in one dimension
More information8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential
8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy
More informationAP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.
1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach
More informationKE =? v o. Page 1 of 12
Page 1 of 12 CTEnergy1. A mass m is at the end of light (massless) rod of length R, the other end of which has a frictionless pivot so the rod can swing in a vertical plane. The rod is initially horizontal
More informationPractice Exam Three Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,
More informationPHYSICS 149: Lecture 15
PHYSICS 149: Lecture 15 Chapter 6: Conservation of Energy 6.3 Kinetic Energy 6.4 Gravitational Potential Energy Lecture 15 Purdue University, Physics 149 1 ILQ 1 Mimas orbits Saturn at a distance D. Enceladus
More informationInstructor Now pick your pencils up and get this important equation in your notes.
Physics 605 Mechanical Energy (Read objectives on screen.) No, I haven t been playing with this toy the whole time you ve been gone, but it is kind of hypnotizing, isn t it? So where were we? Oh yes, we
More informationLesson 3  Understanding Energy (with a Pendulum)
Lesson 3  Understanding Energy (with a Pendulum) Introduction This lesson is meant to introduce energy and conservation of energy and is a continuation of the fundamentals of roller coaster engineering.
More informationPhysics 101 Fall 2006: Test 2 Free Response #1 Solution
Physics 101 Fall 2006: Test 2 Free Response #1 Solution 1. (20 pts) A block of mass m hangs on the end of a light cord and connected to a block of mass M by the pulley arrangement shown in the figure below
More informationChapter 4  Forces and Newton s Laws of Motion w./ QuickCheck Questions
Chapter 4  Forces and Newton s Laws of Motion w./ QuickCheck Questions 2015 Pearson Education, Inc. Anastasia Ierides Department of Physics and Astronomy University of New Mexico September 8, 2015 Review
More informationChapter 6: Energy and Oscillations. 1. Which of the following is not an energy unit? A. N m B. Joule C. calorie D. watt E.
Chapter 6: Energy and Oscillations 1. Which of the following is not an energy unit? A. N m B. Joule C. calorie D. watt E. kwh 2. Work is not being done on an object unless the A. net force on the object
More informationNewton's First Law. Driving Questions. Background. Materials and Equipment. Safety. For each student or group: Name Period Date
Name Period Date Newton's First Law Driving Questions What factors affect the motion of objects? Aristotle (384 BC to 322 BC) believed that the natural state of an object was to be at rest and therefore
More informationChapter 6 Work and Energy
Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system
More informationLAB 6  GRAVITATIONAL AND PASSIVE FORCES
L061 Name Date Partners LAB 6  GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies
More informationLesson 40: Conservation of Energy
Lesson 40: Conservation of Energy A large number of questions you will do involve the total mechanical energy. As pointed out earlier, the mechanical energy is just the total of all types of energy. In
More information