SETS AND FUNCTIONS, MATH 215 FALL 2015 (WHYTE)
|
|
|
- Diane Shelton
- 9 years ago
- Views:
Transcription
1 SETS AND FUNCTIONS, MATH 215 FALL 2015 (WHYTE) 1. Intro to Sets After some work with numbers, we want to talk about sets. For our purposes, sets are just collections of objects. These objects can be anything - numbers, words, other sets, etc. We use the notation : { } for a set, with the elements listed in the middle. Some examples: {1, 2, 3, 4} {cat, dog, house} {2m +1:m 2 Z} {0, 1, 2, 3,...} The third and fourth sets listed here show two common methods of defining sets. In the third we are taking every number of the form 2m +1 where m is allowed to be any integer. For the fourth we have used... to indicated that the sequence continues in the given pattern indefinitely. This is not completely rigorous, since we have not specified what the pattern is - this notation should not be used if there is any doubt about what is intended. Definition 1.1. Two sets S and T are equal, written S = T, if they have the same elements. In other words, if x 2 S () x 2 T. Definition 1.2. Given sets S and T,wesayS is a subset of T, written S T, if all the elements of S are also elements of T (sox 2 S =) x 2 T ). The following is a common strategy for proving two sets are the same: Proposition 1.3. Given sets S and T, S = T if and only if both S T and T S. We can build new sets out of ones we already have. Definition 1.4. Given a set S, its complement, written S c is defined by x 2 S c () x/2 S Definition 1.5. Given sets S and T, their union, S [ T is defined by x 2 S [ T () (x 2 S or x 2 T ) Definition 1.6. Given sets S and T, their intersection, S \ T is defined by x 2 S \ T () (x 2 S and x 2 T ) One common set is the set which has no elements, called the empty set. We will use the symbol ; for this set. 1
2 2 SETS AND FUNCTIONS, MATH 215 FALL 2015 (WHYTE) Some basic facts about these operations on sets: Proposition 1.7. Let A,B, and C be sets. A [ B = B [ A (A [ B) c =(A c \ B c ) (A [ B) [ C = A [ (B [ C) A \ B = B \ A (A \ B) c =(A c [ B c ) (A \ B) \ C = A \ (B \ C) (A [ B) \ C =(A \ C) [ (B \ C) A \;= ; A [;= A ; A (hint :All of these can be proven in a straightforward way from the definitions, sometimes with the help of Prop 1.3). Sets can have other sets as elements, and this can be confusing. For example: Question 1.8. Let S = {a, b, {x, y}} How many elements does S have? Is x an element of S? Is a an element of S? Is {x, y} an element of S? Is {x, y} a subset of S? Is {a, b} an element of S? Is {a, b} a subset of S? One source of examples of sets with other sets as elements is the power set: Definition 1.9. Let S be a set. The power set of S, written P (S), isthe set of all subsets of S. Sox 2 P (S) () x S. Example If S = {a, b} then P (S) ={;, {a}, {b}, {a, b}} Proposition For any set S, P (S) has at least one element. Proposition If S is a set such that P (S) has only one element then S = ;. Work out examples of the power sets of some (small) sets. In particular, for the example above of S = {a, b}, what is P (P (S))? Problem Suppose S is a set with n elements. Make a conjecture about how many elements P (S) has, then prove your conjecture using induction (hint: the answer is also an explanation for the name power set ).
3 SETS AND FUNCTIONS, MATH 215 FALL 2015 (WHYTE) 3 2. Cartesian Products There is another process that creates a new set out of old ones, called the Cartesian product. You are already familiar with this as the process that builds the Cartesian plane R 2 out of the real numbers R. A point in R 2 is a an ordered pair of real numbers (x, y). Notice that an ordered pair is more than just the set {x, y} since the order matters : the point (2, 3) is not the same as the point (3, 2). Definition 2.1. Let A and B be two sets. An ordered pair with first coordinate from A and second coordinate from B is a pair (x, y) with x 2 A and y 2 B. With this definition in hand, we can define the Cartesian product: Definition 2.2. Let A and B be two sets. Their Cartesian product, written A B is the set of ordered pairs with first coordinate from A and second coordinate from B. Problem 2.3. Write down the Cartesian products, A B, forthefollowing sets: A = {1, 2}, B = {cat} A = {a, b, c}, B = {a, b} A = {a, b}, B = {a, b, c} Notice that the last two examples show that A B is not the same as B A. Proposition 2.4. Let S be any set. Prove that ; S and S ; are both equal to ;. Problem 2.5. If A has n elements and B has m elements, how many elements does A B have? Can you prove it? One of the reasons the Cartesian product construction is important is that it gives a framework for talking about how elements of di erent sets can be related. To define a relationship between elements of A and elements of B we simply indicate all the pairs (a, b) where the relationship holds. More precisely: Definition 2.6. A relation between A and B is a subset R of the product A B. If(a, b) 2 R we say that the relation R holds between a and b. For example, take A as the set of all English words, and B the set of all 26 English letters. Some natural relations between A and B are starts with, ends with, and contains. Example 2.7. As a smaller version of the above, let A = {cat, dog, frog, cow} and let B be the set of letter 26 letters. Write down the sets that correspond to the three relations starts with, ends with, and contains. How many elements are in each relation?
4 4 SETS AND FUNCTIONS, MATH 215 FALL 2015 (WHYTE) There are three special kinds of relations that will be particularly important for us: A relation R between A and B is called a mapping ( or sometimes function ) from A to B is for every element x 2 A there is exactly one y 2 B so that (x, y) 2 R. In this case we usually give the mapping a name (like f) and write y = f(x) for the y that is related to x. The other two kinds occur only when A and B are the same set: A relation R between A and A is called a linear ordering if it satisfies : For all a 1 and a 2 in A, exactly one of the following is true: a 1 = a 2 (a 1,a 2 ) 2 R (a 2,a 1 ) 2 R If (a 1,a 2 ) and (a 2,a 3 ) are in R, thensois(a 1,a 3 ) In this case we usually write a 1 <a 2 instead of (a 1,a 2 ) 2 R A relation R between A and itself is called an equivalence relation if it satisfies : For all a in A, wehave(a, a) 2 R If (a 1,a 2 )isinr then so is (a 2,a 1 ) If (a 1,a 2 ) and (a 2,a 3 ) are in R, thensois(a 1,a 3 ) In this case we usually write a 1 a 2 or a 1 a 2 instead of (a 1,a 2 ) 2 R. Problem 2.8. Suppose A = B = Z. For each of the following relations, decide if they are functions A to B, linear orderings, and/or equivalence relations ( they may be more than one or none ). (1) R = {(n, 0) for all n 2 Z} (2) R = {(0,n) for all n 2 Z} (3) R = {(n, n) for all n 2 Z} (4) R = {(n, n 2 ) for all n 2 Z} (5) R = {(n 2,n) for all n 2 Z} (6) R = {(n, n +3m) for all n, m 2 Z} (7) R = {(n, n + m) for all n 2 Z and m 2 N} (8) R = {(n, n + m) for all n 2 N and m 2 Z} (9) R = {(n, m) such that n + m = 10 and n, m 2 Z} (10) R = {(n, m) such that n 2 + m 2 = 10 and n, m 2 Z} (11) R = {(n, m) such that n 2 = m 2 and n, m 2 Z} Problem 2.9. Is it possible for a relation to be both an equivalence relation and a function? If so how? Problem Is it possible for a relation to be both an equivalence relation and a linear order? If so how? Problem Is it possible for a relation to be both a linear order and a function? If so how?
5 SETS AND FUNCTIONS, MATH 215 FALL 2015 (WHYTE) 5 3. Functions Definition 3.1. Let f be a function from S to T. f is called injective if f(s 1 )=f(s 2 ) implies s 1 = s 2 f is called surjective if for all t 2 T there is s 2 S with f(s) =t f is called bijective if f is both injective and surjective. Problem 3.2. Which of the following functions are injective? surjective? bijective? (1) f(x) =x 2 as a function R! R (2) f(x) =2x +1 as a function Z! Z (3) f(x) =2x +1 as a function R! R (4) For sets A and B, the function f : A B! B A defined by f(a, b) =(b, a) Problem 3.3. Let A and B be sets. Define f : P (A) P (B)! P (A [ B) by f(s, T )=S [ T. (1) Prove that f is surjective. (2) Prove that f is injective if and only if A \ B = ; Problem 3.4. Let S and T be finite sets, and f : S! T a function. Show that if f is injective then S apple T Show that if f is surjective then S T Assume S = T. Showthatf is injective i f is surjective. One important way of building functions is to combine known functions. One way to do this is as follows: given f : A! B and g : B! C we can define the composition, writteng f, as a function from A! C, bythe rule : g f(a) =g(f(a)) It is important to note that this only makes sense when the range of f is the same as the domain of g, so that it is possible to use f(a) as an input value for g. Problem 3.5. Which of the following five functions can be composed, and in what orders? For those that can, work out the compositions. a(x) =x 2 from R! R b(x) =2x +1 from R! R c : {cat, dog, tree}!r, where c(cat) =1, c(dog) =0,andc(tree) = 1 d : R!{cat, dog, tree}, where d(x) =cat for x<0, c(0) = dog, and c(x) =tree for x>0 e : {cat, dog, tree}!{cat, dog, tree} where e(cat) =tree, e(tree) = dog, ande(dog) =dog.
Cartesian Products and Relations
Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special
INTRODUCTORY SET THEORY
M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,
Lecture 16 : Relations and Functions DRAFT
CS/Math 240: Introduction to Discrete Mathematics 3/29/2011 Lecture 16 : Relations and Functions Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT In Lecture 3, we described a correspondence
Geometric Transformations
Geometric Transformations Definitions Def: f is a mapping (function) of a set A into a set B if for every element a of A there exists a unique element b of B that is paired with a; this pairing is denoted
Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson
Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely
THE BANACH CONTRACTION PRINCIPLE. Contents
THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,
LEARNING OBJECTIVES FOR THIS CHAPTER
CHAPTER 2 American mathematician Paul Halmos (1916 2006), who in 1942 published the first modern linear algebra book. The title of Halmos s book was the same as the title of this chapter. Finite-Dimensional
Discrete Mathematics
Discrete Mathematics Chih-Wei Yi Dept. of Computer Science National Chiao Tung University March 16, 2009 2.1 Sets 2.1 Sets 2.1 Sets Basic Notations for Sets For sets, we ll use variables S, T, U,. We can
You know from calculus that functions play a fundamental role in mathematics.
CHPTER 12 Functions You know from calculus that functions play a fundamental role in mathematics. You likely view a function as a kind of formula that describes a relationship between two (or more) quantities.
CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs
CHAPTER 3 Methods of Proofs 1. Logical Arguments and Formal Proofs 1.1. Basic Terminology. An axiom is a statement that is given to be true. A rule of inference is a logical rule that is used to deduce
3. Prime and maximal ideals. 3.1. Definitions and Examples.
COMMUTATIVE ALGEBRA 5 3.1. Definitions and Examples. 3. Prime and maximal ideals Definition. An ideal P in a ring A is called prime if P A and if for every pair x, y of elements in A\P we have xy P. Equivalently,
Prime Factorization 0.1. Overcoming Math Anxiety
0.1 Prime Factorization 0.1 OBJECTIVES 1. Find the factors of a natural number 2. Determine whether a number is prime, composite, or neither 3. Find the prime factorization for a number 4. Find the GCF
Cardinality. The set of all finite strings over the alphabet of lowercase letters is countable. The set of real numbers R is an uncountable set.
Section 2.5 Cardinality (another) Definition: The cardinality of a set A is equal to the cardinality of a set B, denoted A = B, if and only if there is a bijection from A to B. If there is an injection
Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi
Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the
7 Relations and Functions
7 Relations and Functions In this section, we introduce the concept of relations and functions. Relations A relation R from a set A to a set B is a set of ordered pairs (a, b), where a is a member of A,
INCIDENCE-BETWEENNESS GEOMETRY
INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full
1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
Absolute Value Equations and Inequalities
Key Concepts: Compound Inequalities Absolute Value Equations and Inequalities Intersections and unions Suppose that A and B are two sets of numbers. The intersection of A and B is the set of all numbers
Discrete Mathematics. Hans Cuypers. October 11, 2007
Hans Cuypers October 11, 2007 1 Contents 1. Relations 4 1.1. Binary relations................................ 4 1.2. Equivalence relations............................. 6 1.3. Relations and Directed Graphs.......................
Mathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
Comments on Quotient Spaces and Quotient Maps
22M:132 Fall 07 J. Simon Comments on Quotient Spaces and Quotient Maps There are many situations in topology where we build a topological space by starting with some (often simpler) space[s] and doing
Review of Fundamental Mathematics
Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools
Polynomial Invariants
Polynomial Invariants Dylan Wilson October 9, 2014 (1) Today we will be interested in the following Question 1.1. What are all the possible polynomials in two variables f(x, y) such that f(x, y) = f(y,
Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products
Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing
Math 223 Abstract Algebra Lecture Notes
Math 223 Abstract Algebra Lecture Notes Steven Tschantz Spring 2001 (Apr. 23 version) Preamble These notes are intended to supplement the lectures and make up for the lack of a textbook for the course
MA651 Topology. Lecture 6. Separation Axioms.
MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples
GROUPS ACTING ON A SET
GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for
Basic Concepts of Set Theory, Functions and Relations
March 1, 2006 p. 1 Basic Concepts of Set Theory, Functions and Relations 1. Basic Concepts of Set Theory...1 1.1. Sets and elements...1 1.2. Specification of sets...2 1.3. Identity and cardinality...3
MATH10040 Chapter 2: Prime and relatively prime numbers
MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive
Math 4310 Handout - Quotient Vector Spaces
Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable
Mathematics Review for MS Finance Students
Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,
Mathematical Induction. Mary Barnes Sue Gordon
Mathematics Learning Centre Mathematical Induction Mary Barnes Sue Gordon c 1987 University of Sydney Contents 1 Mathematical Induction 1 1.1 Why do we need proof by induction?.... 1 1. What is proof by
THE LANGUAGE OF SETS AND SET NOTATION
THE LNGGE OF SETS ND SET NOTTION Mathematics is often referred to as a language with its own vocabulary and rules of grammar; one of the basic building blocks of the language of mathematics is the language
Introduction to Topology
Introduction to Topology Tomoo Matsumura November 30, 2010 Contents 1 Topological spaces 3 1.1 Basis of a Topology......................................... 3 1.2 Comparing Topologies.......................................
Understanding Basic Calculus
Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear
INTRODUCTION TO TOPOLOGY
INTRODUCTION TO TOPOLOGY ALEX KÜRONYA In preparation January 24, 2010 Contents 1. Basic concepts 1 2. Constructing topologies 13 2.1. Subspace topology 13 2.2. Local properties 18 2.3. Product topology
1. Prove that the empty set is a subset of every set.
1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: [email protected] Proof: For any element x of the empty set, x is also an element of every set since
BANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
I. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
Lemma 5.2. Let S be a set. (1) Let f and g be two permutations of S. Then the composition of f and g is a permutation of S.
Definition 51 Let S be a set bijection f : S S 5 Permutation groups A permutation of S is simply a Lemma 52 Let S be a set (1) Let f and g be two permutations of S Then the composition of f and g is a
3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
Linear Algebra I. Ronald van Luijk, 2012
Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.
CHAPTER 5. Number Theory. 1. Integers and Division. Discussion
CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a
1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain
Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is
Mathematical Methods of Engineering Analysis
Mathematical Methods of Engineering Analysis Erhan Çinlar Robert J. Vanderbei February 2, 2000 Contents Sets and Functions 1 1 Sets................................... 1 Subsets.............................
Class Meeting # 1: Introduction to PDEs
MATH 18.152 COURSE NOTES - CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x
Partial Fractions. (x 1)(x 2 + 1)
Partial Fractions Adding rational functions involves finding a common denominator, rewriting each fraction so that it has that denominator, then adding. For example, 3x x 1 3x(x 1) (x + 1)(x 1) + 1(x +
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly
FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES
FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization
Metric Spaces. Chapter 1
Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence
1 The Concept of a Mapping
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 1 The Concept of a Mapping The concept of a mapping (aka function) is important throughout mathematics. We have been dealing
Abstract Algebra Theory and Applications. Thomas W. Judson Stephen F. Austin State University
Abstract Algebra Theory and Applications Thomas W. Judson Stephen F. Austin State University August 16, 2013 ii Copyright 1997-2013 by Thomas W. Judson. Permission is granted to copy, distribute and/or
Formal Languages and Automata Theory - Regular Expressions and Finite Automata -
Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March
Fixed Point Theorems in Topology and Geometry
Fixed Point Theorems in Topology and Geometry A Senior Thesis Submitted to the Department of Mathematics In Partial Fulfillment of the Requirements for the Departmental Honors Baccalaureate By Morgan Schreffler
Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities
Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned
Advanced Microeconomics
Advanced Microeconomics Ordinal preference theory Harald Wiese University of Leipzig Harald Wiese (University of Leipzig) Advanced Microeconomics 1 / 68 Part A. Basic decision and preference theory 1 Decisions
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 3 Binary Operations We are used to addition and multiplication of real numbers. These operations combine two real numbers
Point Set Topology. A. Topological Spaces and Continuous Maps
Point Set Topology A. Topological Spaces and Continuous Maps Definition 1.1 A topology on a set X is a collection T of subsets of X satisfying the following axioms: T 1.,X T. T2. {O α α I} T = α IO α T.
Sample Induction Proofs
Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Sample Induction Proofs Below are model solutions to some of the practice problems on the induction worksheets. The solutions given
Testing LTL Formula Translation into Büchi Automata
Testing LTL Formula Translation into Büchi Automata Heikki Tauriainen and Keijo Heljanko Helsinki University of Technology, Laboratory for Theoretical Computer Science, P. O. Box 5400, FIN-02015 HUT, Finland
8 Divisibility and prime numbers
8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express
NOTES ON LINEAR TRANSFORMATIONS
NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all
Quotient Rings and Field Extensions
Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.
4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION
4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION STEVEN HEILMAN Contents 1. Review 1 2. Diagonal Matrices 1 3. Eigenvectors and Eigenvalues 2 4. Characteristic Polynomial 4 5. Diagonalizability 6 6. Appendix:
BX in ( u, v) basis in two ways. On the one hand, AN = u+
1. Let f(x) = 1 x +1. Find f (6) () (the value of the sixth derivative of the function f(x) at zero). Answer: 7. We expand the given function into a Taylor series at the point x = : f(x) = 1 x + x 4 x
CHAPTER 1 Linear Equations
CHAPTER 1 Linear Equations 1.1. Lines The rectangular coordinate system is also called the Cartesian plane. It is formed by two real number lines, the horizontal axis or x-axis, and the vertical axis or
Full and Complete Binary Trees
Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full
Section 8.4 - Composite and Inverse Functions
Math 127 - Section 8.4 - Page 1 Section 8.4 - Composite and Inverse Functions I. Composition of Functions A. If f and g are functions, then the composite function of f and g (written f g) is: (f g)( =
CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY
January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.
Chapter 1 Section 4: Compound Linear Inequalities
Chapter 1 Section 4: Compound Linear Inequalities Introduction Compound linear inequalities involve finding the union or intersection of solution sets of two or more linear inequalities. You ve already
Collinear Points in Permutations
Collinear Points in Permutations Joshua N. Cooper Courant Institute of Mathematics New York University, New York, NY József Solymosi Department of Mathematics University of British Columbia, Vancouver,
it is easy to see that α = a
21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore
Examples of Functions
Examples of Functions In this document is provided examples of a variety of functions. The purpose is to convince the beginning student that functions are something quite different than polynomial equations.
Continued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
Answer Key for California State Standards: Algebra I
Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.
3. Mathematical Induction
3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)
Lecture 17 : Equivalence and Order Relations DRAFT
CS/Math 240: Introduction to Discrete Mathematics 3/31/2011 Lecture 17 : Equivalence and Order Relations Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last lecture we introduced the notion
The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.
The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,
Practice with Proofs
Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using
Notes on Algebraic Structures. Peter J. Cameron
Notes on Algebraic Structures Peter J. Cameron ii Preface These are the notes of the second-year course Algebraic Structures I at Queen Mary, University of London, as I taught it in the second semester
Georg Cantor (1845-1918):
Georg Cantor (845-98): The man who tamed infinity lecture by Eric Schechter Associate Professor of Mathematics Vanderbilt University http://www.math.vanderbilt.edu/ schectex/ In papers of 873 and 874,
Metric Spaces Joseph Muscat 2003 (Last revised May 2009)
1 Distance J Muscat 1 Metric Spaces Joseph Muscat 2003 (Last revised May 2009) (A revised and expanded version of these notes are now published by Springer.) 1 Distance A metric space can be thought of
Math 231b Lecture 35. G. Quick
Math 231b Lecture 35 G. Quick 35. Lecture 35: Sphere bundles and the Adams conjecture 35.1. Sphere bundles. Let X be a connected finite cell complex. We saw that the J-homomorphism could be defined by
E3: PROBABILITY AND STATISTICS lecture notes
E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................
Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test
Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important
a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
Math 3000 Section 003 Intro to Abstract Math Homework 2
Math 3000 Section 003 Intro to Abstract Math Homework 2 Department of Mathematical and Statistical Sciences University of Colorado Denver, Spring 2012 Solutions (February 13, 2012) Please note that these
On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems
Dynamics at the Horsetooth Volume 2, 2010. On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems Eric Hanson Department of Mathematics Colorado State University
SMALL SKEW FIELDS CÉDRIC MILLIET
SMALL SKEW FIELDS CÉDRIC MILLIET Abstract A division ring of positive characteristic with countably many pure types is a field Wedderburn showed in 1905 that finite fields are commutative As for infinite
Degrees that are not degrees of categoricity
Degrees that are not degrees of categoricity Bernard A. Anderson Department of Mathematics and Physical Sciences Gordon State College [email protected] www.gordonstate.edu/faculty/banderson Barbara
Linear Algebra. A vector space (over R) is an ordered quadruple. such that V is a set; 0 V ; and the following eight axioms hold:
Linear Algebra A vector space (over R) is an ordered quadruple (V, 0, α, µ) such that V is a set; 0 V ; and the following eight axioms hold: α : V V V and µ : R V V ; (i) α(α(u, v), w) = α(u, α(v, w)),
Graph Theory Problems and Solutions
raph Theory Problems and Solutions Tom Davis [email protected] http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is
Solutions to Math 51 First Exam January 29, 2015
Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not
Chapter 20. Vector Spaces and Bases
Chapter 20. Vector Spaces and Bases In this course, we have proceeded step-by-step through low-dimensional Linear Algebra. We have looked at lines, planes, hyperplanes, and have seen that there is no limit
Automata and Formal Languages
Automata and Formal Languages Winter 2009-2010 Yacov Hel-Or 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,
This asserts two sets are equal iff they have the same elements, that is, a set is determined by its elements.
3. Axioms of Set theory Before presenting the axioms of set theory, we first make a few basic comments about the relevant first order logic. We will give a somewhat more detailed discussion later, but
Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm
MTHSC 412 Section 2.4 Prime Factors and Greatest Common Divisor Greatest Common Divisor Definition Suppose that a, b Z. Then we say that d Z is a greatest common divisor (gcd) of a and b if the following
