The rate of heat transfer from the condensing steam to the cooling water is given by. (h 4 h 3 )

Size: px
Start display at page:

Download "The rate of heat transfer from the condensing steam to the cooling water is given by. (h 4 h 3 )"

Transcription

1 Capter 4 Exaple Stea enters te condenser of a vapor power plant at 0. bar wit a quality of 0.95 and condensate exits at 0. bar and 45 o C. Cooling water enters te condenser in a separate strea as a liquid at 0 o C and exits as a liquid at 5 o C wit no cange in pressure. Heat transfer fro te outside of te condenser and canges in te kinetic and potential energies of te flowing streas can be ignored. For steady-state operation, deterine (a) te ratio of te ass flow rate of cooling water to te ass flow rate of te condensing stea. (b) te rate of energy transfer fro te condensing stea to te cooling water, in kj per kg of stea passing troug te condenser. Solution (a) Deterine te ratio of te ass flow rate of cooling water to te ass flow rate of te condensing stea. Te rate of eat transfer fro te condensing stea to te cooling water is given by In tis equation, Q ( ) c ( 4 ) is te ass flow rate of te ot strea (or condensing stea) and c is te ass flow rate of te cold strea (or cooling water). Te specific entalpies of te inlet and exit streas are listed in Table E4.4-. For strea (), (), and (4) te entalpies are taken as saturated liquid at te listed teperature so tat f (T ), f (T ), and 4 f (T 4 ). 6 Moran, M. J. and Sapiro H. N., Fundaentals of Engineering Terodynaics, Wiley, 008, pg

2 Table E4.4- Stea properties fro CATT Specific Tep Pressure Entalpy Quality Pase C MPa kj/kg Liquid Vapor Mixture Saturated Liquid Saturated Liquid Saturated Liquid Solving for te ratio of te ass flow rate gives c (b) Deterine te rate of energy transfer fro te condensing stea to te cooling water, in kj per kg of stea passing troug te condenser. Q ( ) Q Q kj/kg Exaple A supply line carries a two-pase liquid-vapor ixture of stea at 00 lbf/in. A sall fraction of te flow in te line is diverted troug a trottling calorieter and exausted to te atospere at 4.7 lbf/in. Te teperature of te exaust stea is easured as 50 o F. Deterine te quality of te stea in te supply line. Solution A trottling calorieter is a device used to reduce te pressure of a gas or liquid strea. Tis can be siply done by eans of a partially opened valve or a porous plus as sown in Figure E4.4-4a. Figure E4.4-4a Exaples of trottling devices. 7 Moran, M. J. and Sapiro H. N., Fundaentals of Engineering Terodynaics, Wiley, 008, pg

3 Trottling ay be used as a eans of controlling te flow rate (valves and flow regulators), aintaining a constant downstrea pressure (pressure regulator), or easuring te flow rate (flow etering orifices). For trottling devices we usually ake te following assuptions: * Steady state steady flow (SSSF) * No work or eat transfer * Potential and kinetic energy are negligible relative to oter energy ters Table E4.4-4 Stea properties fro CATT Specific Tep Pressure Entalpy Quality Pase F psia Btu/lb Saturated Liquid Saturated Vapor Supereated Vapor Making energy balance between () and () we obtain V V Q W s + g(z z ) + ( ) V V For g(z z ) 0, ( ) 0, Q W 0, and s 0, we ave ( x ) f + x g f + x ( g f ) Te quality of te stea in te supply line is ten x f g f

4 4.5 Energy balance on Integrated or Transient Syste In real life applications, we usually encounter integrated systes consisting of any coponents discussed in previous sections. Exaple An industrial process discarges 0 5 ft /in of gaseous cobustion products at 400 o F, at. As sown in Figure E4.5-, a proposed syste for utilizing te cobustion products cobined a eat-recovery stea generator wit a turbine. At steady state, cobustion products exit te stea generator at 60 o F, at and a separate strea of water enters at 40 psia, 0 o F wit a ass flow rate of 75 lb/in. At te exit of te turbine, te pressure is psia and te quality is 9%. Heat transfer fro te outer surfaces of te strea generator and turbine can be ignored, as can te canges in kinetic and potential energies of te flowing streas. Tere is no significant pressure drop for te water flowing troug te stea generator. Te cobustion products can be odeled as air as an ideal gas. (a) Deterine te power developed by te turbine, in Btu/in. (b) Deterine te turbine inlet teperature, in o F. Solution (a) Deterine te power developed by te turbine, in Btu/in. Applying te steady state energy balance on te syste consisting of te stea generator and te turbine we obtain wit negligible canges in kinetic and potential energies Q W s 8 Moran, M. J. and Sapiro H. N., Fundaentals of Engineering Terodynaics, Wiley, 008, pg

5 Since te gas and water streas do not ix and eat transfer is negligible, we ave, 5, and W s ( ) + ( 5 ) Te ass flow rate is given by law ( ) AV v, were te specific volue v can be obtained fro ideal gas RT v p R / M T ( ) p v 545 ft lbf o 8.97 lb R 4.7 psia o (860 R) ft 44 in.667 lb/ft Te ass flow rate is ten 5 0 ft / in.667 lb/ft 90.6 lb/in Te air properties are listed in Table E4.5-a and stea properties are listed in Table E4.5-b Table E4.5-a Air properties fro CATT Specific Entalpy Tep Pressure (Mass) F psia Btu/lb Table E4.5-b Stea properties fro CATT Tep Pressure Entalpy Quality Pase F psia Btu/lb Copressed Liquid Liquid Vapor Mixture Te power developed by te turbine is 4-

6 W s ( ) + ( 5 ) W s (90.6 lb/in)( ) Btu/lb + (75 lb/in)(70.4 0) Btu/lb W s 49,980 Btu/in (a) Deterine te turbine inlet teperature, in o F. We need to know properties at (4). Since pressure drop is negligible, p 4 40 psia, te entalpy at (4) can be deterine fro te energy balance around te stea generator: 0 ( ) + ( 4 ) 4 + ( ) Btu/lb ( ) Btu/lb 4.7 Btu/lb Te inlet teperature at te turbine inlet is 55.8 o F fro Table E4.5-c. Table E4.5-c Stea properties fro CATT Specific Tep Pressure Entalpy Quality Pase F psia Btu/lb Supereated Vapor 4-4

7 Exaple A tank aving a volue of 0.85 initially contains water as a two-pase liquid-vapor ixture at 60 o C and a quality of 0.7. Saturated water vapor at 60 o C is slowly witdrawn troug a pressure-regulating valve at te top of te tank as energy is transferred by eat to aintain te pressure constant in te tank. Tis continues until te tank is filled wit saturated vapor at 60 o C. Deterine te aount of eat transfer, in kj. Neglect all kinetic and potential energy effects. Solution Te ass balance for te content, cv, in te tank is given by d cv dt e Te energy balance for te tank can be written as du cv dt Q cv e e Q cv + e dcv dt Integrating te energy equation wit e constant We obtain du cv Q cvdt + edcv U cv Q cv + e cv Solving for te eat transfer gives Q cv U cv e cv u u e ( ) 9 Moran, M. J. and Sapiro H. N., Fundaentals of Engineering Terodynaics, Wiley, 008, pg

8 In tis equation, and are te initial and final aounts of ass witin te tank, respectively. Te stea properties are listed intable Table E4.5- Stea properties fro CATT Specific Internal Specific Tep Pressure Volue Energy Entalpy Quality Pase C MPa /kg kj/kg kj/kg Liquid Vapor Mixture Saturated Vapor Te ass initially contained in te tank is V v /kg 8.4 kg Te ass finally contained in te tank is V v /kg 0.4 kg Te eat transfer is ten Q cv u u e ( ) Q cv (0.4)(599) (8.4)(58) (797)( ) 4,60 kj 4-6

Chapter 4. 4.3 Applications of Energy Balance

Chapter 4. 4.3 Applications of Energy Balance Capter 4 4. Appliation of Energy Balane We will diu exaple illutrating te analyi of erveral devie of interet in engineering, inluding nozzle and diffuer, turbine, opreor and pup, eat exanger, and trottling

More information

Chapter 7. (a) The compressor work is give by. = m (h 2 h 1 ) = (0.08 kg/s)(416.2 398.6) kj/kg = 1.408 kw. (b) The refrigeration capacity, in tons, is

Chapter 7. (a) The compressor work is give by. = m (h 2 h 1 ) = (0.08 kg/s)(416.2 398.6) kj/kg = 1.408 kw. (b) The refrigeration capacity, in tons, is apter 7 Exaple 7.- 6 ---------------------------------------------------------------------------------- Refrigerant 4a i te working fluid in an ideal vapor-opreion refrigeration yle tat ouniate terally

More information

Warm medium, T H T T H T L. s Cold medium, T L

Warm medium, T H T T H T L. s Cold medium, T L Refrigeration Cycle Heat flows in direction of decreasing temperature, i.e., from ig-temperature to low temperature regions. Te transfer of eat from a low-temperature to ig-temperature requires a refrigerator

More information

Chapter 10: Refrigeration Cycles

Chapter 10: Refrigeration Cycles Capter 10: efrigeration Cycles Te vapor compression refrigeration cycle is a common metod for transferring eat from a low temperature to a ig temperature. Te above figure sows te objectives of refrigerators

More information

A Gas Law And Absolute Zero

A Gas Law And Absolute Zero A Gas Law And Absolute Zero Equipent safety goggles, DataStudio, gas bulb with pressure gauge, 10 C to +110 C theroeter, 100 C to +50 C theroeter. Caution This experient deals with aterials that are very

More information

A Gas Law And Absolute Zero Lab 11

A Gas Law And Absolute Zero Lab 11 HB 04-06-05 A Gas Law And Absolute Zero Lab 11 1 A Gas Law And Absolute Zero Lab 11 Equipent safety goggles, SWS, gas bulb with pressure gauge, 10 C to +110 C theroeter, 100 C to +50 C theroeter. Caution

More information

Thermodynamics - Example Problems Problems and Solutions

Thermodynamics - Example Problems Problems and Solutions Thermodynamics - Example Problems Problems and Solutions 1 Examining a Power Plant Consider a power plant. At point 1 the working gas has a temperature of T = 25 C. The pressure is 1bar and the mass flow

More information

Exergy Calculation. 3.1 Definition of exergy. 3.2 Exergy calculations. 3.2.1. Exergy of environment air

Exergy Calculation. 3.1 Definition of exergy. 3.2 Exergy calculations. 3.2.1. Exergy of environment air Exergy Calculation This chapter is intended to give the user a better knoledge of exergy calculations in Cycle-Tepo. Exergy is not an absolute quantity but a relative one. Therefore, to say soething about

More information

( C) CLASS 10. TEMPERATURE AND ATOMS

( C) CLASS 10. TEMPERATURE AND ATOMS CLASS 10. EMPERAURE AND AOMS 10.1. INRODUCION Boyle s understanding of the pressure-volue relationship for gases occurred in the late 1600 s. he relationships between volue and teperature, and between

More information

HW 2. Q v. kt Step 1: Calculate N using one of two equivalent methods. Problem 4.2. a. To Find:

HW 2. Q v. kt Step 1: Calculate N using one of two equivalent methods. Problem 4.2. a. To Find: HW 2 Proble 4.2 a. To Find: Nuber of vacancies per cubic eter at a given teperature. b. Given: T 850 degrees C 1123 K Q v 1.08 ev/ato Density of Fe ( ρ ) 7.65 g/cc Fe toic weight of iron ( c. ssuptions:

More information

Sheet 5:Chapter 5 5 1C Name four physical quantities that are conserved and two quantities that are not conserved during a process.

Sheet 5:Chapter 5 5 1C Name four physical quantities that are conserved and two quantities that are not conserved during a process. Thermo 1 (MEP 261) Thermodynamics An Engineering Approach Yunus A. Cengel & Michael A. Boles 7 th Edition, McGraw-Hill Companies, ISBN-978-0-07-352932-5, 2008 Sheet 5:Chapter 5 5 1C Name four physical

More information

Heat Exchangers. Heat Exchanger Types. Heat Exchanger Types. Applied Heat Transfer Part Two. Topics of This chapter

Heat Exchangers. Heat Exchanger Types. Heat Exchanger Types. Applied Heat Transfer Part Two. Topics of This chapter Applied Heat Transfer Part Two Heat Excangers Dr. Amad RAMAZANI S.A. Associate Professor Sarif University of Tecnology انتقال حرارت کاربردی احمد رمضانی سعادت ا بادی Autumn, 1385 (2006) Ramazani, Heat Excangers

More information

The Mathematics of Pumping Water

The Mathematics of Pumping Water The Matheatics of Puping Water AECOM Design Build Civil, Mechanical Engineering INTRODUCTION Please observe the conversion of units in calculations throughout this exeplar. In any puping syste, the role

More information

ES-7A Thermodynamics HW 1: 2-30, 32, 52, 75, 121, 125; 3-18, 24, 29, 88 Spring 2003 Page 1 of 6

ES-7A Thermodynamics HW 1: 2-30, 32, 52, 75, 121, 125; 3-18, 24, 29, 88 Spring 2003 Page 1 of 6 Spring 2003 Page 1 of 6 2-30 Steam Tables Given: Property table for H 2 O Find: Complete the table. T ( C) P (kpa) h (kj/kg) x phase description a) 120.23 200 2046.03 0.7 saturated mixture b) 140 361.3

More information

CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS. Blank

CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS. Blank CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS Blank SONNTAG/BORGNAKKE STUDY PROBLEM 7-1 7.1 A car engine and its fuel consumption A car engine produces 136 hp on the output shaft with a thermal efficiency

More information

Estimation of mass fraction of residual gases from cylinder pressure data and its application to modeling for SI engine

Estimation of mass fraction of residual gases from cylinder pressure data and its application to modeling for SI engine Journal of Applied Matheatics, Islaic Azad University of Lahijan, Vol.8, No.4(31), Winter 2012, pp 15-28 ISSN 2008-6083 Estiation of ass fraction of residual gases fro cylinder pressure data and its application

More information

Kinetic Molecular Theory of Ideal Gases

Kinetic Molecular Theory of Ideal Gases ecture /. Kinetic olecular Theory of Ideal Gases ast ecture. IG is a purely epirical law - solely the consequence of eperiental obserations Eplains the behaior of gases oer a liited range of conditions.

More information

PREDICTION OF MILKLINE FILL AND TRANSITION FROM STRATIFIED TO SLUG FLOW

PREDICTION OF MILKLINE FILL AND TRANSITION FROM STRATIFIED TO SLUG FLOW PREDICTION OF MILKLINE FILL AND TRANSITION FROM STRATIFIED TO SLUG FLOW ABSTRACT: by Douglas J. Reineann, Ph.D. Assistant Professor of Agricultural Engineering and Graee A. Mein, Ph.D. Visiting Professor

More information

The Velocities of Gas Molecules

The Velocities of Gas Molecules he Velocities of Gas Molecules by Flick Colean Departent of Cheistry Wellesley College Wellesley MA 8 Copyright Flick Colean 996 All rights reserved You are welcoe to use this docuent in your own classes

More information

Work, Energy, Conservation of Energy

Work, Energy, Conservation of Energy This test covers Work, echanical energy, kinetic energy, potential energy (gravitational and elastic), Hooke s Law, Conservation of Energy, heat energy, conservative and non-conservative forces, with soe

More information

Drying and Dehydration

Drying and Dehydration Drying and Dehydration Abstract. This chapter reviews basic concepts of drying and dehydration, including ass balance analyses. Equilibriu oisture content, water activity, and related paraeters are discussed.

More information

Physics 211: Lab Oscillations. Simple Harmonic Motion.

Physics 211: Lab Oscillations. Simple Harmonic Motion. Physics 11: Lab Oscillations. Siple Haronic Motion. Reading Assignent: Chapter 15 Introduction: As we learned in class, physical systes will undergo an oscillatory otion, when displaced fro a stable equilibriu.

More information

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES INTRODUCTION This tutorial is designed for students wishing to extend their knowledge of thermodynamics to a more

More information

Unsteady State Relief Valve Evaluation. External Pool Fire Scenario

Unsteady State Relief Valve Evaluation. External Pool Fire Scenario Unsteady State Relief Valve Evaluation External Pool Fire Scenario By Rame Sulaiman Process Engineer Process Engineering Associates, LLC Copyright 2009 Process Engineering Associates, LLC. All rights reserved.

More information

ChE 203 - Physicochemical Systems Laboratory EXPERIMENT 2: SURFACE TENSION

ChE 203 - Physicochemical Systems Laboratory EXPERIMENT 2: SURFACE TENSION ChE 203 - Physicocheical Systes Laboratory EXPERIMENT 2: SURFACE TENSION Before the experient: Read the booklet carefully. Be aware of the safety issues. Object To deterine the surface tension of water

More information

QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NON-TECHNICAL MAJORS. Thermodynamic Properties

QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NON-TECHNICAL MAJORS. Thermodynamic Properties QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NON-TECHNICAL MAJORS Thermodynamic Properties 1. If an object has a weight of 10 lbf on the moon, what would the same object weigh on Jupiter? ft ft -ft g

More information

STEAM TURBINE 1 CONTENT. Chapter Description Page. V. Steam Process in Steam Turbine 6. VI. Exhaust Steam Conditions, Extraction and Admission 7

STEAM TURBINE 1 CONTENT. Chapter Description Page. V. Steam Process in Steam Turbine 6. VI. Exhaust Steam Conditions, Extraction and Admission 7 STEAM TURBINE 1 CONTENT Chapter Description Page I Purpose 2 II Steam Turbine Types 2 2.1. Impulse Turbine 2 2.2. Reaction Turbine 2 III Steam Turbine Operating Range 2 3.1. Curtis 2 3.2. Rateau 2 3.3.

More information

Lecture L9 - Linear Impulse and Momentum. Collisions

Lecture L9 - Linear Impulse and Momentum. Collisions J. Peraire, S. Widnall 16.07 Dynaics Fall 009 Version.0 Lecture L9 - Linear Ipulse and Moentu. Collisions In this lecture, we will consider the equations that result fro integrating Newton s second law,

More information

Open Cycle Refrigeration System

Open Cycle Refrigeration System Chapter 9 Open Cycle Refrigeration System Copy Right By: Thomas T.S. Wan 温 到 祥 著 Sept. 3, 2008 All rights reserved An open cycle refrigeration system is that the system is without a traditional evaporator.

More information

and that of the outgoing water is mv f

and that of the outgoing water is mv f Week 6 hoework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign ersions of these probles, arious details hae been changed, so that the answers will coe out differently. The ethod to find the solution is

More information

Model Predictive Control Approach to Improve the Control Performance in Pasteurized Milk Process

Model Predictive Control Approach to Improve the Control Performance in Pasteurized Milk Process Paper code: pc IChE International Conference Noveber, at Hatyai, Songkhla HAIAND odel Predictive Control Approach to Iprove the Control Perforance in Pasteurized ilk Process Sathit Niasuwan, Paisan Kittisupakorn

More information

The paper addresses the boil-off in the cryogenic industry and details the specifics of it when applied to vehicle LNG tanks.

The paper addresses the boil-off in the cryogenic industry and details the specifics of it when applied to vehicle LNG tanks. What is Boil-off? Scope... 1 Boil-off in the cryogenic industry... 1... 1 Measures for boil-off... 2 LNG vehicle tanks... 2 Boil-off for the vehicle LNG Tank... 2 Heat management and types of fuel delivery

More information

Lecture 09 Nuclear Physics Part 1

Lecture 09 Nuclear Physics Part 1 Lecture 09 Nuclear Physics Part 1 Structure and Size of the Nucleus Νuclear Masses Binding Energy The Strong Nuclear Force Structure of the Nucleus Discovered by Rutherford, Geiger and Marsden in 1909

More information

Shell and Tube Heat Exchanger

Shell and Tube Heat Exchanger Sell and Tube Heat Excanger MECH595 Introduction to Heat Transfer Professor M. Zenouzi Prepared by: Andrew Demedeiros, Ryan Ferguson, Bradford Powers November 19, 2009 1 Abstract 2 Contents Discussion

More information

Calculation Method for evaluating Solar Assisted Heat Pump Systems in SAP 2009. 15 July 2013

Calculation Method for evaluating Solar Assisted Heat Pump Systems in SAP 2009. 15 July 2013 Calculation Method for evaluating Solar Assisted Heat Pup Systes in SAP 2009 15 July 2013 Page 1 of 17 1 Introduction This docuent describes how Solar Assisted Heat Pup Systes are recognised in the National

More information

An online sulfur monitoring system can improve process balance sheets

An online sulfur monitoring system can improve process balance sheets Originally appeared in: February 2007, pgs 109-116. Used with perission. An online sulfur onitoring syste can iprove process balance sheets A Canadian gas processor used this technology to eet environental

More information

ENZYME KINETICS: THEORY. A. Introduction

ENZYME KINETICS: THEORY. A. Introduction ENZYME INETICS: THEORY A. Introduction Enzyes are protein olecules coposed of aino acids and are anufactured by the living cell. These olecules provide energy for the organis by catalyzing various biocheical

More information

UNDERSTANDING REFRIGERANT TABLES

UNDERSTANDING REFRIGERANT TABLES Refrigeration Service Engineers Society 1666 Rand Road Des Plaines, Illinois 60016 UNDERSTANDING REFRIGERANT TABLES INTRODUCTION A Mollier diagram is a graphical representation of the properties of a refrigerant,

More information

Specific Volume of Liquid (Column 7). The volume per unit of mass in cubic feet per pound.

Specific Volume of Liquid (Column 7). The volume per unit of mass in cubic feet per pound. Steam Tables What They Are How to Use Them The heat quantities and temperature/ pressure relationships referred to in this Handbook are taken from the Properties of Saturated Steam table. Definitions of

More information

Theoretical calculation of the heat capacity

Theoretical calculation of the heat capacity eoretical calculation of te eat capacity Principle of equipartition of energy Heat capacity of ideal and real gases Heat capacity of solids: Dulong-Petit, Einstein, Debye models Heat capacity of metals

More information

We will study the temperature-pressure diagram of nitrogen, in particular the triple point.

We will study the temperature-pressure diagram of nitrogen, in particular the triple point. K4. Triple Point of Nitrogen I. OBJECTIVE OF THE EXPERIMENT We will study the temperature-pressure diagram of nitrogen, in particular the triple point. II. BAKGROUND THOERY States of matter Matter is made

More information

8. Spring design. Introduction. Helical Compression springs. Fig 8.1 Common Types of Springs. Fig 8.1 Common Types of Springs

8. Spring design. Introduction. Helical Compression springs. Fig 8.1 Common Types of Springs. Fig 8.1 Common Types of Springs Objectives 8. Spring design Identify, describe, and understand principles of several types of springs including helical copression springs, helical extension springs,, torsion tubes, and leaf spring systes.

More information

1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley.

1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley. Sample Questions REVISED FIRST CLASS PARTS A1, A2, AND A3 (NOTE: these questions are intended as representations of the style of questions that may appear on examinations. They are not intended as study

More information

Appendix G. Allowable and Non- Allowable Capital Costs

Appendix G. Allowable and Non- Allowable Capital Costs Appendix G Allowable and Non- Allowable Capital Costs Overview The Minister ay approve additions/deletions to the list of allowable costs or require additions to the list of non-allowable costs. Where

More information

So T decreases. 1.- Does the temperature increase or decrease? For 1 mole of the vdw N2 gas:

So T decreases. 1.- Does the temperature increase or decrease? For 1 mole of the vdw N2 gas: 1.- One mole of Nitrogen (N2) has been compressed at T0=273 K to the volume V0=1liter. The gas goes through the free expansion process (Q = 0, W = 0), in which the pressure drops down to the atmospheric

More information

EUROMAP 46.1. Extrusion Blow Moulding Machines Determination of Machine Related Energy Efficiency Class. Version 1.0, January 2014 13 pages

EUROMAP 46.1. Extrusion Blow Moulding Machines Determination of Machine Related Energy Efficiency Class. Version 1.0, January 2014 13 pages EUROMAP 46.1 Extrusion Blow Moulding Machines Deterination of Machine Related Energy Efficiency Class Version 1.0, January 2014 13 pages This recoendation was prepared by the Technical Coission of EUROMAP.

More information

Piping Hydraulic Line Design and Sizing Software KLM Technology Group

Piping Hydraulic Line Design and Sizing Software KLM Technology Group Piping Hydraulic Line Design and Sizing Software KLM Technology Group Practical Engineering Guidelines for Processing Plant Solutions #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor

More information

APPLIED THERMODYNAMICS. TUTORIAL No.3 GAS TURBINE POWER CYCLES. Revise gas expansions in turbines. Study the Joule cycle with friction.

APPLIED THERMODYNAMICS. TUTORIAL No.3 GAS TURBINE POWER CYCLES. Revise gas expansions in turbines. Study the Joule cycle with friction. APPLIED HERMODYNAMICS UORIAL No. GAS URBINE POWER CYCLES In this tutorial you will do the following. Revise gas expansions in turbines. Revise the Joule cycle. Study the Joule cycle with friction. Extend

More information

Valve Selection and Sizing

Valve Selection and Sizing Valve Selection and Sizing SECTION OF ENGINEERING MANUAL OF AUTOMATIC CONTROL 77-1100 Contents Introduction... 2 Definitions... 2 Valve Components... 2 Valve Flow Caracteristics... 2 Valve Flow Terms...

More information

C H A P T E R T W O. Fundamentals of Steam Power

C H A P T E R T W O. Fundamentals of Steam Power 35 C H A P T E R T W O Fundamentals of Steam Power 2.1 Introduction Much of the electricity used in the United States is produced in steam power plants. Despite efforts to develop alternative energy converters,

More information

FEASIBILITY OF A BRAYTON CYCLE AUTOMOTIVE AIR CONDITIONING SYSTEM

FEASIBILITY OF A BRAYTON CYCLE AUTOMOTIVE AIR CONDITIONING SYSTEM FEASIBILITY OF A BRAYTON CYCLE AUTOMOTIVE AIR CONDITIONING SYSTEM L. H. M. Beatrice a, and F. A. S. Fiorelli a a Universidade de São Paulo Escola Politécnica Departamento de Engenharia Mecânica Av. Prof.

More information

Modelling Fine Particle Formation and Alkali Metal Deposition in BFB Combustion

Modelling Fine Particle Formation and Alkali Metal Deposition in BFB Combustion Modelling Fine Particle Foration and Alkali Metal Deposition in BFB Cobustion Jora Jokiniei and Olli Sippula University of Kuopio and VTT, Finland e-ail: jora.jokiniei@uku.fi Flae Days, Naantali 8.-9.01.009

More information

They may be based on a number of simplifying assumptions, and their use in design should tempered with extreme caution!

They may be based on a number of simplifying assumptions, and their use in design should tempered with extreme caution! 'Rules o Mixtures' are atheatical expressions which give soe property o the coposite in ters o the properties, quantity and arrangeent o its constituents. They ay be based on a nuber o sipliying assuptions,

More information

CHEM 120 Online Chapter 7

CHEM 120 Online Chapter 7 CHEM 120 Online Chapter 7 Date: 1. Which of the following statements is not a part of kinetic molecular theory? A) Matter is composed of particles that are in constant motion. B) Particle velocity increases

More information

Properties of Pure Substances

Properties of Pure Substances ure Substance roperties o ure Substances A substance that has a ixed cheical coposition throuhout is called a pure substance such as water, air, and nitroen. A pure substance does not hae to be o a sinle

More information

Lecture 10: What is a Function, definition, piecewise defined functions, difference quotient, domain of a function

Lecture 10: What is a Function, definition, piecewise defined functions, difference quotient, domain of a function Lecture 10: Wat is a Function, definition, piecewise defined functions, difference quotient, domain of a function A function arises wen one quantity depends on anoter. Many everyday relationsips between

More information

Flow Calculations for the V-Cone and Wafer-Cone Flowmeters

Flow Calculations for the V-Cone and Wafer-Cone Flowmeters Basic low equation: Flow alculations or the V-one an Waer-one Floweters π g c ΔPps ρ 1 Volue lowrate π lb g c ρ ΔPps s 1 Δ Pps ΔPwc 5. 197 1 Mass lowrate 60 600 ac ach 7.805 7. 805 gp ac gph ach π Δ PPa

More information

Lesson 44: Acceleration, Velocity, and Period in SHM

Lesson 44: Acceleration, Velocity, and Period in SHM Lesson 44: Acceleration, Velocity, and Period in SHM Since there is a restoring force acting on objects in SHM it akes sense that the object will accelerate. In Physics 20 you are only required to explain

More information

Thermodynamics worked examples

Thermodynamics worked examples An Introduction to Mechanical Engineering Part hermodynamics worked examles. What is the absolute ressure, in SI units, of a fluid at a gauge ressure of. bar if atmosheric ressure is.0 bar? Absolute ressure

More information

Math 113 HW #5 Solutions

Math 113 HW #5 Solutions Mat 3 HW #5 Solutions. Exercise.5.6. Suppose f is continuous on [, 5] and te only solutions of te equation f(x) = 6 are x = and x =. If f() = 8, explain wy f(3) > 6. Answer: Suppose we ad tat f(3) 6. Ten

More information

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels 1 P age Module 5: Combustion Technology Lecture 34: Calculation of calorific value of fuels 2 P age Keywords : Gross calorific value, Net calorific value, enthalpy change, bomb calorimeter 5.3 Calculation

More information

DET: Mechanical Engineering Thermofluids (Higher)

DET: Mechanical Engineering Thermofluids (Higher) DET: Mechanical Engineering Thermofluids (Higher) 6485 Spring 000 HIGHER STILL DET: Mechanical Engineering Thermofluids Higher Support Materials *+,-./ CONTENTS Section : Thermofluids (Higher) Student

More information

ME 201 Thermodynamics

ME 201 Thermodynamics ME 0 Thermodynamics Second Law Practice Problems. Ideally, which fluid can do more work: air at 600 psia and 600 F or steam at 600 psia and 600 F The maximum work a substance can do is given by its availablity.

More information

C. starting positive displacement pumps with the discharge valve closed.

C. starting positive displacement pumps with the discharge valve closed. KNOWLEDGE: K1.04 [3.4/3.6] P78 The possibility of water hammer in a liquid system is minimized by... A. maintaining temperature above the saturation temperature. B. starting centrifugal pumps with the

More information

Presentation Safety Legislation and Standards

Presentation Safety Legislation and Standards levels in different discrete levels corresponding for each one to a probability of dangerous failure per hour: > > The table below gives the relationship between the perforance level (PL) and the Safety

More information

UNIT 2 REFRIGERATION CYCLE

UNIT 2 REFRIGERATION CYCLE UNIT 2 REFRIGERATION CYCLE Refrigeration Cycle Structure 2. Introduction Objectives 2.2 Vapour Compression Cycle 2.2. Simple Vapour Compression Refrigeration Cycle 2.2.2 Theoretical Vapour Compression

More information

ELECTRIC SERVO MOTOR EQUATIONS AND TIME CONSTANTS

ELECTRIC SERVO MOTOR EQUATIONS AND TIME CONSTANTS ELECIC SEO MOO EQUAIONS AND IME CONSANS George W. Younkin, P.E. Life FELLOW IEEE Industrial Controls Consulting, Div. Bulls Eye Marketing, Inc Fond du c, Wisconsin In the analysis of electric servo drive

More information

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12.

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12. Capter 6. Fluid Mecanics Notes: Most of te material in tis capter is taken from Young and Freedman, Cap. 12. 6.1 Fluid Statics Fluids, i.e., substances tat can flow, are te subjects of tis capter. But

More information

How do I measure the amount of water vapor in the air?

How do I measure the amount of water vapor in the air? How do I measure the amount of water vapor in the air? Materials 2 Centigrade Thermometers Gauze Fan Rubber Band Tape Overview Water vapor is a very important gas in the atmosphere and can influence many

More information

Chapter 5. Principles of Unsteady - State Heat Transfer

Chapter 5. Principles of Unsteady - State Heat Transfer Suppleental Material for ransport Process and Separation Process Principles hapter 5 Principles of Unsteady - State Heat ransfer In this chapter, we will study cheical processes where heat transfer is

More information

Temperature. Number of moles. Constant Terms. Pressure. Answers Additional Questions 12.1

Temperature. Number of moles. Constant Terms. Pressure. Answers Additional Questions 12.1 Answers Additional Questions 12.1 1. A gas collected over water has a total pressure equal to the pressure of the dry gas plus the pressure of the water vapor. If the partial pressure of water at 25.0

More information

A basic introduction to steam

A basic introduction to steam A basic introduction to steam FOR HOT, COLD, MOIST AND DRY, FOUR CHAMPIONS FIERCE. STRIVE HERE FOR MASTERY Milton 1666 Steam Wonderful Steam Very high heat content Recyclable Clean, non toxic Biodegradable

More information

Saeid Rahimi. Effect of Different Parameters on Depressuring Calculation Results. 01-Nov-2010. Introduction. Depressuring parameters

Saeid Rahimi. Effect of Different Parameters on Depressuring Calculation Results. 01-Nov-2010. Introduction. Depressuring parameters Effect of Different Parameters on Depressuring Calculation Results Introduction Saeid Rahimi 01-Nov-2010 Emergency depressuring facilities are utilized to accomplish at least one of the following objectives:

More information

The Second Law of Thermodynamics

The Second Law of Thermodynamics The Second aw of Thermodynamics The second law of thermodynamics asserts that processes occur in a certain direction and that the energy has quality as well as quantity. The first law places no restriction

More information

Sizing Pressure Regulators & Control Valves

Sizing Pressure Regulators & Control Valves Sizing Pressure Regulators & Control Valves ( ( Sizing the Pressure Regulators Sizing of regulators is usually made on the basis of Cg valve and KG sizing coefficients. Flow rates at fully open position

More information

Heat Exchangers - Introduction

Heat Exchangers - Introduction Heat Exchangers - Introduction Concentric Pipe Heat Exchange T h1 T c1 T c2 T h1 Energy Balance on Cold Stream (differential) dq C = wc p C dt C = C C dt C Energy Balance on Hot Stream (differential) dq

More information

Comparison of Thermal Insulation Materials for Building Envelopes of Multi-storey Buildings in Saint-Petersburg

Comparison of Thermal Insulation Materials for Building Envelopes of Multi-storey Buildings in Saint-Petersburg Chaykovskiy Geran T60KA Coparison of Theral Insulation Materials for Building Envelopes of Multi-storey Buildings in Sa-Petersburg Bachelor Thesis Deceber 010 Date of the Bachelor thesis 0.1.010 Author(s)

More information

Answer, Key Homework 7 David McIntyre 45123 Mar 25, 2004 1

Answer, Key Homework 7 David McIntyre 45123 Mar 25, 2004 1 Answer, Key Hoework 7 David McIntyre 453 Mar 5, 004 This print-out should have 4 questions. Multiple-choice questions ay continue on the next colun or page find all choices before aking your selection.

More information

Air Water Vapor Mixtures: Psychrometrics. Leon R. Glicksman c 1996, 2010

Air Water Vapor Mixtures: Psychrometrics. Leon R. Glicksman c 1996, 2010 Air Water Vapor Mixtures: Psychrometrics Leon R. Glicksman c 1996, 2010 Introduction To establish proper comfort conditions within a building space, the designer must consider the air temperature and the

More information

Thermodynamics of Mixing

Thermodynamics of Mixing Thermodynamics of Mixing Dependence of Gibbs energy on mixture composition is G = n A µ A + n B µ B and at constant T and p, systems tend towards a lower Gibbs energy The simplest example of mixing: What

More information

An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation

An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation R K Kapooria Department of Mechanical Engineering, BRCM College of Engineering & Technology, Bahal (Haryana)

More information

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

More information

Bomb Calorimetry. Electrical leads. Stirrer

Bomb Calorimetry. Electrical leads. Stirrer Bomb Calorimetry Stirrer Electrical leads Oxygen inlet valve Bomb Fuse Calorimeter Outer jacket Not shown: heating and cooling system for outer jacket, and controls that keep the outer jacket at the same

More information

AC 2011-2088: ON THE WORK BY ELECTRICITY IN THE FIRST AND SECOND LAWS OF THERMODYNAMICS

AC 2011-2088: ON THE WORK BY ELECTRICITY IN THE FIRST AND SECOND LAWS OF THERMODYNAMICS AC 2011-2088: ON THE WORK BY ELECTRICITY IN THE FIRST AND SECOND LAWS OF THERMODYNAMICS Hyun W. Kim, Youngstown State University Hyun W. Kim, Ph.D., P.E. Hyun W. Kim is a professor of mechanical engineering

More information

Boiler efficiency measurement. Department of Energy Engineering

Boiler efficiency measurement. Department of Energy Engineering Boiler efficiency measurement Department of Energy Engineering Contents Heat balance on boilers Efficiency determination Loss categories Fluegas condensation principals Seasonal efficiency Emission evaluation

More information

Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla

Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Boiler Calculations Sebastian

More information

GEOTHERMAL POWER PLANT CYCLES AND MAIN COMPONENTS

GEOTHERMAL POWER PLANT CYCLES AND MAIN COMPONENTS Presented at Short Course on Geothermal Drilling, Resource Development and Power Plants, organized by UNU-GTP and LaGeo, in Santa Tecla, El Salvador, January -, 0. GEOTHERMAL TRAINING PROGRAMME LaGeo S.A.

More information

A CHAOS MODEL OF SUBHARMONIC OSCILLATIONS IN CURRENT MODE PWM BOOST CONVERTERS

A CHAOS MODEL OF SUBHARMONIC OSCILLATIONS IN CURRENT MODE PWM BOOST CONVERTERS A CHAOS MODEL OF SUBHARMONIC OSCILLATIONS IN CURRENT MODE PWM BOOST CONVERTERS Isaac Zafrany and Sa BenYaakov Departent of Electrical and Coputer Engineering BenGurion University of the Negev P. O. Box

More information

PG Student (Heat Power Engg.), Mechanical Engineering Department Jabalpur Engineering College, India. Jabalpur Engineering College, India.

PG Student (Heat Power Engg.), Mechanical Engineering Department Jabalpur Engineering College, India. Jabalpur Engineering College, India. International Journal of Emerging Trends in Engineering and Development Issue 3, Vol. (January 23) EFFECT OF SUB COOLING AND SUPERHEATING ON VAPOUR COMPRESSION REFRIGERATION SYSTEMS USING 22 ALTERNATIVE

More information

Chapter 2 P-H Diagram Refrigeration Cycle Analysis & Refrigerant Flow Diagram

Chapter 2 P-H Diagram Refrigeration Cycle Analysis & Refrigerant Flow Diagram Chapter 2 P-H Diagram Refrigeration Cycle Analysis & Refrigerant Flow Diagram Copy Right By: Thomas T.S. Wan 温 到 祥 著 Sept. 3, 2008 All rights reserved Industrial refrigeration system design starts from

More information

The University of Toledo Soil Mechanics Laboratory

The University of Toledo Soil Mechanics Laboratory The University of Toledo Soil Mechanics Laboratory Permeability Testing - 1 Constant and Falling Head Tests Introduction In 1856 the French engineer Henri D arcy demonstrated by experiment that it is possible

More information

REAL AND IDEAL GAS THERMODYNAMIC ANALYSIS OF SINGLE RESERVOIR FILLING PROCESS OF NATURAL GAS VEHICLE CYLINDERS

REAL AND IDEAL GAS THERMODYNAMIC ANALYSIS OF SINGLE RESERVOIR FILLING PROCESS OF NATURAL GAS VEHICLE CYLINDERS Journal of Theoretical and Applied Mechanics, Sofia, 2011, vol. 41, No. 2, pp. 21 36 REAL AND IDEAL GAS THERMODYNAMIC ANALYSIS OF SINGLE RESERVOIR FILLING PROCESS OF NATURAL GAS VEHICLE CYLINDERS Mahmood

More information

CO 2 41.2 MPa (abs) 20 C

CO 2 41.2 MPa (abs) 20 C comp_02 A CO 2 cartridge is used to propel a small rocket cart. Compressed CO 2, stored at a pressure of 41.2 MPa (abs) and a temperature of 20 C, is expanded through a smoothly contoured converging nozzle

More information

Rusty Walker, Corporate Trainer Hill PHOENIX

Rusty Walker, Corporate Trainer Hill PHOENIX Refrigeration 101 Rusty Walker, Corporate Trainer Hill PHOENIX Compressor Basic Refrigeration Cycle Evaporator Condenser / Receiver Expansion Device Vapor Compression Cycle Cooling by the removal of heat

More information

Chokes. Types Reasons Basics of Operations Application

Chokes. Types Reasons Basics of Operations Application Chokes Types Reasons Basics of Operations Application Most Common Chokes Positive: Fixed orifice Disassemble to change bean Adjustable Provides variable orifice size through external adjustment Schematic

More information

Chapter 14. At temperatures below the critical temperature, the gas GAS VAPOR MIXTURES AND AIR-CONDITIONING. Objectives

Chapter 14. At temperatures below the critical temperature, the gas GAS VAPOR MIXTURES AND AIR-CONDITIONING. Objectives Chapter 14 GAS VAPOR MIXTURES AND -CONDITIONING At temperatures below the critical temperature, the gas phase of a substance is frequently referred to as a vapor. The term vapor implies a gaseous state

More information

HEAT EXCHANGERS. Associate Professor. IIT Delhi E-mail: prabal@mech.iitd.ac.in. Mech/IITD

HEAT EXCHANGERS. Associate Professor. IIT Delhi E-mail: prabal@mech.iitd.ac.in. Mech/IITD HEAT EXHANGES Prabal Talukdar Assoate Professor Departent of Meanal Engneerng IIT Del E-al: prabal@etdan Heat Exangers Heat exangers are deves tat faltate te exange of eat between two fluds tat are at

More information

11 - KINETIC THEORY OF GASES Page 1

11 - KINETIC THEORY OF GASES Page 1 - KIETIC THEORY OF GASES Page Introduction The constituent partices of the atter ike atos, oecues or ions are in continuous otion. In soids, the partices are very cose and osciate about their ean positions.

More information

OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE. TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS

OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE. TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS UNIT 61: ENGINEERING THERMODYNAMICS Unit code: D/601/1410 QCF level: 5 Credit value: 15 OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS 2 Be able to evaluate

More information