CHARGING and DISCHARGING CAPACITORS

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "CHARGING and DISCHARGING CAPACITORS"

Transcription

1 Lab 4 Oscilloscopes, Electrocardiograms, Discharging Capacitors LAB 4a LAB 4b Lab 4c THE OSCILLOSCOPE ELECTROCARDIOGRAMS (ECG or EKG) CHARGING and DISCHARGING CAPACITORS EXPERIMENTAL QUESTION In this lab, you will learn about how an oscilloscope can be used to measure waveforms from an electronic function generator. You will then use the oscilloscope to look at the electrical signals produced by your body, particularly from your heartbeat, and to study how a capacitor discharges. Short sleeves and pants are convenient this week. PROCEDURE So far in lab, we have dealt only with DC circuits in which currents and voltages are constant in time. In this lab, we will use the function generator and other sources to generate periodic voltage waveforms and the oscilloscope to display such waveforms. thcan generate three very handy functions: sine waves, square waves, and triangle waves. The frequency of such waveforms is the number of complete cycles that the waveform goes through per second: frequencies are expressed in Hz, where 1 Hz = 1 cycle per second. If the time required for a complete cycle of the wave is T, then the frequency is 1/T, since the wave completes exactly one cycle in time T. Your function generators can produce sine waves, square waves, and triangle waves in the frequency range of 0.02 Hz 2 MHz. Drawings of the front panels of both your function generator and your oscilloscope are given at the very end of this handout, and you may find it convenient to have that page in front of you as you work through this experiment. Although there are a lot of buttons to fiddle with on both devices, you should feel free to experiment with any of them. The ones you will be using most are labeled and numbered on each drawing and in the lab description. The buttons are numbered on the drawings in a roughly clockwise order starting at the upper left, and the numbers appear in square brackets in both the drawings and the text. Setting up the function generator and the oscilloscope Turn the oscilloscope on with the switch on the top of the oscilloscope box (on the left). After about 15 seconds you will get a screen asking you for the language you prefer. English is the default, and if you don t do anything the display will go to the usual oscilloscope display after a few more seconds. Push the DEFAULT SETUP [7] button which produces generically useful settings. You should have a rectangular field with a heavy black horizontal line in the middle of the display. That horizontal line means that you re giving the oscilloscope a zerovoltage input, Then push the button labeled CH 1 MENU [4], and toggle the probe to 1X by repeatedly pushing the fourth function button [14d]. You will find three buttons [3] in the upper right-hand corner of the function generator with little cartoons of the waveform produced when a given button is pushed in. Push the button with the sine wave, turn on the function generator [1], and set the frequency [7] to ~500 Hz. You may need to change the range or decade setting, which is determined by the row of buttons [2] just to the left of the waveform buttons. Use a BNC cable to connecting the OUTPUT terminal [5] of your function generator to the input of channel 1 of the oscilloscope [13]. You

2 should see part of a sine wave, and a series of numbers along the bottom edge of the oscillscope screen. The number immediately after the label CH1 tells you the voltage corresponding to one large vertical division on the screen, and the number in the middle of the display gives the length of time corresponding to one large horizontal division. Without adjusting anything on the function generator, adjust the vertical scale of the oscilloscope [12] so that you can observe the entire signal. Then observe what happens tot the display as you djust the horizontal sweep, or sec/div knob [10] of the scope. Notice what happens to the display and the numbers across the bottom of the screen. Does the number of cycles of sine waves displayed increases or decreases as you change the horiontal sweep from 500 µs/div to 1 ms/div? Now experiment with the frequency adjustment knobs of the function generator [7]. Display a few cycles of a 4.7 khz sine wave on the oscilloscope. Making measurements. The lower right corner of the display of the oscilloscope should give a measurement of the frequency of the signal. The oscilloscope will also let you make measurements between two points on the screen yourself. If you were looking at a complex wave, for example, you might want to measure the time between two small features on the screen. To make such measurements, first push the CURSOR button [5] near the top of the instrument panel. The menu at the right of the display now gives you two functions, Type (currently set to Off ) and Source (currently set to CH 1 ). Push the first function button [14a] (opposite the label Type ), which will change it from Off to Voltage. Push it a second time to get Time, which is the measurement you re about to make. You should now see two dotted vertical lines on the display and some new items on the menu. You will be especially interested in the third menu item, Delta, which is the time interval between the two vertical lines. Also notice that the green indicator lights underneath the two position knobs are lit up. These lights indicate that now you use the POSITION knobs [3] and [6] to control the locations of the vertical lines (the cursors), and you ll be using both CH 1 and CH 2. Adjust the POSITION knobs and use the cursors to measure the period of your sine wave. How can you perform your measurement to reduce the uncertainty in the period? Record the period, together with its uncertainty, in your notebook. Then calculate the frequency of the sine wave, together with its uncertainty. Now you can push the first function button [14b] again and measure the peak-to-peak voltage of your sine wave with the horizontal cursors. When you are done with your measurement, you just need to press the CH 1 MENU button [4] to return to the main menu. Storing waveforms. Once you have your oscilloscope set to give a good display of some waveform from the keyboard, push the SAVE/RECALL button [2]. You will get the usual menu on the right-hand side of the display, and the first menu item is Action, with Save All right underneath it in reverse video. Push the first function button [14a] to select Save Waveform. Now you get some more menu options underneath. The next option, Save To, should be changed to File with the second function button [14b]. The next choice, Source, is the channel connected to your microphone, and it will probably be CH1. (You ve probably figured out that you would change it to Ch2 if you pushed the third function button [14c].) The last choice gives a file name which will be something like TEK0000.CSV. When you push the fifth button, you will see that menu item replaced with a clock face. The file is written when the clock face disappears and a new file name that is greater by 1 than the previous file name appears.

3 The Electrocardiogram Set Up Many of you have seen EKG or ECG curves in hospitals, in movies, or on TV. A most memorable movie title about the EKGs was a film about zombies a few years back entitled Flatliners. As you probably know our bodies are very complicated systems that send electrical signals all around the brain, to muscles, and to neurons. These electrical signals are active when we are living and can be used to study the health of the human body. The original experiments on electric potentials were first observed in 1771 when Luigi Galvani discovered that a dissected frog s leg muscle twitches in response to certain metals. This led to the development of the first batteries (also known as Galvanic Cells). One of the most important muscles in your body is your heart. It has a regular beat that is controlled by electrical impulses. In a healthy individual this heart rate or pulse is well controlled. You may know someone who wears a pacemaker, which is a device to help provide this control when the patients body does not seem to be able to do it naturally. The pacemaker is just a small electrical signal to make sure the heartbeats. Because your body is largely made of solutions of ions in water, it is a modest electrical conductor. Signals from inside your body can be observed even through your skin. Because the signals are small, and there can be large amounts of electrical noise, we don t normally notice them at all. However, with a quiet differential amplifier, and some noise filters, we can observe these signals on an oscilloscope, just like the signals in the speed of light apparatus. The differential amplifier measures the difference in the electrical potential between two different electrodes. We have made the electrodes out of copper handles, so that they will be easy to use, and comfortable to hold. There are two outputs of the amplifier box. One is plotted directly on the oscilloscope. The other has a separate gain stage, and can be used to drive a small audio speaker so that you can hear the heart beat. Your lab instructors will help you adjust the gains on the amplifiers. Too much gain causes useless feedback oscillations, which you have all heard when someone places a microphone to close to a speaker playing the amplified sound. You should explore the following questions (along with any of your own) as you have your turn with the ECG setup. Be sure to make some quantitative measures using the cursors, similar to those described in the section on the speed of light. Make sure everyone has some time being monitored. Be sure to keep a log of your observations in your lab book! Use the digital storage feature of the scope to save and then print (from the computer) a few of the waveforms that you found most useful and tape these into you lab book. 1. What happens if you put one electrode in each hand? 2. Does the pattern depend upon how relaxed your hand muscles are or how your arms are positioned? 3. What happens if you switch hands? 4. What happens if you have both electrodes in one hand? 5. What about if you use the inside of your knee to hold the electrode(s)? How about under your arm? Try lots of combinations. Which ones work best? Does it depend upon the person? 6. Try taking the measurement while lying down. Is this different?

4 7. Using the quietest combination, what is the shape of your pulse? What is its period? 8. Take at least 6 measurements of consecutive pairs of pulse waveforms using the best conditions, recording their period and frequency. How much do they vary? Calculate the average and a standard deviation. Now try taking a single measurement of ten waveforms and calculate an average period. 9. How does it compare to the other members of your group? 10. How does your ECG depend upon your recent activity or stimulus? Jump, jog, run, or do some other aerobic exercise for 5 minutes. Repeat step 8 and compare. Is the change from the rest condition statistically significant? Explain. You might want to look at what motions of the heart correspond to the ECG you have recorded. A website that shows this is: For even more on ECGs view: A normal ECG is taken with 12 electrodes. Why? (image taken from another nice site.)

5 Charging and Discharging of a Capacitor Your goal in this part of the lab is to determine the capacitance of a capacitor (on the order of 0.1 µf) by studying the discharge of the capacitor with the oscilloscope. Set the function generator to produce a square wave. Adjust the amplitude [4] and the offset adjustment buttons (to the right of the duty button [6]) such that the waveform displayed is about 2V during half the cycle and zero for the other half. Set up a circuit with a capacitor and a resistor in series. When choosing a value for the resistor, keep the following in mind: The function generator has an internal resistance of 50 Ω, which will be in series with the resistor in your circuit. Pick a resistor that is large enough such that the internal resistance of the function generator is negligible (i.e., small enough for the accuracy you are shooting for, which is probably a few percent.) When the square wave voltage is applied to this RC-circuit, the capacitor will be charged during the first half of the cycle when the voltage is high, and discharged when the voltage is zero. The current that is flowing through the resistor onto the plates of the capacitor during the charging part of the cycle is limited by the resistance R of the resistor, i.e. the time needed to charge (or discharge) the capacitor depends both on R and the capacitance C of the capacitor. In fact, in chapter E5.6 of your textbook it is shown that the voltage across a discharging capacitor decreases exponentially in time, with a time constant equal to RC. Measure the voltage across the capacitor as a function of time by displaying it on the oscilloscope simultaneously with the function generator signal. The oscilloscope has two channels, so you can display two different signals at the same time. However, the grounds of the two input are internally connected, so you have to pay attention which side of the capacitor is positive and which is negative. By analyzing the graph of voltage across the capacitor Vc vs time which is displayed on the oscilloscope screen, determine the capacitance of the capacitor. You should do so by using a single data point of the Vc vs t graph and by fitting the complete set of data. You can then make a linearized plot in LinReg (which will give you the fitting parameters with uncertainties).

6 POWER [1] RANGE [2] FUNCTION [3] PWR 1M 100K 10K 1K khz HZ FUNCTION DUTY OFFSET ADJ TTL CMOS AMPL COARSE [7a] FREQUENCY FINE [7b] VCF IN TTL/CMOS OUTPUT FREQUENCY [7] DUTY [6] OUTPUT [5] AMPLITUDE [4] Tektronix TDS 1002 oscilloscope front panel SAVE/RECALL [2] POSITION (CH 1) [3] CURSOR [5] DEFAULT SETUP [7] CH 1 MENU [4] POSITION (CH 2) [6] AUTOSET [8] Tektronix TDS 1002 HORIZ. POSITION [9] Screen [1] VOLTS/DIVVOLTS/DIV SEC/DIV CH 1 CH 2 EXT TRIG function buttons [14a -14e] VOLTS/DIV adjust [12] SEC/DIV adjust [10] CH 1 INPUT [13] CH 2 INPUT [11]

PHYSICS 176 UNIVERSITY PHYSICS LAB II. Experiment 4. Alternating Current Measurement

PHYSICS 176 UNIVERSITY PHYSICS LAB II. Experiment 4. Alternating Current Measurement PHYSICS 176 UNIVERSITY PHYSICS LAB II Experiment 4 Alternating Current Measurement Equipment: Supplies: Oscilloscope, Function Generator. Filament Transformer. A sine wave A.C. signal has three basic properties:

More information

RC Circuits and The Oscilloscope Physics Lab X

RC Circuits and The Oscilloscope Physics Lab X Objective RC Circuits and The Oscilloscope Physics Lab X In this series of experiments, the time constant of an RC circuit will be measured experimentally and compared with the theoretical expression for

More information

Physics 2306 Experiment 7: Time-dependent Circuits, Part 1

Physics 2306 Experiment 7: Time-dependent Circuits, Part 1 Name ID number Date Lab CRN Lab partner Lab instructor Objectives Physics 2306 Experiment 7: Time-dependent Circuits, Part 1 To study the time dependent behavior of the voltage and current in circuits

More information

The RC Circuit. Pre-lab questions. Introduction. The RC Circuit

The RC Circuit. Pre-lab questions. Introduction. The RC Circuit The RC Circuit Pre-lab questions 1. What is the meaning of the time constant, RC? 2. Show that RC has units of time. 3. Why isn t the time constant defined to be the time it takes the capacitor to become

More information

EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS

EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS 1 EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides

More information

The Oscilloscope and the Function Generator:

The Oscilloscope and the Function Generator: The Oscilloscope and the Function Generator: Some introductory exercises for students in the advanced labs Introduction So many of the experiments in the advanced labs make use of oscilloscopes and function

More information

Lab 1: The Digital Oscilloscope

Lab 1: The Digital Oscilloscope PHYSICS 220 Physical Electronics Lab 1: The Digital Oscilloscope Object: To become familiar with the oscilloscope, a ubiquitous instrument for observing and measuring electronic signals. Apparatus: Tektronix

More information

EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP

EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP 1 EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP Purpose: To demonstrate the relationship between the voltage and current of a capacitor. Theory: A capacitor is a linear circuit element whose

More information

Beginners Guide to the TDS 210 and TDS 220 Oscilloscopes

Beginners Guide to the TDS 210 and TDS 220 Oscilloscopes Beginners Guide to the TDS 210 and TDS 220 Oscilloscopes By David S. Lay P. Eng Foreword This guide contains information to help you become familiar with using digital oscilloscopes. You should work through

More information

EECS 100/43 Lab 2 Function Generator and Oscilloscope

EECS 100/43 Lab 2 Function Generator and Oscilloscope 1. Objective EECS 100/43 Lab 2 Function Generator and Oscilloscope In this lab you learn how to use the oscilloscope and function generator 2. Equipment a. Breadboard b. Wire cutters c. Wires d. Oscilloscope

More information

" = R # C. Create your sketch so that Q(t=τ) is sketched above the delineated tic mark. Your sketch. 1" e " t & (t) = Q max

 = R # C. Create your sketch so that Q(t=τ) is sketched above the delineated tic mark. Your sketch. 1 e  t & (t) = Q max Physics 241 Lab: Circuits DC Source http://bohr.physics.arizona.edu/~leone/ua/ua_spring_2010/phys241lab.html Name: Section 1: 1.1. Today you will investigate two similar circuits. The first circuit is

More information

Electrical Resonance

Electrical Resonance Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION

More information

I. Purpose. 1. Introduce the measurement of sinusoids (ac voltages) using the oscilloscope 2. Introduce the operation of the function generator

I. Purpose. 1. Introduce the measurement of sinusoids (ac voltages) using the oscilloscope 2. Introduce the operation of the function generator Updated 17 AUG 2016 Name: Section: I. Purpose. 1. Introduce the measurement of sinusoids (ac voltages) using the oscilloscope 2. Introduce the operation of the function generator II. Equipment. Keysight

More information

Lab 3 Finding the value of an unknown capacitor. By Henry Lin, Hani Mehrpouyan

Lab 3 Finding the value of an unknown capacitor. By Henry Lin, Hani Mehrpouyan Lab 3 Finding the value of an unknown By Henry Lin, Hani Mehrpouyan First, get familiar with the oscilloscope It is a powerful tool for looking at waveforms This allows voltages to be measured as a function

More information

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a cathode ray oscilloscope.

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a cathode ray oscilloscope. The Oscilloscope Vision is the art of seeing things invisible. J. Swift (1667-1745) OBJECTIVE To learn to operate a cathode ray oscilloscope. THEORY The oscilloscope, or scope for short, is a device for

More information

The Oscilloscope, the Signal Generator and Your Filter s Test Setup SGM 5/29/2013

The Oscilloscope, the Signal Generator and Your Filter s Test Setup SGM 5/29/2013 The Oscilloscope, the Signal Generator and Your Filter s Test Setup SGM 5/29/2013 1. Oscilloscope A multimeter is an appropriate device to measure DC voltages, however, when a signal alternates at relatively

More information

Experiment 1 Familiarization with Laboratory Instruments: Oscilloscope, Function Generator, Digital Multimeter, and DC Power Supply

Experiment 1 Familiarization with Laboratory Instruments: Oscilloscope, Function Generator, Digital Multimeter, and DC Power Supply Experiment 1 Familiarization with Laboratory Instruments: Oscilloscope, Function Generator, Digital Multimeter, and DC Power Supply A. OSCILLOSCOPE Oscilloscope is probably the single most versatile and

More information

Function Generator. Instruction Manual A PI Function Generator. AC to 15 V DC, 1.6 A power adapter (not shown)

Function Generator. Instruction Manual A PI Function Generator. AC to 15 V DC, 1.6 A power adapter (not shown) Instruction Manual 012-10425A Function Generator PI-8127 Frequency Adjust knob and Range Selection Waveform Selection Menu Voltage Adjust knob and Menu Selection Liquid Crystal Display (LCD) Power Output

More information

Oscilloscope, Function Generator, and Voltage Division

Oscilloscope, Function Generator, and Voltage Division 1. Introduction Oscilloscope, Function Generator, and Voltage Division In this lab the student will learn to use the oscilloscope and function generator. The student will also verify the concept of voltage

More information

INTRODUCTION TO ARBITRARY/FUNCTION GENERATOR

INTRODUCTION TO ARBITRARY/FUNCTION GENERATOR Page 1 of 7 INTRODUCTION TO ARBITRARY/FUNCTION GENERATOR BEFORE YOU BEGIN PREREQUISITE LABS Introduction to MATLAB Introduction to Oscilloscope EXPECTED KNOWLEDGE Ohm s law & Kirchhoff s laws Operation

More information

The R-C series circuit

The R-C series circuit School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 4 The C series circuit 1 Introduction Objectives To study the

More information

Using an Oscilloscope

Using an Oscilloscope Using an Oscilloscope The oscilloscope is used to measure a voltage that changes in time. It has two probes, like a voltmeter. You put these probes on either side of the thing that you want to measure

More information

PHYS 2426 Engineering Physics II (Revised July 7, 2011) AC CIRCUITS: RLC SERIES CIRCUIT

PHYS 2426 Engineering Physics II (Revised July 7, 2011) AC CIRCUITS: RLC SERIES CIRCUIT PHYS 2426 Engineering Physics II (Revised July 7, 2011) AC CIRCUITS: RLC SERIES CIRCUIT INTRODUCTION The objective of this experiment is to study the behavior of an RLC series circuit subject to an AC

More information

Lab E1: Introduction to Circuits

Lab E1: Introduction to Circuits E1.1 Lab E1: Introduction to Circuits The purpose of the this lab is to introduce you to some basic instrumentation used in electrical circuits. You will learn to use a DC power supply, a digital multimeter

More information

Class #12: Experiment The Exponential Function in Circuits, Pt 1

Class #12: Experiment The Exponential Function in Circuits, Pt 1 Class #12: Experiment The Exponential Function in Circuits, Pt 1 Purpose: The objective of this experiment is to begin to become familiar with the properties and uses of the exponential function in circuits

More information

Charge and Discharge of a Capacitor

Charge and Discharge of a Capacitor Charge and Discharge of a Capacitor INTRODUCTION Capacitors 1 are devices that can store electric charge and energy. Capacitors have several uses, such as filters in DC power supplies and as energy storage

More information

ENGR 210 Lab 11 Frequency Response of Passive RC Filters

ENGR 210 Lab 11 Frequency Response of Passive RC Filters ENGR 210 Lab 11 Response of Passive RC Filters The objective of this lab is to introduce you to the frequency-dependent nature of the impedance of a capacitor and the impact of that frequency dependence

More information

Filters and Waveform Shaping

Filters and Waveform Shaping Physics 333 Experiment #3 Fall 211 Filters and Waveform Shaping Purpose The aim of this experiment is to study the frequency filtering properties of passive (R, C, and L) circuits for sine waves, and the

More information

RC Circuit (Power amplifier, Voltage Sensor)

RC Circuit (Power amplifier, Voltage Sensor) Object: RC Circuit (Power amplifier, Voltage Sensor) To investigate how the voltage across a capacitor varies as it charges and to find its capacitive time constant. Apparatus: Science Workshop, Power

More information

Discharging and Charging a Capacitor

Discharging and Charging a Capacitor Name: Partner(s): Desk #: Date: Discharging and Charging a Capacitor Figure 1. Various types of capacitors. "Capacitors (7189597135)" by Eric Schrader from San Francisco, CA, United States - 12739s. Licensed

More information

ε: Voltage output of Signal Generator (also called the Source voltage or Applied

ε: Voltage output of Signal Generator (also called the Source voltage or Applied Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and

More information

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Concept: circuits Time: 30 m SW Interface: 750 Windows file: RLC.SWS EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage

More information

Lab 5. First-order system identification Determining the time constant of an RC circuit.

Lab 5. First-order system identification Determining the time constant of an RC circuit. Lab 5. First-order system identification Determining the time constant of an RC circuit. ES 205 Summer 2014 Agenda Time estimates Item 30 min Determining the time constant using the log-incomplete response

More information

Lab 9: Op Amps Lab Assignment

Lab 9: Op Amps Lab Assignment 3 class days 1. Differential Amplifier Source: Hands-On chapter 8 (~HH 6.1) Lab 9: Op Amps Lab Assignment Difference amplifier. The parts of the pot on either side of the slider serve as R3 and R4. The

More information

College Physics II Lab 8: RC Circuits

College Physics II Lab 8: RC Circuits INTODUTION ollege Physics II Lab 8: ircuits Peter olnick with Taner Edis Spring 2015 Introduction onsider the circuit shown. (onsult section 23.7 in your textbook.) If left for long enough, the charge

More information

Introduction to Oscilloscopes Lab Experiment

Introduction to Oscilloscopes Lab Experiment A collection of lab exercises to introduce you to the basic controls of a digital oscilloscope in order to make common electronic measurements. Revision 1.0 Page 1 of 18 Table of Contents LABORATORY EXPERIMENT

More information

CIRCUITS AND SYSTEMS LABORATORY EXERCISE 6 TRANSIENT STATES IN RLC CIRCUITS AT DC EXCITATION

CIRCUITS AND SYSTEMS LABORATORY EXERCISE 6 TRANSIENT STATES IN RLC CIRCUITS AT DC EXCITATION CIRCUITS AND SYSTEMS LABORATORY EXERCISE 6 TRANSIENT STATES IN RLC CIRCUITS AT DC EXCITATION 1. DEVICES AND PANELS USED IN EXERCISE The following devices are to be used in this exercise: oscilloscope HP

More information

EXPERIMENT 6 CLIPPING AND CLAMPING DIODE CIRCUITS

EXPERIMENT 6 CLIPPING AND CLAMPING DIODE CIRCUITS EXPERIMENT 6 CLIPPING AND CLAMPING DIODE CIRCUITS OBJECTIVES To understand the theory of operation of the clipping and clamping diode circuits. To design wave shapes that meet different circuits needs.

More information

Inductors in AC Circuits

Inductors in AC Circuits Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum

More information

FREQUENCY RESPONSE OF AN AUDIO AMPLIFIER

FREQUENCY RESPONSE OF AN AUDIO AMPLIFIER 2014 Amplifier - 1 FREQUENCY RESPONSE OF AN AUDIO AMPLIFIER The objectives of this experiment are: To understand the concept of HI-FI audio equipment To generate a frequency response curve for an audio

More information

10: FOURIER ANALYSIS OF COMPLEX SOUNDS

10: FOURIER ANALYSIS OF COMPLEX SOUNDS 10: FOURIER ANALYSIS OF COMPLEX SOUNDS Amplitude, loudness, and decibels Several weeks ago we found that we could synthesize complex sounds with a particular frequency, f, by adding together sine waves

More information

Figure 1. Front Panel of Function Generator

Figure 1. Front Panel of Function Generator Equipment Introduction: Part I - Introduction to the Function Generator Overview: The function generator is used to generate a wide range of alternating-current (AC) signals. A diagram of the Leader LFG-1300S

More information

RC Circuits. The purpose of this lab is to understand how capacitors charge and discharge.

RC Circuits. The purpose of this lab is to understand how capacitors charge and discharge. Department of Physics and Geology Purpose Circuits Physics 2402 The purpose of this lab is to understand how capacitors charge and discharge. Materials Decade Resistance Box (CENCO), 0.1 µf, 0.5µF, and

More information

RC Circuits. 1 Introduction. 2 Capacitors

RC Circuits. 1 Introduction. 2 Capacitors 1 RC Circuits Equipment DataStudio with 750 interface, RLC circuit board, 2 voltage sensors (no alligator clips), 2x35 in. leads, 12 in. lead Reading Review operation of DataStudio oscilloscope. Review

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter 6 Capacitors and RC Circuits Name: Lab Partner: Section: 6.1 Purpose The purpose of this experiment is to investigate the physics of capacitors in circuits. The charging and discharging of a capacitor

More information

EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits

EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits 1. Introduction and Goal: Exploring transient behavior due to inductors and capacitors in DC circuits; gaining experience with lab instruments.

More information

Lab 4 Op Amp Filters

Lab 4 Op Amp Filters Lab 4 Op Amp Filters Figure 4.0. Frequency Characteristics of a BandPass Filter Adding a few capacitors and resistors to the basic operational amplifier (op amp) circuit can yield many interesting analog

More information

The Oscilloscope and the Function Generator:

The Oscilloscope and the Function Generator: The Oscilloscope and the Function Generator: Some introductory exercises for students in the advanced labs Introduction So many of the experiments in the advanced labs make use of oscilloscopes and function

More information

The Time Constant of an RC Circuit

The Time Constant of an RC Circuit The Time Constant of an RC Circuit 1 Objectives 1. To determine the time constant of an RC Circuit, and 2. To determine the capacitance of an unknown capacitor. 2 Introduction What the heck is a capacitor?

More information

INTERFERENCE OF SOUND WAVES

INTERFERENCE OF SOUND WAVES 2011 Interference - 1 INTERFERENCE OF SOUND WAVES The objectives of this experiment are: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves. To observe interference phenomena

More information

EE 442. Lab Experiment No. 1 1/12/2007. Introduction to the Function Generator and the Oscilloscope

EE 442. Lab Experiment No. 1 1/12/2007. Introduction to the Function Generator and the Oscilloscope EE 442 Lab Experiment No. 1 1/12/2007 Introduction to the Function Generator and the Oscilloscope 1 I. INTRODUCTION EE 442 Laboratory Experiment 1 The purpose of this lab is to learn the basic operation

More information

33120A. Function Waveform Generator Operating Instructions

33120A. Function Waveform Generator Operating Instructions 33120A Function Waveform Generator Operating Instructions Page 1 of 10 33120A Function Waveform Generator Operating Instructions This pamphlet is intended to give you (the student) an overview on the use

More information

Faculty of Engineering and Information Technology. Lab 2 Diode Circuits

Faculty of Engineering and Information Technology. Lab 2 Diode Circuits Faculty of Engineering and Information Technology Subject: 48521 Fundamentals of Electrical Engineering Assessment Number: 2 Assessment Title: Lab 2 Diode Circuits Tutorial Group: Students Name(s) and

More information

Laboratory Guide. Anatomy and Physiology

Laboratory Guide. Anatomy and Physiology Laboratory Guide Anatomy and Physiology TBME04, Fall 2010 Name: Passed: Last updated 2010-08-13 Department of Biomedical Engineering Linköpings Universitet Introduction This laboratory session is intended

More information

Ph 3504 Nuclear Magnetic Resonance and Electron Spin Resonance

Ph 3504 Nuclear Magnetic Resonance and Electron Spin Resonance Ph 3504 Nuclear Magnetic Resonance and Electron Spin Resonance Required background reading Tipler, Llewellyn, section 12-3 (you only need to read the part labeled Nuclear Magnetic Resonance on pages 596-597

More information

AC Impedance and High-Pass Filters

AC Impedance and High-Pass Filters Lab 7 AC Impedance and High-Pass Filters In this lab you will become familiar with the concept of AC impedance and apply it to the frequency response of a high-pass filter. 7.1 AC Impedance Just as Ohm

More information

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 1250 Lab 6 Generate Voltages using a Function Generator and Measure Voltages using an Oscilloscope Building: Digital Circuit Build an Electronic Candle Overview: In Lab 6 you will: Build an electronic

More information

E X P E R I M E N T 7

E X P E R I M E N T 7 E X P E R I M E N T 7 The RC Circuit Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics II, Exp 7: The RC Circuit Page

More information

ECE 2201 PRELAB 2 DIODE APPLICATIONS

ECE 2201 PRELAB 2 DIODE APPLICATIONS ECE 2201 PRELAB 2 DIODE APPLICATIONS P1. Review this experiment IN ADVANCE and prepare Circuit Diagrams, Tables, and Graphs in your notebook, prior to coming to lab. P2. Hand Analysis: (1) For the zener

More information

Lab 3 - Using the Agilent 54621A Digital Oscilloscope as a Spectrum Analyzer Electronics Fundamentals using the Agilent 54621A Oscilloscope

Lab 3 - Using the Agilent 54621A Digital Oscilloscope as a Spectrum Analyzer Electronics Fundamentals using the Agilent 54621A Oscilloscope Lab 3 - Using the Agilent 54621A Digital Oscilloscope as a Spectrum Analyzer Electronics Fundamentals using the Agilent 54621A Oscilloscope By: Walter Banzhaf University of Hartford Ward College of Technology

More information

AC CIRCUITS - CAPACITORS AND INDUCTORS

AC CIRCUITS - CAPACITORS AND INDUCTORS EXPRIMENT#8 AC CIRCUITS - CAPACITORS AND INDUCTORS NOTE: Two weeks are allocated for this experiment. Before performing this experiment, review the Proper Oscilloscope Use section of Experiment #7. Objective

More information

= V peak 2 = 0.707V peak

= V peak 2 = 0.707V peak BASIC ELECTRONICS - RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard

More information

Digital Fundamentals

Digital Fundamentals Digital Fundamentals Tenth Edition Floyd Chapter 1 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. All Rights Reserved Analog Quantities Most natural quantities that we see

More information

Electricity & Electronics 8: Capacitors in Circuits

Electricity & Electronics 8: Capacitors in Circuits Electricity & Electronics 8: Capacitors in Circuits Capacitors in Circuits IM This unit considers, in more detail, the charging and discharging of capacitors. It then investigates how capacitors behave

More information

A Primer for the ESyst Analog Systems ilab James Hardison - Document version 1.0

A Primer for the ESyst Analog Systems ilab James Hardison - Document version 1.0 A Primer for the ESyst Analog Systems ilab James Hardison - hardison@mit.edu Document version 1.0 This document is intended as an introduction to the ESyst Analog Systems ilab. The functionality of this

More information

1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal.

1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal. CHAPTER 3: OSCILLOSCOPE AND SIGNAL GENERATOR 3.1 Introduction to oscilloscope 1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal. 2. The graph show signal change

More information

NEON BULB OSCILLATOR EXPERIMENT

NEON BULB OSCILLATOR EXPERIMENT NEON BULB OSCILLATOR EXPERIMENT When we combine a neon bulb with the circuit for charging up a capacitor through a resistor, we obtain the worlds simplest active electronic circuit that does something

More information

Teacher s Guide Physics Labs with Computers, Vol C P52: LRC Circuit. Teacher s Guide - Activity P52: LRC Circuit (Voltage Sensor)

Teacher s Guide Physics Labs with Computers, Vol C P52: LRC Circuit. Teacher s Guide - Activity P52: LRC Circuit (Voltage Sensor) Teacher s Guide Physics Labs with Computers, Vol. 2 012-06101C P52: LRC Circuit Teacher s Guide - Activity P52: LRC Circuit (Voltage Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win)

More information

Lab 2 Intro to Digital Logic and Transistors

Lab 2 Intro to Digital Logic and Transistors University of Pennsylvania Department of Electrical and Systems Engineering ESE 111 Intro to ESE Lab 2 Intro to Digital Logic and Transistors Introduction: Up until now, everything that you have done has

More information

Intro to Power Lab Concepts

Intro to Power Lab Concepts 1 Intro to Power Lab Concepts Created by the University of Illinois at Urbana-Champaign TCIPG PMU Research Group 1 Table of Contents 1. PRE-LAB DC Power-----------------------------------------------------------------------------------

More information

Altoids Tin Headphone Amplifier Lab

Altoids Tin Headphone Amplifier Lab Altoids Tin Headphone Amplifier Lab Michigan State University AEE/IEEE Step 1: Required Parts Table 1 shows a complete listing of the parts required to complete this project. Figure 1 shows a picture of

More information

Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment.

Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment. Op-Amp Simulation EE/CS 5720/6720 Read Chapter 5 in Johns & Martin before you begin this assignment. This assignment will take you through the simulation and basic characterization of a simple operational

More information

Vessel holding water. Charged capacitor. Questions. Question 1

Vessel holding water. Charged capacitor. Questions. Question 1 ELEN236 Capacitors This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

LRC Circuits. Purpose. Principles PHYS 2211L LAB 7

LRC Circuits. Purpose. Principles PHYS 2211L LAB 7 Purpose This experiment is an introduction to alternating current (AC) circuits. Using the oscilloscope, we will examine the voltage response of inductors, resistors and capacitors in series circuits driven

More information

Generation of Square and Rectangular Waveforms Using Astable Multivibrators

Generation of Square and Rectangular Waveforms Using Astable Multivibrators Generation of Square and Rectangular Waveforms Using Astable Multivibrators A square waveform can be generated by arranging for a bistable multivibrator to switch states periodically. his can be done by

More information

RC Circuits and Bioelectrical Impedance Analysis

RC Circuits and Bioelectrical Impedance Analysis RC Circuits and Bioelectrical Impedance Analysis Objectives: Explain how resistors and capacitors behave in AC circuits. Relate resistance, reactance, impedance, and phase angle to each other. Explain

More information

Electronic WorkBench tutorial

Electronic WorkBench tutorial Electronic WorkBench tutorial Introduction Electronic WorkBench (EWB) is a simulation package for electronic circuits. It allows you to design and analyze circuits without using breadboards, real components

More information

Lab Exercise 1: Acoustic Waves

Lab Exercise 1: Acoustic Waves Lab Exercise 1: Acoustic Waves Contents 1-1 PRE-LAB ASSIGNMENT................. 2 1-3.1 Spreading Factor: Spherical Waves........ 2 1-3.2 Interference In 3-D................. 3 1-4 EQUIPMENT........................

More information

Experiment #9: RC and LR Circuits Time Constants

Experiment #9: RC and LR Circuits Time Constants Experiment #9: RC and LR Circuits Time Constants Purpose: To study the charging and discharging of capacitors in RC circuits and the growth and decay of current in LR circuits. Part 1 Charging RC Circuits

More information

Name Date Day/Time of Lab Partner(s) Lab TA

Name Date Day/Time of Lab Partner(s) Lab TA Name Date Day/Time of Lab Partner(s) Lab TA Objectives LAB 7: AC CIRCUITS To understand the behavior of resistors, capacitors, and inductors in AC Circuits To understand the physical basis of frequency-dependent

More information

Step Response of RC Circuits

Step Response of RC Circuits Step Response of RC Circuits 1. OBJECTIVES...2 2. REFERENCE...2 3. CIRCUITS...2 4. COMPONENTS AND SPECIFICATIONS...3 QUANTITY...3 DESCRIPTION...3 COMMENTS...3 5. DISCUSSION...3 5.1 SOURCE RESISTANCE...3

More information

CAPACITANCE IN A RC CIRCUIT

CAPACITANCE IN A RC CIRCUIT 5/16 Capacitance-1/5 CAPACITANCE IN A RC CIRCUIT PURPOSE: To observe the behavior of resistor-capacitor circuit, to measure the RC time constant and to understand how it is related to the time dependence

More information

MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START

MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START Laboratory Section: Last Revised on December 15, 2014 Partners Names Grade EXPERIMENT 10 Electronic Circuits 0. Pre-Laboratory Work [2 pts] 1. How are you going to determine the capacitance of the unknown

More information

Capacitors. We charge a capacitor by connecting the two plates to a potential difference, such as a battery:

Capacitors. We charge a capacitor by connecting the two plates to a potential difference, such as a battery: RC Circuits PHYS 1112L Capacitors A capacitor is an electrical component that stores charge. The simplest capacitor is just two charged metal plates separated by a non-conducting material: In the diagram

More information

Laboratory #2: AC Circuits, Impedance and Phasors Electrical and Computer Engineering EE University of Saskatchewan

Laboratory #2: AC Circuits, Impedance and Phasors Electrical and Computer Engineering EE University of Saskatchewan Authors: Denard Lynch Date: Aug 30 - Sep 28, 2012 Sep 23, 2013: revisions-djl Description: This laboratory explores the behaviour of resistive, capacitive and inductive elements in alternating current

More information

Calibration and Use of a Strain-Gage-Instrumented Beam: Density Determination and Weight-Flow-Rate Measurement

Calibration and Use of a Strain-Gage-Instrumented Beam: Density Determination and Weight-Flow-Rate Measurement Chapter 2 Calibration and Use of a Strain-Gage-Instrumented Beam: Density Determination and Weight-Flow-Rate Measurement 2.1 Introduction and Objectives This laboratory exercise involves the static calibration

More information

Lab 5: Conservation of Energy

Lab 5: Conservation of Energy Lab 5: Conservation of Energy Equipment SWS, 1-meter stick, 2-meter stick, heavy duty bench clamp, 90-cm rod, 40-cm rod, 2 double clamps, brass spring, 100-g mass, 500-g mass with 5-cm cardboard square

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 5 - Gain-Bandwidth Product and Slew Rate Overview: In this laboratory the student will explore

More information

PH 210 Electronics Laboratory I Instruction Manual

PH 210 Electronics Laboratory I Instruction Manual PH 210 Electronics Laboratory I Instruction Manual Index Page No General Instructions 2 Experiment 1 Common Emitter (CE) Amplifier 4 Experiment 2 Multistage amplifier: Cascade of two CE stages 7 Experiment

More information

The OP AMP -, Figure 1

The OP AMP -, Figure 1 The OP AMP Amplifiers, in general, taking as input, one or more electrical signals, and produce as output, one or more variations of these signals. The most common use of an amplifier is to accept a small

More information

Meters, Power Supplies and Generators

Meters, Power Supplies and Generators 1. Meters Meters, Power Supplies and Generators Generally analog meters respond to the average of the signal being measured. This is due to the mechanical mass of the pointer and the RC response time of

More information

RLC Series Resonance

RLC Series Resonance RLC Series Resonance 11EM Object: The purpose of this laboratory activity is to study resonance in a resistor-inductor-capacitor (RLC) circuit by examining the current through the circuit as a function

More information

Electrical Resonance RLC circuits

Electrical Resonance RLC circuits Purpose: To investigate resonance phenomena that result from forced motion near a system's natural frequency. In this case the system will be a variety of RLC circuits. Theory: You are already familiar

More information

PHYS 2426 Engineering Physics II EXPERIMENT 5 CAPACITOR CHARGING AND DISCHARGING

PHYS 2426 Engineering Physics II EXPERIMENT 5 CAPACITOR CHARGING AND DISCHARGING PHYS 2426 Engineering Physics II EXPERIMENT 5 CAPACITOR CHARGING AND DISCHARGING I. OBJECTIVE: The objective of this experiment is the study of charging and discharging of a capacitor by measuring the

More information

Filters & Wave Shaping

Filters & Wave Shaping Module 8 AC Theory Filters & Wave Shaping Passive Filters & Wave Shaping What you'll learn in Module 8. Module 8 Introduction Recognise passive filters with reference to their response curves. High pass,

More information

Experiment V: The AC Circuit, Impedance, and Applications to High and Low Pass Filters

Experiment V: The AC Circuit, Impedance, and Applications to High and Low Pass Filters Experiment : The AC Circuit, Impedance, and Applications to High and Low Pass Filters I. eferences Halliday, esnick and Krane, Physics, ol. 2, 4th Ed., Chapters 33 Purcell, Electricity and Magnetism, Chapter

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #5. Clipping and Clamping Circuits. Angsuman Roy

EE320L Electronics I. Laboratory. Laboratory Exercise #5. Clipping and Clamping Circuits. Angsuman Roy EE320L Electronics I Laboratory Laboratory Exercise #5 Clipping and Clamping Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective: The purpose

More information

Faraday's Law and Inductance

Faraday's Law and Inductance Page 1 of 8 test2labh_status.txt Use Internet Explorer for this laboratory. Save your work often. NADN ID: guest49 Section Number: guest All Team Members: Your Name: SP212 Lab: Faraday's Law and Inductance

More information

Resonance and the Speed of Sound

Resonance and the Speed of Sound Name: Partner(s): Date: Resonance and the Speed of Sound 1. Purpose Sound is a common type of mechanical wave that can be heard but not seen. In today s lab, you will investigate the nature of sound waves

More information

ENGR 210 Lab 4 Use of the Function Generator & Oscilloscope

ENGR 210 Lab 4 Use of the Function Generator & Oscilloscope ENGR 210 Lab 4 Use of the Function Generator & Oscilloscope In this laboratory you will learn to use two additional instruments in the laboratory, namely the function/arbitrary waveform generator, which

More information