Then the second equation becomes ³ j

Size: px
Start display at page:

Download "Then the second equation becomes ³ j"

Transcription

1 Magnetic vector potential When we derived the scalar electric potential we started with the relation r E = 0 to conclude that E could be written as the gradient of a scalar potential. That won t work for the magnetic field (except where j = 0), because the curl of B is not zero in general. Instead, the divergence of B is zero. That means that B may be written as the curl of a vector that we shall call A. B = r A ) r B = r r A = 0 Then the second equation becomes r B = r r A = r r A r 2 A j We had some flexibility in choosing the scalar potential V because E = rv is not changed if we add a constant to V, since r (constant) = 0. imilarly here, if we add to A the gradient of a scalar function, A 2 = A + rχ, we have B 2 = r A 2 = r A + rχ = r A = B With this flexibility, we may choose r A = 0. For suppose this is not true. Then r A + rχ = r A + r 2 χ = 0 o we have an equation for the function χ r 2 χ = r A Once we solve this we will have a vector A 2 whose divergence is zero. Once we know that we can do this, we may just set r A = 0 from the start. This is called the Coulomb gauge condition. With this choice, the equation for A is r 2 A = µ 0 j () We may look at this equation one component at a time (provided that we use Cartesian components.) Thus, for the x component r 2 A x = µ 0 j x This equation has the same form as the equation for V r 2 V = ρ ε 0 and thus the solution will also have the same form: A x ( r) = µ 0 jx ( r 0 ) 4π R dτ0

2 and since we have an identical relation for each component, then A = µ 0 j ( r 0 ) 4π R dτ0 (2) Now remember that jdτ corresponds to Id l, so if the current is confined in wires, the result is A = µ 0 Id l 0 (3) 4π R At this point we may stop and consider if there is any rule for magnetic field analagous to our RULE for electric fields. ince there is no magetic charge, there is no "point charge" field. But we can use our expansion R = X (r 0 ) l r P l+ l cos θ 0 l=0 where r is on the polar axis. Then A ( r = r^z) = µ X 0 I 4π r l+ (r 0 ) l P l cos θ 0 d l 0 The l = 0 term is A 0 = µ 0I 4πr ince the current flows in closed loops, R d l 0 = 0. (This result is actually more general, because in a static situation r j = 0, and the lines of j also form closed loops.) This is the result we expected. The next term is A I 4πr 2 d l 0 r 0 cos θ 0 d l 0 I 4πr 2 We can use tokes theorem to evaluate this integral. u d l = r u ^n da ( r 0 ^z)d l 0 Let u = cχ where c is a constant vector and χ is a scalar function.then c χd l = r cχ ^nda h i = rχ c ^n da We may re-arrange the triple scalar product c χd l = c rχ ^n da 2

3 This is true for an arbitrary constant vector c, so, with χ = ( r 0 ^z) ( r 0 ^z) d h i l 0 = r 0 ( r 0 ^z) ^n 0 da 0 = h^z r 0 r 0 + ^z r 0 r 0i ^n 0 da 0 = (0 + ^z ^n 0 ) da 0 = ^z ^n 0 da 0 = ^n 0 da 0 ^z Note that ^z can come out of the integral because it is a constant. o A = µ 0I 4πr 2 ^n 0 da 0 ^z 4πr 2 m ^z m ^r 4πr2 where m = I ^n 0 da 0 is the magnetic moment of the loop. The corresponding magnetic field is h µ0 i B = r 4πr 2 m ^r = µ µ 0 3 ^r ( m r) + 4π r4 r 3 r ( m r) 4π = = µ 0 µ 3 r 3 [ m ^r( m ^r)] + r 3 ( 3 m + 3 r ( m ^r) m + 3 m) 4πr3 µ 0 [3 r( m ^r) m] 4πr3 m r r + m r r This is a dipole field. Thus the magnetic equivalent of RULE is : At a great distance from a current distribution, the magnetic field is a dipole field Here is another useful result: I A d l = r A ^n da = C B ^n da = B (4) Thus the circulation of A around a curve C equals the magnetic flux through any surface spanning the curve. Boundary conditions for B We start with the Maxwell equations. Remember, if the equation has a divergenceweintegrateover asmall volume (pillbox) that crosses the boundary. 3

4 But if the equation has a curl, we integrate over a rectangular surface that lies perpendicular to the surface. o we start with r B = 0 I r Bdτ = 0 = B da But because we chose h d, the integral over the sides is negligible, and on the bottom side d A 2 = ^nda, so we have B B 2 ^n = 0 (5) The normal component of B is continuous. For the curl equation, we use the rectangle shown: Then r B d A = I B d l = µ 0 j d A µ 0 j ^Ndh w C B B 2 ^t w = µ µ 0 µ 0 B B 2 ^n ^N K ^N jdh ^N w 4

5 Rearrange the triple scalar product on the left to get h i B B 2 ^n ^N K ^N ince we may orient the rectangle so that ^N is any vector in the surface, we have ^n B B 2 K (6) Thus the tangential component of B has a discontinuity that depends on the surface current density K. Crossing both sides with ^n, we get an alternate version: h B B 2 i ^n B B 2 ^n h ^n But now we may make use of (5) to obtain ^n = µ 0K ^n B B 2 i K ^n B B 2 K ^n (7) What about the vector potential? Remember that for the scalar potential V we were able to show that V is continuous across the surface (in most cases). When we find A we first choose a gauge condition. The Coulomb gauge condition is r A = 0 and then we can use our usual pillbox trick to show that A ^n is continuous (8) For the tangential component, we make use of equation (4). Then, using the rectangle, I A d l = B = B ^N wh C A A 2 ^t w = B ^Nwh! 0 as h! 0 Thus we have A ^t is continuous (9) These two result taken together show that the vector potential as a whole is also continuous across the boundary. Finally let s put A into equation (6): r A A 2 K ^n 5

6 o the derivatives of A have a discontinuity. But which ones? Let s expand ^n B = ^n r A = n i ra i ^n r A Then ^n B B 2 = n i r(a i, A i,2 ) ^n r A A 2 K (0) But we have shown that each component of A is continuous at the surface. o the components of r(a i, A i,2 ) parallel to the surface must be zero. Thus only the normal derivatives remain. Then the normal component of equation (0) is identically zero, and the only non-zero components of the boundary condition are the tangential components ^n r A A 2 = µ 0K () tan Now this is neat. Each component of A satisfies Laplace s equation with Neumann boundary conditions, and so it must have a unique solution, as we already proved for V. Magnetic scalar potential When we have the special case of j 0, r B = 0 and we may use a magnetic scalar potenial mag. This can be useful if the current is confined to lines or sheets, because we can create a nice boundary-value problem for m ag. B = r m ag r B = 0 ) r 2 m ag = 0 (2) B normal continuous ) ^n r m ag is continuous (3) ^n B B 2 = µ 0K ) ^n r( m ag m ag2 ) = µ 0K (4) Let s use these boundary conditions to find the potential due to a spinning spherical shell of charge. The current is confined to the surface and has the value K = σ v = σ ω r = σωasinθ^φ where in the last expression put the z axis along the rotation axis. We will take σ to be a constant. The equation for m ag in the region entirely inside (or entirely outside) the sphere is ( with j = 0) r 2 mag = 0 and because we have azimuthal symmetry, the solution is of the form X in = C l r l P l (cosθ) out = l= X l= 6 D l r l+p l (cosθ)

7 We have omitted the l = 0 term because it contributes zero field inside, and we know there can be no monopole term outside. What else dowe know? At the boundary, from (3) m ag,out r and from (4). a asinθ m ag,in = 0 r X X lc l a l P l (cosθ) = l= µ m ag,out θ µ m ag,out φ l= C l = D l l + a 2l+ l m ag,in θ m ag,in φ (l + ) D l a l+2p l (cosθ) l > 0 (5) = µ 0 σaω sinθ = 0 The last equation is automatically satisfied. Thus the final condition we need to satisfy is X l= D l a l+2 θ P l (cos θ) X l= Now since P (cosθ) = cosθ and θ C l a l θ P l (cosθ) = µ 0 σaω sinθ cosθ = sin θ, the first term in the sum is sin θ µ D a C 3 so we may satisfy the boundary conditons by taking D a 3 C σaω and all the other C l, D l = 0. Then equation (5) gives and then o giving a field B = D a 3 + D 2 a 3 σaω ) D σa 4 ω 3 C = 2 µ 0σaω 3 ½ 2 3 m ag = µ ¾ 0σaωrcosθ inside 3 µ 0σa 2 ω a2 r cos θ outside 2 ( 2 3 µ 0σaω^z inside µ 0 σaω 2cosθ a3 ^r + sin θ ^θ outside 3r 3 ) 7

8 Thus the field inside is uniform and the field outside is apure dipole field. The dipole moment is The dimensions of m are m = 4π 3 σa4 ω charge (length) 4 = charge area time time (length)2 = current area which is correct. You should verify that you get the same m by summing current loops. Compare this solution with Gri ths example 5.. Which method do you think is easier? 8

Electromagnetism - Lecture 2. Electric Fields

Electromagnetism - Lecture 2. Electric Fields Electromagnetism - Lecture 2 Electric Fields Review of Vector Calculus Differential form of Gauss s Law Poisson s and Laplace s Equations Solutions of Poisson s Equation Methods of Calculating Electric

More information

Chapter 22: Electric Flux and Gauss s Law

Chapter 22: Electric Flux and Gauss s Law 22.1 ntroduction We have seen in chapter 21 that determining the electric field of a continuous charge distribution can become very complicated for some charge distributions. t would be desirable if we

More information

Divergence and Curl of the Magnetic Field

Divergence and Curl of the Magnetic Field Divergence and Curl of the Magnetic Field The static electric field E(x,y,z such as the field of static charges obeys equations E = 1 ǫ ρ, (1 E =. (2 The static magnetic field B(x,y,z such as the field

More information

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus Chapter 1 Matrices, Vectors, and Vector Calculus In this chapter, we will focus on the mathematical tools required for the course. The main concepts that will be covered are: Coordinate transformations

More information

Gauss Formulation of the gravitational forces

Gauss Formulation of the gravitational forces Chapter 1 Gauss Formulation of the gravitational forces 1.1 ome theoretical background We have seen in class the Newton s formulation of the gravitational law. Often it is interesting to describe a conservative

More information

Chapter 22: The Electric Field. Read Chapter 22 Do Ch. 22 Questions 3, 5, 7, 9 Do Ch. 22 Problems 5, 19, 24

Chapter 22: The Electric Field. Read Chapter 22 Do Ch. 22 Questions 3, 5, 7, 9 Do Ch. 22 Problems 5, 19, 24 Chapter : The Electric Field Read Chapter Do Ch. Questions 3, 5, 7, 9 Do Ch. Problems 5, 19, 4 The Electric Field Replaces action-at-a-distance Instead of Q 1 exerting a force directly on Q at a distance,

More information

Antennas. Antennas are transducers that transfer electromagnetic energy between a transmission line and free space. Electromagnetic Wave

Antennas. Antennas are transducers that transfer electromagnetic energy between a transmission line and free space. Electromagnetic Wave Antennas Transmitter I Transmitting Antenna Transmission Line Electromagnetic Wave I Receiver I Receiving Antenna Transmission Line Electromagnetic Wave I Antennas are transducers that transfer electromagnetic

More information

arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014

arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014 Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014 Abstract We discuss the theory of electromagnetic

More information

CHAPTER 24 GAUSS S LAW

CHAPTER 24 GAUSS S LAW CHAPTER 4 GAUSS S LAW 4. The net charge shown in Fig. 4-40 is Q. Identify each of the charges A, B, C shown. A B C FIGURE 4-40 4. From the direction of the lines of force (away from positive and toward

More information

6 J - vector electric current density (A/m2 )

6 J - vector electric current density (A/m2 ) Determination of Antenna Radiation Fields Using Potential Functions Sources of Antenna Radiation Fields 6 J - vector electric current density (A/m2 ) M - vector magnetic current density (V/m 2 ) Some problems

More information

MAT 1341: REVIEW II SANGHOON BAEK

MAT 1341: REVIEW II SANGHOON BAEK MAT 1341: REVIEW II SANGHOON BAEK 1. Projections and Cross Product 1.1. Projections. Definition 1.1. Given a vector u, the rectangular (or perpendicular or orthogonal) components are two vectors u 1 and

More information

The Vector or Cross Product

The Vector or Cross Product The Vector or ross Product 1 ppendix The Vector or ross Product We saw in ppendix that the dot product of two vectors is a scalar quantity that is a maximum when the two vectors are parallel and is zero

More information

Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product

Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product Dot product and vector projections (Sect. 12.3) Two definitions for the dot product. Geometric definition of dot product. Orthogonal vectors. Dot product and orthogonal projections. Properties of the dot

More information

Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product

Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product Geometrical definition Properties Expression in components. Definition in components Properties Geometrical expression.

More information

Electromagnetism Laws and Equations

Electromagnetism Laws and Equations Electromagnetism Laws and Equations Andrew McHutchon Michaelmas 203 Contents Electrostatics. Electric E- and D-fields............................................. Electrostatic Force............................................2

More information

Vector surface area Differentials in an OCS

Vector surface area Differentials in an OCS Calculus and Coordinate systems EE 311 - Lecture 17 1. Calculus and coordinate systems 2. Cartesian system 3. Cylindrical system 4. Spherical system In electromagnetics, we will often need to perform integrals

More information

Examples of magnetic field calculations and applications. 1 Example of a magnetic moment calculation

Examples of magnetic field calculations and applications. 1 Example of a magnetic moment calculation Examples of magnetic field calculations and applications Lecture 12 1 Example of a magnetic moment calculation We consider the vector potential and magnetic field due to the magnetic moment created by

More information

Chapter 33. The Magnetic Field

Chapter 33. The Magnetic Field Chapter 33. The Magnetic Field Digital information is stored on a hard disk as microscopic patches of magnetism. Just what is magnetism? How are magnetic fields created? What are their properties? These

More information

Physics of the Atmosphere I

Physics of the Atmosphere I Physics of the Atmosphere I WS 2008/09 Ulrich Platt Institut f. Umweltphysik R. 424 Ulrich.Platt@iup.uni-heidelberg.de heidelberg.de Last week The conservation of mass implies the continuity equation:

More information

Solutions to Homework 10

Solutions to Homework 10 Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 1 NON-CONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects

More information

Scalars, Vectors and Tensors

Scalars, Vectors and Tensors Scalars, Vectors and Tensors A scalar is a physical quantity that it represented by a dimensional number at a particular point in space and time. Examples are hydrostatic pressure and temperature. A vector

More information

Stokes flow. Chapter 7

Stokes flow. Chapter 7 Chapter 7 Stokes flow We have seen in section 6.3 that the dimensionless form of the Navier-Stokes equations for a Newtonian viscous fluid of constant density and constant viscosity is, now dropping the

More information

Force on a square loop of current in a uniform B-field.

Force on a square loop of current in a uniform B-field. Force on a square loop of current in a uniform B-field. F top = 0 θ = 0; sinθ = 0; so F B = 0 F bottom = 0 F left = I a B (out of page) F right = I a B (into page) Assume loop is on a frictionless axis

More information

v 1 v 3 u v = (( 1)4 (3)2, [1(4) ( 2)2], 1(3) ( 2)( 1)) = ( 10, 8, 1) (d) u (v w) = (u w)v (u v)w (Relationship between dot and cross product)

v 1 v 3 u v = (( 1)4 (3)2, [1(4) ( 2)2], 1(3) ( 2)( 1)) = ( 10, 8, 1) (d) u (v w) = (u w)v (u v)w (Relationship between dot and cross product) 0.1 Cross Product The dot product of two vectors is a scalar, a number in R. Next we will define the cross product of two vectors in 3-space. This time the outcome will be a vector in 3-space. Definition

More information

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law. 260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this

More information

( )( 10!12 ( 0.01) 2 2 = 624 ( ) Exam 1 Solutions. Phy 2049 Fall 2011

( )( 10!12 ( 0.01) 2 2 = 624 ( ) Exam 1 Solutions. Phy 2049 Fall 2011 Phy 49 Fall 11 Solutions 1. Three charges form an equilateral triangle of side length d = 1 cm. The top charge is q = - 4 μc, while the bottom two are q1 = q = +1 μc. What is the magnitude of the net force

More information

Review of Vector Analysis in Cartesian Coordinates

Review of Vector Analysis in Cartesian Coordinates R. evicky, CBE 6333 Review of Vector Analysis in Cartesian Coordinates Scalar: A quantity that has magnitude, but no direction. Examples are mass, temperature, pressure, time, distance, and real numbers.

More information

Chapter 27 Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces - Magnetism - Magnetic Field - Magnetic Field Lines and Magnetic Flux - Motion of Charged Particles in a Magnetic Field - Applications of Motion of Charged

More information

13.4 THE CROSS PRODUCT

13.4 THE CROSS PRODUCT 710 Chapter Thirteen A FUNDAMENTAL TOOL: VECTORS 62. Use the following steps and the results of Problems 59 60 to show (without trigonometry) that the geometric and algebraic definitions of the dot product

More information

5.3 The Cross Product in R 3

5.3 The Cross Product in R 3 53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

More information

State of Stress at Point

State of Stress at Point State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

More information

Faraday s Law of Induction

Faraday s Law of Induction Chapter 10 Faraday s Law of Induction 10.1 Faraday s Law of Induction...10-10.1.1 Magnetic Flux...10-3 10.1. Lenz s Law...10-5 10. Motional EMF...10-7 10.3 Induced Electric Field...10-10 10.4 Generators...10-1

More information

Magnetic Dipoles. Magnetic Field of Current Loop. B r. PHY2061 Enriched Physics 2 Lecture Notes

Magnetic Dipoles. Magnetic Field of Current Loop. B r. PHY2061 Enriched Physics 2 Lecture Notes Disclaimer: These lecture notes are not meant to replace the course textbook. The content may be incomplete. Some topics may be unclear. These notes are only meant to be a study aid and a supplement to

More information

Solutions to Practice Problems for Test 4

Solutions to Practice Problems for Test 4 olutions to Practice Problems for Test 4 1. Let be the line segmentfrom the point (, 1, 1) to the point (,, 3). Evaluate the line integral y ds. Answer: First, we parametrize the line segment from (, 1,

More information

Solutions for Review Problems

Solutions for Review Problems olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

More information

Elasticity Theory Basics

Elasticity Theory Basics G22.3033-002: Topics in Computer Graphics: Lecture #7 Geometric Modeling New York University Elasticity Theory Basics Lecture #7: 20 October 2003 Lecturer: Denis Zorin Scribe: Adrian Secord, Yotam Gingold

More information

Problem Solving 5: Magnetic Force, Torque, and Magnetic Moments

Problem Solving 5: Magnetic Force, Torque, and Magnetic Moments MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics Problem Solving 5: Magnetic Force, Torque, and Magnetic Moments OBJECTIVES 1. To start with the magnetic force on a moving charge q and derive

More information

AB2.5: Surfaces and Surface Integrals. Divergence Theorem of Gauss

AB2.5: Surfaces and Surface Integrals. Divergence Theorem of Gauss AB2.5: urfaces and urface Integrals. Divergence heorem of Gauss epresentations of surfaces or epresentation of a surface as projections on the xy- and xz-planes, etc. are For example, z = f(x, y), x =

More information

Lecture 5. Electric Flux and Flux Density, Gauss Law in Integral Form

Lecture 5. Electric Flux and Flux Density, Gauss Law in Integral Form Lecture 5 Electric Flux and Flux ensity, Gauss Law in Integral Form ections: 3.1, 3., 3.3 Homework: ee homework file LECTURE 5 slide 1 Faraday s Experiment (1837), Flux charge transfer from inner to outer

More information

A vector is a directed line segment used to represent a vector quantity.

A vector is a directed line segment used to represent a vector quantity. Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector

More information

Chapter 4. Electrostatic Fields in Matter

Chapter 4. Electrostatic Fields in Matter Chapter 4. Electrostatic Fields in Matter 4.1. Polarization A neutral atom, placed in an external electric field, will experience no net force. However, even though the atom as a whole is neutral, the

More information

Vector Math Computer Graphics Scott D. Anderson

Vector Math Computer Graphics Scott D. Anderson Vector Math Computer Graphics Scott D. Anderson 1 Dot Product The notation v w means the dot product or scalar product or inner product of two vectors, v and w. In abstract mathematics, we can talk about

More information

Chapter 18. Electric Forces and Electric Fields

Chapter 18. Electric Forces and Electric Fields My lecture slides may be found on my website at http://www.physics.ohio-state.edu/~humanic/ ------------------------------------------------------------------- Chapter 18 Electric Forces and Electric Fields

More information

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Lecture L3 - Vectors, Matrices and Coordinate Transformations S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

More information

Scott Hughes 7 April 2005. Massachusetts Institute of Technology Department of Physics 8.022 Spring 2005. Lecture 15: Mutual and Self Inductance.

Scott Hughes 7 April 2005. Massachusetts Institute of Technology Department of Physics 8.022 Spring 2005. Lecture 15: Mutual and Self Inductance. Scott Hughes 7 April 2005 151 Using induction Massachusetts nstitute of Technology Department of Physics 8022 Spring 2005 Lecture 15: Mutual and Self nductance nduction is a fantastic way to create EMF;

More information

Gradient, Divergence and Curl in Curvilinear Coordinates

Gradient, Divergence and Curl in Curvilinear Coordinates Gradient, Divergence and Curl in Curvilinear Coordinates Although cartesian orthogonal coordinates are very intuitive and easy to use, it is often found more convenient to work with other coordinate systems.

More information

Mechanics 1: Conservation of Energy and Momentum

Mechanics 1: Conservation of Energy and Momentum Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

More information

Fundamental Theorems of Vector Calculus

Fundamental Theorems of Vector Calculus Fundamental Theorems of Vector Calculus We have studied the techniques for evaluating integrals over curves and surfaces. In the case of integrating over an interval on the real line, we were able to use

More information

Review B: Coordinate Systems

Review B: Coordinate Systems MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of hysics 8.02 Review B: Coordinate Systems B.1 Cartesian Coordinates... B-2 B.1.1 Infinitesimal Line Element... B-4 B.1.2 Infinitesimal Area Element...

More information

Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi

Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi Geometry of Vectors Carlo Tomasi This note explores the geometric meaning of norm, inner product, orthogonality, and projection for vectors. For vectors in three-dimensional space, we also examine the

More information

... ... . (2,4,5).. ...

... ... . (2,4,5).. ... 12 Three Dimensions ½¾º½ Ì ÓÓÖ Ò Ø ËÝ Ø Ñ So far wehave been investigatingfunctions ofthe form y = f(x), withone independent and one dependent variable Such functions can be represented in two dimensions,

More information

MULTIPLE INTEGRALS. h 2 (y) are continuous functions on [c, d] and let f(x, y) be a function defined on R. Then

MULTIPLE INTEGRALS. h 2 (y) are continuous functions on [c, d] and let f(x, y) be a function defined on R. Then MULTIPLE INTEGALS 1. ouble Integrals Let be a simple region defined by a x b and g 1 (x) y g 2 (x), where g 1 (x) and g 2 (x) are continuous functions on [a, b] and let f(x, y) be a function defined on.

More information

Figure 1.1 Vector A and Vector F

Figure 1.1 Vector A and Vector F CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

More information

This makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5

This makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5 1. (Line integrals Using parametrization. Two types and the flux integral) Formulas: ds = x (t) dt, d x = x (t)dt and d x = T ds since T = x (t)/ x (t). Another one is Nds = T ds ẑ = (dx, dy) ẑ = (dy,

More information

Today in Physics 217: the method of images

Today in Physics 217: the method of images Today in Physics 17: the method of images Solving the Laplace and Poisson euations by sleight of hand Introduction to the method of images Caveats Example: a point charge and a grounded conducting sphere

More information

M PROOF OF THE DIVERGENCE THEOREM AND STOKES THEOREM

M PROOF OF THE DIVERGENCE THEOREM AND STOKES THEOREM 68 Theor Supplement Section M M POOF OF THE DIEGENE THEOEM ND STOKES THEOEM In this section we give proofs of the Divergence Theorem Stokes Theorem using the definitions in artesian coordinates. Proof

More information

Chapter 6 Circular Motion

Chapter 6 Circular Motion Chapter 6 Circular Motion 6.1 Introduction... 1 6.2 Cylindrical Coordinate System... 2 6.2.1 Unit Vectors... 3 6.2.2 Infinitesimal Line, Area, and Volume Elements in Cylindrical Coordinates... 4 Example

More information

28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. v x. u y v z u z v y u y u z. v y v z

28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. v x. u y v z u z v y u y u z. v y v z 28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.4 Cross Product 1.4.1 Definitions The cross product is the second multiplication operation between vectors we will study. The goal behind the definition

More information

Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants

More information

LECTURE 2: Stress Conditions at a Fluid-fluid Interface

LECTURE 2: Stress Conditions at a Fluid-fluid Interface LETURE 2: tress onditions at a Fluid-fluid Interface We proceed by deriving the normal and tangential stress boundary conditions appropriate at a fluid-fluid interface characterized by an interfacial tension

More information

Chapter 28 Fluid Dynamics

Chapter 28 Fluid Dynamics Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example

More information

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second

More information

1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 80 µ T at the loop center. What is the loop radius?

1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 80 µ T at the loop center. What is the loop radius? CHAPTER 3 SOURCES O THE MAGNETC ELD 1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 8 µ T at the loop center. What is the loop radius? Equation 3-3, with

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

Vectors and Scalars. AP Physics B

Vectors and Scalars. AP Physics B Vectors and Scalars P Physics Scalar SCLR is NY quantity in physics that has MGNITUDE, but NOT a direction associated with it. Magnitude numerical value with units. Scalar Example Speed Distance ge Magnitude

More information

EXAMPLE: Water Flow in a Pipe

EXAMPLE: Water Flow in a Pipe EXAMPLE: Water Flow in a Pipe P 1 > P 2 Velocity profile is parabolic (we will learn why it is parabolic later, but since friction comes from walls the shape is intuitive) The pressure drops linearly along

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline

More information

LINES AND PLANES IN R 3

LINES AND PLANES IN R 3 LINES AND PLANES IN R 3 In this handout we will summarize the properties of the dot product and cross product and use them to present arious descriptions of lines and planes in three dimensional space.

More information

Magnetic Fields. I. Magnetic Field and Magnetic Field Lines

Magnetic Fields. I. Magnetic Field and Magnetic Field Lines Magnetic Fields I. Magnetic Field and Magnetic Field Lines A. The concept of the magnetic field can be developed in a manner similar to the way we developed the electric field. The magnitude of the magnetic

More information

Lecture L5 - Other Coordinate Systems

Lecture L5 - Other Coordinate Systems S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L5 - Other Coordinate Systems In this lecture, we will look at some other common systems of coordinates. We will present polar coordinates

More information

2.1 Three Dimensional Curves and Surfaces

2.1 Three Dimensional Curves and Surfaces . Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The

More information

Chapter 19: Magnetic Forces and Fields

Chapter 19: Magnetic Forces and Fields Chapter 19: Magnetic Forces and Fields Magnetic Fields Magnetic Force on a Point Charge Motion of a Charged Particle in a Magnetic Field Crossed E and B fields Magnetic Forces on Current Carrying Wires

More information

[1] Diagonal factorization

[1] Diagonal factorization 8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:

More information

Review A: Vector Analysis

Review A: Vector Analysis MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Review A: Vector Analysis A... A-0 A.1 Vectors A-2 A.1.1 Introduction A-2 A.1.2 Properties of a Vector A-2 A.1.3 Application of Vectors

More information

Fundamentals of Electromagnetic Fields and Waves: I

Fundamentals of Electromagnetic Fields and Waves: I Fundamentals of Electromagnetic Fields and Waves: I Fall 2007, EE 30348, Electrical Engineering, University of Notre Dame Mid Term II: Solutions Please show your steps clearly and sketch figures wherever

More information

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space 11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of

More information

Level Set Framework, Signed Distance Function, and Various Tools

Level Set Framework, Signed Distance Function, and Various Tools Level Set Framework Geometry and Calculus Tools Level Set Framework,, and Various Tools Spencer Department of Mathematics Brigham Young University Image Processing Seminar (Week 3), 2010 Level Set Framework

More information

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors 1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

More information

SIO 229 Gravity and Geomagnetism: Class Description and Goals

SIO 229 Gravity and Geomagnetism: Class Description and Goals SIO 229 Gravity and Geomagnetism: Class Description and Goals This graduate class provides an introduction to gravity and geomagnetism at a level suitable for advanced non-specialists in geophysics. Topics

More information

Chapter 7: Polarization

Chapter 7: Polarization Chapter 7: Polarization Joaquín Bernal Méndez Group 4 1 Index Introduction Polarization Vector The Electric Displacement Vector Constitutive Laws: Linear Dielectrics Energy in Dielectric Systems Forces

More information

Ajit Kumar Patra (Autor) Crystal structure, anisotropy and spin reorientation transition of highly coercive, epitaxial Pr-Co films

Ajit Kumar Patra (Autor) Crystal structure, anisotropy and spin reorientation transition of highly coercive, epitaxial Pr-Co films Ajit Kumar Patra (Autor) Crystal structure, anisotropy and spin reorientation transition of highly coercive, epitaxial Pr-Co films https://cuvillier.de/de/shop/publications/1306 Copyright: Cuvillier Verlag,

More information

Magnetostatics (Free Space With Currents & Conductors)

Magnetostatics (Free Space With Currents & Conductors) Magnetostatics (Free Space With Currents & Conductors) Suggested Reading - Shen and Kong Ch. 13 Outline Review of Last Time: Gauss s Law Ampere s Law Applications of Ampere s Law Magnetostatic Boundary

More information

D Alembert s principle and applications

D Alembert s principle and applications Chapter 1 D Alembert s principle and applications 1.1 D Alembert s principle The principle of virtual work states that the sum of the incremental virtual works done by all external forces F i acting in

More information

ANALYTICAL METHODS FOR ENGINEERS

ANALYTICAL METHODS FOR ENGINEERS UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations

More information

Chapter 9 Circular Motion Dynamics

Chapter 9 Circular Motion Dynamics Chapter 9 Circular Motion Dynamics 9. Introduction Newton s Second Law and Circular Motion... 9. Universal Law of Gravitation and the Circular Orbit of the Moon... 9.. Universal Law of Gravitation... 3

More information

Section 9.5: Equations of Lines and Planes

Section 9.5: Equations of Lines and Planes Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that

More information

Physics 202, Lecture 3. The Electric Field

Physics 202, Lecture 3. The Electric Field Physics 202, Lecture 3 Today s Topics Electric Field Quick Review Motion of Charged Particles in an Electric Field Gauss s Law (Ch. 24, Serway) Conductors in Electrostatic Equilibrium (Ch. 24) Homework

More information

Physics 25 Exam 3 November 3, 2009

Physics 25 Exam 3 November 3, 2009 1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,

More information

Math 21a Curl and Divergence Spring, 2009. 1 Define the operator (pronounced del ) by. = i

Math 21a Curl and Divergence Spring, 2009. 1 Define the operator (pronounced del ) by. = i Math 21a url and ivergence Spring, 29 1 efine the operator (pronounced del by = i j y k z Notice that the gradient f (or also grad f is just applied to f (a We define the divergence of a vector field F,

More information

The potential (or voltage) will be introduced through the concept of a gradient. The gradient is another sort of 3-dimensional derivative involving

The potential (or voltage) will be introduced through the concept of a gradient. The gradient is another sort of 3-dimensional derivative involving The potential (or voltage) will be introduced through the concept of a gradient. The gradient is another sort of 3-dimensional derivative involving the vector del except we don t take the dot product as

More information

Chapter 22 Magnetism

Chapter 22 Magnetism 22.6 Electric Current, Magnetic Fields, and Ampere s Law Chapter 22 Magnetism 22.1 The Magnetic Field 22.2 The Magnetic Force on Moving Charges 22.3 The Motion of Charged particles in a Magnetic Field

More information

PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS

PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving

More information

Exam 1 Practice Problems Solutions

Exam 1 Practice Problems Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8 Spring 13 Exam 1 Practice Problems Solutions Part I: Short Questions and Concept Questions Problem 1: Spark Plug Pictured at right is a typical

More information

Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 17. Orthogonal Matrices and Symmetries of Space Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length

More information

Solution Derivations for Capa #11

Solution Derivations for Capa #11 Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform

More information

TWO-DIMENSIONAL TRANSFORMATION

TWO-DIMENSIONAL TRANSFORMATION CHAPTER 2 TWO-DIMENSIONAL TRANSFORMATION 2.1 Introduction As stated earlier, Computer Aided Design consists of three components, namely, Design (Geometric Modeling), Analysis (FEA, etc), and Visualization

More information

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

More information

A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS

A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS Joseph J. Stupak Jr, Oersted Technology Tualatin, Oregon (reprinted from IMCSD 24th Annual Proceedings 1995) ABSTRACT The

More information

Vector Calculus Solutions to Sample Final Examination #1

Vector Calculus Solutions to Sample Final Examination #1 Vector alculus s to Sample Final Examination #1 1. Let f(x, y) e xy sin(x + y). (a) In what direction, starting at (,π/), is f changing the fastest? (b) In what directions starting at (,π/) is f changing

More information