A NEW CORRELATION FOR PREDICTION OF UNDERSATURATED CRUDE OIL VISCOSITY

Size: px
Start display at page:

Download "A NEW CORRELATION FOR PREDICTION OF UNDERSATURATED CRUDE OIL VISCOSITY"

Transcription

1 Petroleum & Coal ISSN Available online at Petroleum & Coal 52 (1) 50-55, 2010 A NEW CORRELATION FOR PREDICTION OF UNDERSATURATED CRUDE OIL VISCOSITY R. Abedini 1, *, A. Abedini 2, N. Eslami Yakhfrouzan 1 1 Department of Chemical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran, 2 Department of Petroleum Engineering,Petroleum University of Technology, Ahwaz, Iran Received November 13, 2009, Accepted February 1, 2010 Abstract Viscosity is one of the most important governing parameters of the fluid flow, either in the porous media or in pipelines. So it is of great importance to use an accurate correlation to calculate the oil viscosity at various operating conditions. Whenever laboratory data are obtained, efforts are made to find a best-fit correlation, because demand for mathematical equation of fluid flow for reservoir simulation, pressure traverse calculation and so on compel the person to use empirical and semi-empirical correlations to find viscosity at various points of the flow path (along which T, P, R s and other parameters may vary). In the literature, several empirical correlations have been proposed for predicting undersaturated oil viscosity. Here, based on Iranian oil reservoirs data; new correlation has been developed for prediction of undersaturated oil viscosity. Validity and accuracy of this correlation has been confirmed by comparing the obtained results of this correlation and other ones with experimental data for Iranian oil samples. Checking the results of this correlation shows that the obtained results of Iranian oil viscosities in this work are in agreement with experimental data compared with other correlations. Keywords: Oil Viscosity, Correlation, Undersaturated, Saturated, Dead, API gravity. 1. Introduction Crude oil viscosity is an important physical property that controls and influences the flow of oil through porous media and pipes. The viscosity, in general, is defined as the internal resistance of the fluid to flow. Oil viscosity is a strong function of many thermodynamic and physical properties such as pressure, temperature, solution gas-oil ratio, bubble point pressure, gas gravity and oil gravity. Usually oil viscosity is determined by laboratory measurements at reservoir temperature. Viscosity is usually reported in standard PVT analyses. Increasing pressure always causes increase in viscosity above the bubble point. However below the bubble point, increasing pressure causes an increase in solution gas, which in turn decreases the oil viscosity. Thus, oil viscosity correlations all belong to three categories: dead oil, saturated oil and undersaturated oil viscosity correlation. Numerous correlations have been proposed to calculate the oil viscosity. These correlations are categorized into two types. The first type which refers to black oil type correlations predict viscosities from available field-measured variables include reservoir temperature, oil API gravity, solution gas- oil ratio, saturation pressure and pressure [1-9]. The second type which refers to compositional models derives mostly from the principle of corresponding states and its extensions. In these correlations beside previous properties, other properties such as reservoir fluid composition, pour point temperature, molar mass, normal boiling point, critical temperature and acentric factor of components are used [ 9, 10]. 2. Undersaturated oil viscosity correlations Undersaturated oil viscosity correlations, which usually use saturated crude oil viscosity and pressure above the bubble point to predict viscosity of undersaturated oil reservoirs. These correlations are Beal [1], Vasquez and Beggs [2], Khan [4 ], and Kartoatmodjo and Schmidt [7].

2 R. Abedini et al./petroleum& Coal 52(1) 46-51, Beal correlation [1] This correlation proposes that for any specified oil, when only pressure is the variable, viscosity varies linearly with the pressure Vasquez-Beggs Correlation [2] This correlation ignores the effect of μ ob on the coefficient which is multiplied by μ ob to predict μ o. m p μo = μob pb Where: 5 a = 3.9 ( 10 ) P 5 a ( ) ( ) m= 2.6 P Khan Correlation [4] Like the previous case, this correlation ignores the effect of μ ob on the coefficient which is multiplied by μ ob to predict μ o. μο = μ exp( ( P P )) (5) ob Kartoatmodjo and Schmidt Correlation [7] b Like beal one, this correlation proposes that for any specified oil, when only pressure is the variable, viscosity varies linearly with the pressure (6) μ = μ P P μ μ 3. Experimental Data ( P P )( ) μ = μ μ μ o ob b ob ob ( )( ) o ob b ob ob In this study, PVT experimental data of five sample oils from Iranian oil reservoirs have been used. These data include oil reservoir temperature, saturation pressure, API gravity and solution gas-oil ratio at reservoir temperature. Reservoir oil viscosities have been measured at various pressures above and below the bubble point pressure for different temperatures. Statistical experimental data are shown in Table 1. Table 1. Statistical experimental data of sample oils. Oil properties Oil 1 Oil 2 Oil 3 Oil 4 Oil 5 API Temperature (ºF) Solution gas-oil ratio (SCF/STB) Saturation pressure (psia) Undersaturated viscosity (cp) The accuracy and ability of each mentioned correlation for predicting oil viscosity was checked with experimental data and Figs. 1, 2, 3 and 4 show this comparison. These figures confirm the disability of correlations for accurate prediction of oil viscosities. (1) (2) (3) (4)

3 R. Abedini et al./petroleum& Coal 52(1) 46-51, Fig. 1. Oil viscosity as a function of pressure. Fig. 2. Experimental values compared with calculated values calculated by Beal correlation Fig. 3. Experimental values compared with calculated values calculated based on the Vasquez-Beggs correlation 4. Development of the proposed correlations Fig. 4. Experimental values compared with calculated values calculated based on the khan correlation Proposed correlation is based on real data, which almost covers Iranian oil types. At pressures above bubble point pressure, oil is at single-phase state, while its solution gas oil is constant and it seems that pressure will be the most effective in oil viscosity. By increasing pressure above the bubble point, oil density and oil viscosity will be increased (Fig. 1). Several function forms have been tested to correlate undersaturated oil viscosity (μ o ) to saturated oil viscosity (μ ob ), and pressure increment above the bubble point (P-P b ). Proposed correlation in this work (for under-saturated oil) is as follows: b1 b2 b3 b4 b5 b6 b7 ( ) ( ) μ = μ P P a μ + a μ + a μ + a P + a P + a P + a P (7) o ob b 1 ob 2 ob 3 ob 4 b 5 b 6 b 7 b Where: a 1 = a 2 = a 3 = a 4 = a 5 = a 6 = a 7 = b 1 = b 2 = b 3 = b 4 = b 5 = b 6 = b 7 = Results and Discussion 5.1. Validation of the proposed correlation The accuracy and ability of each mentioned correlation for predicting oil viscosity was checked with experimental data and Figs. 2, 3, 4 and 5 show this comparison. These figures confirm the disability of correlations for accurate prediction of oil viscosities. Fig. 6 depicts the comparison of experimental values of viscosity with predicted ones by two dimensions plot for undersaturated oil respectively. It is obvious from the figure that the new correlation provides results in good agreement with experimental values. Table 2 reveals average relative error (ARE), absolute average relative error (AARE) and standard deviation (SD) for undersaturated oil viscosity correlations respectively. ARE, AARE and SD are defined as below.

4 R. Abedini et al./petroleum& Coal 52(1) 46-51, Fig. 5. Experimental values compared with calculated values calculated based on the Kartoatmodjo and Schmidt correlation Fig. 6. Experimental values compared with calculated values calculated based on the New Model Table 2. Accuracy of viscosity correlations for prediction of undersaturated oil viscosities. Correlation ARE (%) AARE (%) SD (%) Undersaturated oil Beal, Vasquez and Beggs, Khan, Kartoatmodjo and Schmidt, New Model ARE N 1 Xexp erimental( Xcalculated( = N X i = 1 exp erimental( (8) N 1 X exp erimental ( X calculated ( AARE = N i= 1 X exp erimental( SD = N 1 X exp erimental X calculated AARE N 1 i= 1 X exp erimental ( 2 (9) (10) New viscosity correlation derived based on Iranian field data which does not require compositional information and can be used for black oil type fluids. The correlation can be used in black oil reservoir simulators, it can be easily tuned, and it provides better estimates of oil viscosity than the previous existing correlations. This is shown in the figure 7. Fig. 7. Comparison between all introduced correlations

5 R. Abedini et al./petroleum& Coal 52(1) 46-51, Accuracy of the proposed correlation Here, the accuracy of the proposed correlations in this work, as well as the correlations previously discussed, is checked. Using the 86 real cases data series of Iranian oils, the results of this work and other ones for estimating the oil viscosity are compared. Table 2and Fig.8 shows all of these comparisons. Fig. 8. Percent relative error distribution for undersaturated oil viscosity correlations Fig. 8 shows percent relative error distribution for all correlations. X exp erimental( X calculated( Where: Ei = 100 (i= 1, 2, 3,n d ) (11) X exp erimental( At this point, it should be mentioned the proposed correlations are only applicable to Iranian oils and their applicability to other regions should be checked. 6. Conclusion Generally the most common method for calculating viscosity of crude oils is viscosity correlations. However these correlations fail to predict oil viscosities at wide range of operating conditions such as pressure and temperature. In this work a new correlation for estimation of undersaturated Iranian oils has been proposed. This correlation is based on real data of the different types of Iranian oils. Input parameters for this correlation are oil API gravity, saturation pressure, reservoir temperature and pressure, which are easily measured in oil fields. In comparison with correlations previously published in the literature, new correlation has a better accuracy and performance for predicting the viscosity of Iranian oils. It should be mentioned that,

6 R. Abedini et al./petroleum& Coal 52(1) 46-51, this proposed correlation might be used for the prediction of Iranian oil viscosity. Application of this correlation for other oil samples can result in errors. Nomenclature Symbols Greeks API Oil API gravity μ ob Saturated oil viscosity (cp) R s Solution gas-oil ratio (SCF/STB) μ o Undersaturated oil viscosity (cp) T Temperature (R, F) Abbreviations P Pressure (psia) ARE Average relative error P b Saturation pressure oil bubble point AARE Average absolute relative error pressure (psia) Ei Percent relative error SD Standard deviation n d Number of data points References [1] Beal, C., Viscosity of air, water, natural gas, crude oil and its associated gases at oil field temperature and pressures. Trans. AIME 165, [2] Beggs, H.D., Robinson, J.R., Estimating the viscosity of crude oil systems. JPT 9, [3] Chew, J., Connally, C.A., Viscosity correlation for gassaturated crude oil. Trans. AIME 216, [4] Khan, S. A., et al., Viscosity Correlations for Saudi Arabian Crude Oils, SPE Paper 15720, Presented at the Fifth SPE Middle East Conference held in Manama, Bahrain, March 7-10, [5] Elsharkawy, A.M., Alikhan, A.A., Models for predicting the viscosity of Middle East crude oils. Fuel 78, [6] Glaso, O., Generalized pressure volume temperature correlation for crude oil system. JPT 2, [7] Kartoatmodjo, F., Schmidt, Z., Large data bank improves crude physical property correlation. Oil Gas J. 4, [8] Labedi, R., Improved correlations for predicting the viscosity of light crudes. J. Pet. Sci. Eng. 8, [9] Little, J.E., Kennedy, H.T., Calculating the viscosity of hydrocarbon systems with pressure temperature and composition. Soc. Pet. Eng. J. 6, [10] Lohrenz, J., Bray, B.C., Clark, C.R., Calculating viscosities of reservoir fluids from their composition. JPT 10,

!"#$ Reservoir Fluid Properties. State of the Art and Outlook for Future Development. Dr. Muhammad Al-Marhoun

!#$ Reservoir Fluid Properties. State of the Art and Outlook for Future Development. Dr. Muhammad Al-Marhoun Society of Petroleum Engineers SPE 2001 2002 Distinguished Lecturer Program 4 July 2002 Reservoir Fluid Properties State of the Art and Outlook for Future Development Dr. Muhammad Al-Marhoun King Fahd

More information

SPE 54005. Copyright 1999, Society of Petroleum Engineers Inc.

SPE 54005. Copyright 1999, Society of Petroleum Engineers Inc. SPE 54005 Volatile Oil. Determination of Reservoir Fluid Composition From a Non-Representative Fluid Sample Rafael H. Cobenas, SPE, I.T.B.A. and Marcelo A. Crotti, SPE, Inlab S.A. Copyright 1999, Society

More information

INVESTIGATION ON DIESEL COLD FLOW PROPERTIES

INVESTIGATION ON DIESEL COLD FLOW PROPERTIES INVESTIGATION ON DIESEL COLD FLOW PROPERTIES R.Dinkov*, D. Stratiev, D. Penev, G. Cholakov Chief Process Engineer Department., Lukoil Neftochim Bourgas JLC, Bulgaria, *e-mail:dinkov.rosen.k@neftochim.bg

More information

Development of Thermal Recovery Simulator for Hot Water Flooding

Development of Thermal Recovery Simulator for Hot Water Flooding Paper ID 119 ABSTRACT Development of Thermal Recovery Simulator for Hot Water Flooding Shotaro Nihei, Masanori Kurihara Department of Resources and Environmental Engneering, Waseda University, Japan Author

More information

HYSYS 3.2. Upstream Option Guide

HYSYS 3.2. Upstream Option Guide HYSYS 3.2 Upstream Option Guide Copyright Notice 2003 Hyprotech, a subsidiary of Aspen Technology, Inc. All rights reserved. Hyprotech is the owner of, and have vested in them, the copyright and all other

More information

Comparison Between Gas Injection and Water Flooding, in Aspect of Secondary Recovery in One of Iranian Oil Reservoirs

Comparison Between Gas Injection and Water Flooding, in Aspect of Secondary Recovery in One of Iranian Oil Reservoirs Comparison Between Gas Injection and Water Flooding, in Aspect of Secondary Recovery in One of Iranian Oil Reservoirs BABAK AMINSHAHIDY 1, MEHDI FOROOZANFAR 2 1 Department of Petroleum Engineering,University

More information

Module 3: Liquid Fossil Fuel (Petroleum) Lecture 17: Evaluation of crude

Module 3: Liquid Fossil Fuel (Petroleum) Lecture 17: Evaluation of crude 1 P age Module 3: Liquid Fossil Fuel (Petroleum) Lecture 17: Evaluation of crude 2 P age Keywords: Evaluation, characterization factor, TBP, ASTM, EFV 3.2 Evaluation of crude The assessment of a crude

More information

Available online at www.vurup.sk/petroleum-coal Petroleum & Coal 55 (4) 261-272, 2013

Available online at www.vurup.sk/petroleum-coal Petroleum & Coal 55 (4) 261-272, 2013 Petroleum & Coal ISSN 1337-7027 Available online at www.vurup.sk/petroleum-coal Petroleum & Coal 55 (4) 261-272, 2013 EVALUATION OF OIL RECOVERY AND ECONOMICS OF WATERFLOODING IN NIGERIA Chukwuemeka M.

More information

THE BASICS Q: What is VOC? Q: What are flashing losses/voc emissions from hydrocarbon storage tanks? - 1 -

THE BASICS Q: What is VOC? Q: What are flashing losses/voc emissions from hydrocarbon storage tanks? - 1 - Calculation of Flashing Losses/VOC Emissions from Hydrocarbon Storage Tanks THE BASICS Q: What is VOC? A: VOC is an acronym that stands for Volatile Organic Compounds. VOC are components of hydrocarbon

More information

4D reservoir simulation workflow for optimizing inflow control device design a case study from a carbonate reservoir in Saudi Arabia

4D reservoir simulation workflow for optimizing inflow control device design a case study from a carbonate reservoir in Saudi Arabia 4D reservoir simulation workflow for optimizing inflow control device design a case study from a carbonate reservoir in Saudi Arabia O. Ogunsanwo, 1* B. Lee, 2 H. Wahyu, 2 E. Leung, 1 V. Gottumukkala 1

More information

RESERVOIR GEOSCIENCE AND ENGINEERING

RESERVOIR GEOSCIENCE AND ENGINEERING RESERVOIR GEOSCIENCE AND ENGINEERING APPLIED GRADUATE STUDIES at IFP School from September to December RGE01 Fundamentals of Geoscience I Introduction to Petroleum Geosciences, Sedimentology RGE02 Fundamentals

More information

BS PROGRAM IN PETROLEUM ENGINEERING (VERSION 2010) Course Descriptions

BS PROGRAM IN PETROLEUM ENGINEERING (VERSION 2010) Course Descriptions BS PROGRAM IN PETROLEUM ENGINEERING (VERSION 2010) Course Descriptions PETE201 Introduction to Petroleum Engineering (Core) (1-0-1) The course's main goal is to provide the student with an overview of

More information

Comparison of Emission Calculation Methodologies for the Oil and Gas Industry. Presented by: Leanne Sills

Comparison of Emission Calculation Methodologies for the Oil and Gas Industry. Presented by: Leanne Sills Comparison of Emission Calculation Methodologies for the Oil and Gas Industry Presented by: Leanne Sills Trinity Consultants, Inc. Founded 1974 30+ offices nationwide with over 400 employees Environmental

More information

STEADY-STATE AND DYNAMIC SIMULATION OF CRUDE OIL DISTILLATION USING ASPEN PLUS AND ASPEN DYNAMICS

STEADY-STATE AND DYNAMIC SIMULATION OF CRUDE OIL DISTILLATION USING ASPEN PLUS AND ASPEN DYNAMICS Petroleum & Coal ISSN 1337-7027 Available online at www.vurup.sk/pc Petroleum & Coal 51 (2) 100-109, 2009 STEADY-STATE AND DYNAMIC SIMULATION OF CRUDE OIL DISTILLATION USING ASPEN PLUS AND ASPEN DYNAMICS

More information

Tuning of the Pressure Equation in the Natural Gas Transmission Network

Tuning of the Pressure Equation in the Natural Gas Transmission Network Tuning of the Pressure Equation in the Natural Gas Transmission Network Naser.HajiAliAkbari The Petroleum University of Technology (Iran) Iran, Ahwaz, The Petroleum University of Technology R. Mosaiebi

More information

Developed Equation for fitting ASTM Distillation curves. Dr. Khalid Farhod Chasib Chemical Engineering Department - University of technology

Developed Equation for fitting ASTM Distillation curves. Dr. Khalid Farhod Chasib Chemical Engineering Department - University of technology Developed Equation for fitting ASTM Distillation curves Dr. Khalid Farhod Chasib Chemical Engineering Department - University of technology Ukhalid_farhod@uotechnology.edu.iqU ABSTRACT The present work

More information

Pressure in Fluids. Introduction

Pressure in Fluids. Introduction Pressure in Fluids Introduction In this laboratory we begin to study another important physical quantity associated with fluids: pressure. For the time being we will concentrate on static pressure: pressure

More information

Journal Of Petoleum Research & Studies. Developed Equation For Fitting ASTM Distillation Curves. Dr. Khalid Farhod Chasib

Journal Of Petoleum Research & Studies. Developed Equation For Fitting ASTM Distillation Curves. Dr. Khalid Farhod Chasib Developed Equation For Fitting ASTM Distillation Curves Dr. Khalid Farhod Chasib Chemical Engineering Department - University Of Technology Abstract Introduction The present work deals with fitting literature

More information

Custody Transfer Measurement. with the V-Cone Flowmeter

Custody Transfer Measurement. with the V-Cone Flowmeter Custody Transfer Measurement with the V-Cone Flowmeter Stephen A. Ifft McCrometer Inc. Hemet, California, USA Abstract This paper will discuss the approval of the McCrometer V-Cone flowmeter for custody

More information

CHAPTER 2: LIQUID VISCOSITY MEASUREMENT

CHAPTER 2: LIQUID VISCOSITY MEASUREMENT CHAPTER 2: LIQUID VISCOSITY MEASUREMENT Objective Calculate viscosity (dynamic or absolute, and kinematic) and determine how this property varies with changes in temperature for a constant-composition

More information

Modelling the Drying of Porous Coal Particles in Superheated Steam

Modelling the Drying of Porous Coal Particles in Superheated Steam B. A. OLUFEMI and I. F. UDEFIAGBON, Modelling the Drying of Porous Coal, Chem. Biochem. Eng. Q. 24 (1) 29 34 (2010) 29 Modelling the Drying of Porous Coal Particles in Superheated Steam B. A. Olufemi *

More information

Phase Equilibrium: Fugacity and Equilibrium Calculations. Fugacity

Phase Equilibrium: Fugacity and Equilibrium Calculations. Fugacity Phase Equilibrium: Fugacity and Equilibrium Calculations (FEC) Phase Equilibrium: Fugacity and Equilibrium Calculations Relate the fugacity and the chemical potential (or the partial molar Gibbs free energy)

More information

Worst Case Discharge (WCD)

Worst Case Discharge (WCD) U.S.A. Israel Workshop EIGOA Wohl Center, Bar-Ilan, Ramat-Gan, Israel July 22-25, 2012 Worst Case Discharge (WCD) Thierry M. De Cort United States Department of the Interior Bureau of Ocean Energy Management

More information

Experiment #4 Sugar in Soft Drinks and Fruit Juices. Laboratory Overview CHEM 1361. August 2010

Experiment #4 Sugar in Soft Drinks and Fruit Juices. Laboratory Overview CHEM 1361. August 2010 Experiment #4 Sugar in Soft Drinks and Fruit Juices Laboratory Overview CHEM 1361 August 2010 Gary S. Buckley, Ph.D. Department of Physical Sciences Cameron University Learning Objectives Relate density

More information

BOILING POINT DISTRIBUTION OF CRUDE OILS BASED ON TBP AND ASTM D-86 DISTILLATION DATA

BOILING POINT DISTRIBUTION OF CRUDE OILS BASED ON TBP AND ASTM D-86 DISTILLATION DATA Petroleum & Coal ISSN 1337-727 Available online at www.vurup.sk/petroleum-coal Petroleum & Coal 53 (4) 275-29, 211 BOILING POIN DISRIBUION OF CRUDE OILS BASED ON BP AND ASM D-86 DISILLAION DAA Angel Nedelchev,

More information

Dispersion of Butane in Vapex: The Effect of Drainage Height

Dispersion of Butane in Vapex: The Effect of Drainage Height 14 The Open Petroleum Engineering Journal, 1, 3, 14-1 Dispersion of Butane in Vapex: The Effect of Drainage Height Open Access Muhammad Imran, Simant R. Upreti* and Ali Lohi Department of Chemical Engineering,

More information

INVESTIGATION OF FALLING BALL VISCOMETRY AND ITS ACCURACY GROUP R1 Evelyn Chou, Julia Glaser, Bella Goyal, Sherri Wykosky

INVESTIGATION OF FALLING BALL VISCOMETRY AND ITS ACCURACY GROUP R1 Evelyn Chou, Julia Glaser, Bella Goyal, Sherri Wykosky INVESTIGATION OF FALLING BALL VISCOMETRY AND ITS ACCURACY GROUP R1 Evelyn Chou, Julia Glaser, Bella Goyal, Sherri Wykosky ABSTRACT: A falling ball viscometer and its associated equations were studied in

More information

= 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C

= 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C Units and Dimensions Basic properties such as length, mass, time and temperature that can be measured are called dimensions. Any quantity that can be measured has a value and a unit associated with it.

More information

Advanced PVT & EOS Fluid Characterization

Advanced PVT & EOS Fluid Characterization Advanced PVT & EOS Fluid Characterization State-of- the-art Petroleum Fluid Phase Behavior Modeling Date: 12th 16th December 2011 Location: Renaissance Hotel Kuala Lumpur, Malaysia PRACTICAL Rated TOP

More information

k L a measurement in bioreactors

k L a measurement in bioreactors k L a measurement in bioreactors F. Scargiali, A. Busciglio, F. Grisafi, A. Brucato Dip. di Ingegneria Chimica, dei Processi e dei Materiali, Università di Palermo Viale delle Scienze, Ed. 6, 9018, Palermo,

More information

10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory

10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory The first scheduled quiz will be given next Tuesday during Lecture. It will last 5 minutes. Bring pencil, calculator, and your book. The coverage will be pp 364-44, i.e. Sections 0.0 through.4. 0.7 Theory

More information

Formula for Viscosity of Glycerol-Water Mixture. Nian-Sheng Cheng. School of Civil and Environmental Engineering, Nanyang Technological University,

Formula for Viscosity of Glycerol-Water Mixture. Nian-Sheng Cheng. School of Civil and Environmental Engineering, Nanyang Technological University, Citation: Cheng, N. S. (2008). Formula for viscosity of glycerol-water mixture. Industrial and Engineering Chemistry Research, 47, 3285-3288. Formula for Viscosity of Glycerol-Water Mixture Nian-Sheng

More information

Numerical Analysis of the Resin Transfer Molding Process via PAM- RTM Software

Numerical Analysis of the Resin Transfer Molding Process via PAM- RTM Software Defect and Diffusion Forum Vol 365 (2015) pp 88-93 (2015) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/ddf.365.88 Numerical Analysis of the Resin Transfer Molding Process via PAM-

More information

Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Static s Kinematics Dynamics Fluid Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

More information

Journal of Petroleum Science and Engineering

Journal of Petroleum Science and Engineering Journal of Petroleum Science and Engineering 67 (2009) 97 104 Contents lists available at ScienceDirect Journal of Petroleum Science and Engineering journal homepage: www.elsevier.com/locate/petrol Research

More information

CHAPTER 8: CHEMICAL COMPOSITION

CHAPTER 8: CHEMICAL COMPOSITION CHAPTER 8: CHEMICAL COMPOSITION Active Learning: 1-4, 6-8, 12, 18-25; End-of-Chapter Problems: 3-4, 9-82, 84-85, 87-92, 94-104, 107-109, 111, 113, 119, 125-126 8.2 ATOMIC MASSES: COUNTING ATOMS BY WEIGHING

More information

HEAVY OIL FLOW MEASUREMENT CHALLENGES

HEAVY OIL FLOW MEASUREMENT CHALLENGES HEAVY OIL FLOW MEASUREMENT CHALLENGES 1 INTRODUCTION The vast majority of the world s remaining oil reserves are categorised as heavy / unconventional oils (high viscosity). Due to diminishing conventional

More information

Compositional Reservoir Simulation With Emphasis on the IMPSAT Formulation. Jarle Haukås. PhD Thesis. Department of Mathematics University of Bergen

Compositional Reservoir Simulation With Emphasis on the IMPSAT Formulation. Jarle Haukås. PhD Thesis. Department of Mathematics University of Bergen Compositional Reservoir Simulation With Emphasis on the IMPSAT Formulation PhD Thesis Jarle Haukås Department of Mathematics University of Bergen January 2006 Preface The work presented in this thesis

More information

Aggregation of Uncontrolled Fluids during Catastrophic System Failures ABSTRACT

Aggregation of Uncontrolled Fluids during Catastrophic System Failures ABSTRACT Aggregation of Uncontrolled Fluids during Catastrophic System Failures James Stiernberg Louisiana State University ABSTRACT A review of contributing factors in blowout scenarios is provided for deepwater

More information

Valve Sizing. Te chnic al Bulletin. Flow Calculation Principles. Scope. Sizing Valves. Safe Product Selection. www.swagelok.com

Valve Sizing. Te chnic al Bulletin. Flow Calculation Principles. Scope. Sizing Valves. Safe Product Selection. www.swagelok.com www.swagelok.com Valve Sizing Te chnic al Bulletin Scope Valve size often is described by the nominal size of the end connections, but a more important measure is the flow that the valve can provide. And

More information

1. Standard conditions are 29.92 in. Hg (760 mm Hg, 14.696 psia) and 68 F (20 C).

1. Standard conditions are 29.92 in. Hg (760 mm Hg, 14.696 psia) and 68 F (20 C). INTRODUCTION Emission Monitoring Inc. DETERMINING F-FACTORS FROM GAS CHROMATOGRAPHIC ANALYSES Roger T. Shigehara Emission Monitoring Incorporated Howard F. Schiff TRC Environmental Corporation EPA Method

More information

Fired Heater Design and Simulation

Fired Heater Design and Simulation Fired Heater Design and Simulation Mahesh N. Jethva 1, C. G. Bhagchandani 2 1 M.E. Chemical Engineering Department, L.D. College of Engineering, Ahmedabad-380 015 2 Associate Professor, Chemical Engineering

More information

Hedonic prices for crude oil

Hedonic prices for crude oil Applied Economics Letters, 2003, 10, 857 861 Hedonic prices for crude oil Z. WANG Department of Economics, Monash University, PO Box 197, Caulfield East, Victoria 3145, Australia Email: Zhongmin.Wang@BusEco.monash.edu.au

More information

APPLICATION OF DENSITOMETERS TO LIQUID MEASUREMENT Class # 2010

APPLICATION OF DENSITOMETERS TO LIQUID MEASUREMENT Class # 2010 APPLICATION OF DENSITOMETERS TO LIQUID MEASUREMENT Class # 2010 Colin B. Blakemore Sr. Product Specialist Pipeline & Gas Measurement Products AMETEK Process Instruments 455 Corporate Boulevard Newark,

More information

The Viscosity of Fluids

The Viscosity of Fluids Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

More information

Calculating Volatile Organic Compounds (VOC) Flash Emissions from Crude Oil and Condensate Tanks at Oil and Gas Production Sites

Calculating Volatile Organic Compounds (VOC) Flash Emissions from Crude Oil and Condensate Tanks at Oil and Gas Production Sites Air Permit Reference Guide APDG 5942 Calculating Volatile Organic Compounds (VOC) Flash Emissions from Crude Oil and Condensate Tanks at Oil and Gas Production Sites Air Permits Division Texas Commission

More information

Beijing, China b CMOE Key Laboratory of Petroleum Engineering in China University

Beijing, China b CMOE Key Laboratory of Petroleum Engineering in China University This article was downloaded by: [Zhejiang University On: 21 September 2014, At: 03:04 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office:

More information

Millikan Oil Drop Experiment Matthew Norton, Jurasits Christopher, Heyduck William, Nick Chumbley. Norton 0

Millikan Oil Drop Experiment Matthew Norton, Jurasits Christopher, Heyduck William, Nick Chumbley. Norton 0 Millikan Oil Drop Experiment Matthew Norton, Jurasits Christopher, Heyduck William, Nick Chumbley Norton 0 Norton 1 Abstract The charge of an electron can be experimentally measured by observing an oil

More information

Optimize Pipeline Hydraulics with Multiphase Flow Modeling

Optimize Pipeline Hydraulics with Multiphase Flow Modeling Optimize Pipeline Hydraulics with Multiphase Flow Modeling Below are questions asked by attendees during the webinar on February 22, 2012, followed by answers provided by our presenters. Will you also

More information

Experiment 3 Pipe Friction

Experiment 3 Pipe Friction EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional

More information

Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)

Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2) Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)

More information

Production Measurement & Allocation CPMA 20.1. Robbie Lansangan, Ph.D. Measurement Eng. Technical Authority BP Upstream Global Projects

Production Measurement & Allocation CPMA 20.1. Robbie Lansangan, Ph.D. Measurement Eng. Technical Authority BP Upstream Global Projects Production easurement & Allocation CPA 20.1 Robbie Lansangan, Ph.D. easurement Eng. Technical Authority BP Upstream Global Projects Presentation Outline What is CPA and where does it fit in the API COP?

More information

STEADY STATE MODELING AND SIMULATION OF HYDROCRACKING REACTOR

STEADY STATE MODELING AND SIMULATION OF HYDROCRACKING REACTOR Petroleum & Coal ISSN 1337-7027 Available online at www.vurup.sk/petroleum-coal Petroleum & Coal 54 (1) 59-64, 2012 STEADY STATE MODELING AND SIMULATION OF HYDROCRACKING REACTOR Abhinanyu Kumar, Shishir

More information

Chapter 19 Purging Air from Piping and Vessels in Hydrocarbon Service

Chapter 19 Purging Air from Piping and Vessels in Hydrocarbon Service BP Lower 48 Onshore Operations Safety Manual Page 4.19 1 Chapter 19 Purging Air from Piping and Vessels in Hydrocarbon Service I. General Requirements A. After motor vehicle accidents and underground excavation

More information

PETROSYNC. Petrosync Distinguished Instructor

PETROSYNC. Petrosync Distinguished Instructor PETROSYNC Synchronize Your Petroleum Skills Includes Practical Exercises Case Studies and Sharing! Advanced PVT & EOS Fluid Characterization Enhance abilities to analyze & utilize PVT data for improved

More information

FLUID FLOW Introduction General Description

FLUID FLOW Introduction General Description FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you

More information

Scholars Research Library

Scholars Research Library Available online at www.scholarsresearchlibrary.com Scholars Research Library Archives of Physics Research, 2010, 1 (2):103-111 (http://scholarsresearchlibrary.com/archive.html) ISSN 0976-0970 Lubricating

More information

This document establishes MSHA s Standard Test Procedure (STP) for the Determining the Viscosity of a Hydraulic Fluid in Saybolt Universal Seconds.

This document establishes MSHA s Standard Test Procedure (STP) for the Determining the Viscosity of a Hydraulic Fluid in Saybolt Universal Seconds. DOCUMENT NO: ASTP 5005 VERSION: 2010-02-12 Page 1 of 9 1.0 PURPOSE This document establishes MSHA s Standard Test Procedure (STP) for the Determining the Viscosity of a Hydraulic Fluid in Saybolt Universal

More information

For Water to Move a driving force is needed

For Water to Move a driving force is needed RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND

More information

Analysis of Oil Production Behavior for the Fractured Basement Reservoir Using Hybrid Discrete Fractured Network Approach

Analysis of Oil Production Behavior for the Fractured Basement Reservoir Using Hybrid Discrete Fractured Network Approach Advances in Petroleum Exploration and Development Vol. 5, No. 1, 2013, pp. 63-70 DOI:10.3968/j.aped.1925543820130501.1068 ISSN 1925-542X [Print] ISSN 1925-5438 [Online] www.cscanada.net www.cscanada.org

More information

Shimadzu Simulated Distillation Gas Chromatograph System C184-E030

Shimadzu Simulated Distillation Gas Chromatograph System C184-E030 Shimadzu Simulated Distillation Gas Chromatograph System C184-E030 Meets All Simulated Distillation Gas Chromatograph Standards - Provides Highly Accurate Analysis Results with Excellent Reproducibility-

More information

Molar Mass of Butane

Molar Mass of Butane Cautions Butane is toxic and flammable. No OPEN Flames should be used in this experiment. Purpose The purpose of this experiment is to determine the molar mass of butane using Dalton s Law of Partial Pressures

More information

USING DEMULSIFIERS FOR PHASE BREAKING OF WATER/OIL EMULSION

USING DEMULSIFIERS FOR PHASE BREAKING OF WATER/OIL EMULSION Petroleum & Coal ISSN 1337-7027 Available online at www.vurup.sk/petroleum-coal Petroleum & Coal 55 (1) 26-30, 2013 USING DEMULSIFIERS FOR PHASE BREAKING OF WATER/OIL EMULSION Amir Mosayebi, Reza Abedini*

More information

PTAC: Applied Chemistry COURSE OUTLINE & OBJECTIVES ESC Approved November 19, 2004

PTAC: Applied Chemistry COURSE OUTLINE & OBJECTIVES ESC Approved November 19, 2004 INTRODUCTION PTAC: Applied Chemistry COURSE OUTLINE & OBJECTIVES ESC Approved November 19, 2004 A. Introduction to Chemistry Terms 1. Define basic terms associated with chemistry: Organic/inorganic/biochemistry/physical

More information

The Distillation Group, Inc.

The Distillation Group, Inc. The Distillation Group, Inc. Yield Correlations Between Crude Assay Distillation And High Temperature Simulated Distillation (HTSD) Reprint distributed with permission from the copyright holders. Copyright

More information

Theoretical and Numerical Analysis of Heat Transfer in Pipeline System

Theoretical and Numerical Analysis of Heat Transfer in Pipeline System APCOM & ISCM -4 th December, 20, Singapore Theoretical and Numerical Analysis of Heat Transfer in Pipeline System Xiaowei Zhu, Hui Tang, *Hua Li, Jiahua Hong, Songyuan Yang School of Mechanical & Aerospace

More information

GLYCOLS IN NATURAL GAS EXPERIMENTS, MODELLING AND TRACKING

GLYCOLS IN NATURAL GAS EXPERIMENTS, MODELLING AND TRACKING GLYCOLS IN NATURAL GAS EXPERIMENTS, MODELLING AND TRACKING Andrea Carolina Machado Miguens 1, Even Solbraa 1, Anita Bersås Hansen 1, Torbjørn Vegard Løkken 1, Toril Haugum 1, Svein Solvang 2 Statoil ASA

More information

FLOW MEASUREMENT 2001 INTERNATIONAL CONFERENCE DERIVATION OF AN EXPANSIBILITY FACTOR FOR THE V-CONE METER

FLOW MEASUREMENT 2001 INTERNATIONAL CONFERENCE DERIVATION OF AN EXPANSIBILITY FACTOR FOR THE V-CONE METER FLOW MEASUREMENT 200 INTERNATIONAL CONFERENCE DERIVATION OF AN EXPANSIBILITY FACTOR FOR THE V-CONE METER Dr D G Stewart, NEL Dr M Reader-Harris, NEL Dr R J W Peters, McCrometer Inc INTRODUCTION The V-Cone

More information

The prediction of flue gas emissions from the combustion in the industrial tubular heaters

The prediction of flue gas emissions from the combustion in the industrial tubular heaters Ovidius University Annals of Chemistry Volume, Number 1, pp.137-11, 9 The prediction of flue gas emissions from the combustion in the industrial tubular heaters Mirela VELICU a, Claudia-Irina KONCSAG b

More information

Entrained Gas Diagnostic with Intelligent Differential Pressure Transmitter

Entrained Gas Diagnostic with Intelligent Differential Pressure Transmitter January Page Entrained Gas Diagnostic with Intelligent Differential Pressure Transmitter Dave Wehrs - Director, Pressure Engineering Andrew Klosinski - Application Engineer, Pressure Diagnostics Emerson

More information

DESIGN OF EXPERIMENTS IN MATERIAL TESTING AND DETERMINATION OF COEFFICIENT OF FRICTION. Ondřej ROZUM, Šárka HOUDKOVÁ

DESIGN OF EXPERIMENTS IN MATERIAL TESTING AND DETERMINATION OF COEFFICIENT OF FRICTION. Ondřej ROZUM, Šárka HOUDKOVÁ 8. 0.. 00, Rožnov pod Radhoštěm, Czech Republic DESIGN OF EXPERIMENTS IN MATERIAL TESTING AND DETERMINATION OF COEFFICIENT OF FRICTION Ondřej ROZUM, Šárka HOUDKOVÁ ŠKODA VÝZKUM s.r.o., Tylova /7, 36 00

More information

Heavy Oil. Canadian Heavy Oil Association. www.choa.ab.ca

Heavy Oil. Canadian Heavy Oil Association. www.choa.ab.ca Heavy Oil Seminar Sponsors Western Economic Diversification Government of Alberta Department of Foreign Affairs and Trade Development (Canada) Export Development Canada PEMEX Alberta Oil Sand Heavy Oil

More information

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction Last lab you investigated flow loss in a pipe due to the roughness

More information

Fundamentals of THERMAL-FLUID SCIENCES

Fundamentals of THERMAL-FLUID SCIENCES Fundamentals of THERMAL-FLUID SCIENCES THIRD EDITION YUNUS A. CENGEL ROBERT H. TURNER Department of Mechanical JOHN M. CIMBALA Me Graw Hill Higher Education Boston Burr Ridge, IL Dubuque, IA Madison, Wl

More information

NSPS Subpart OOOO: Applicability and Compliance Basics

NSPS Subpart OOOO: Applicability and Compliance Basics NSPS Subpart OOOO: Applicability and Compliance Basics Kentucky Oil & Gas Association 2013 Western Kentucky Meeting September 12, 2013 Roy Rakiewicz All4 Inc. Rob Flynn Environmental Standards, Inc. www.all4inc.com

More information

Measurement of Soil Parameters by Using Penetrometer Needle Apparatus

Measurement of Soil Parameters by Using Penetrometer Needle Apparatus Vol.3, Issue.1, Jan-Feb. 2013 pp-284-290 ISSN: 2249-6645 Measurement of Soil Parameters by Using Penetrometer Needle Apparatus Mahmoud M. Abu zeid, 1 Amr M. Radwan, 2 Emad A. Osman, 3 Ahmed M.Abu-bakr,

More information

Data Reconciliation and Energy Audits for PTT Gas Separation Plant No.5 (GSP5)

Data Reconciliation and Energy Audits for PTT Gas Separation Plant No.5 (GSP5) A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 29, 2012 Guest Editors: Petar Sabev Varbanov, Hon Loong Lam, Jiří Jaromír Klemeš Copyright 2012, AIDIC Servizi S.r.l., ISBN 978-88-95608-20-4; ISSN

More information

SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS

SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS Rearranging atoms. In a chemical reaction, bonds between atoms in one or more molecules (reactants) break and new bonds are formed with other atoms to

More information

The Use of Control Valve Sizing Equations with Simulation Based Process Data

The Use of Control Valve Sizing Equations with Simulation Based Process Data The Use of Control Valve Sizing Equations with Simulation Based Process Data Marc L. Riveland Director, Advanced Technologies Fisher Valves, Emerson Process Management Keywords: Control Valve, Thermodynamics,

More information

ACFM vs. SCFM vs. ICFM Series of Technical White Papers from Ohio Medical Corporation

ACFM vs. SCFM vs. ICFM Series of Technical White Papers from Ohio Medical Corporation ACFM vs. SCFM vs. ICFM Series of Technical White Papers from Ohio Medical Corporation Ohio Medical Corporation 1111 Lakeside Drive Gurnee, IL 60031 Phone: (800) 448-0770 Fax: (847) 855-6304 info@ohiomedical.com

More information

CHEM 110: CHAPTER 3: STOICHIOMETRY: CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONS

CHEM 110: CHAPTER 3: STOICHIOMETRY: CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONS 1 CHEM 110: CHAPTER 3: STOICHIOMETRY: CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONS The Chemical Equation A chemical equation concisely shows the initial (reactants) and final (products) results of

More information

Dynamic Process Modeling. Process Dynamics and Control

Dynamic Process Modeling. Process Dynamics and Control Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits

More information

THERMOPHYSICAL PROPERTIES HUMID AIR

THERMOPHYSICAL PROPERTIES HUMID AIR THERMOPHYSICAL PROPERTIES OF HUMID AIR Models and Background M. CONDE ENGINEERING, 2007 Disclaimer This document reports results of our own work, based on results published by others, in the open literature.

More information

PSAC/SAIT Well Testing Training Program Learning Outcomes/Objectives Level B

PSAC/SAIT Well Testing Training Program Learning Outcomes/Objectives Level B s/objectives Level B CHEM 6014: Properties and Characteristics of Natural Gases Discuss the pertinent properties and uses of natural gases as they occur in gas processing. 1. Describe the physical properties

More information

The Precharge Calculator

The Precharge Calculator 5116 Bissonnet #341, Bellaire, TX 77401 Telephone and Fax: (713) 663-6361 www.mcadamsengineering.com The Precharge Calculator Purpose: The Precharge Calculator by Interlink Systems, Inc. is a Windows based

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Why? Chemists are concerned with mass relationships in chemical reactions, usually run on a macroscopic scale (grams, kilograms, etc.). To deal with

More information

NOTE: FOR PROJECTS REQUIRING CONTRACTOR MIX DESIGN, THE DESIGN PROCEDURES ARE SPECIFIED IN THE SPECIAL PROVISIONS OF THE CONTRACT.

NOTE: FOR PROJECTS REQUIRING CONTRACTOR MIX DESIGN, THE DESIGN PROCEDURES ARE SPECIFIED IN THE SPECIAL PROVISIONS OF THE CONTRACT. September 1, 2003 CONCRETE MANUAL 5-694.300 MIX DESIGN 5-694.300 NOTE: FOR PROJECTS REQUIRING CONTRACTOR MIX DESIGN, THE DESIGN PROCEDURES ARE SPECIFIED IN THE SPECIAL PROVISIONS OF THE CONTRACT. 5-694.301

More information

PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM WITH R404A, R407C AND R410A

PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM WITH R404A, R407C AND R410A Int. J. Mech. Eng. & Rob. Res. 213 Jyoti Soni and R C Gupta, 213 Research Paper ISSN 2278 149 www.ijmerr.com Vol. 2, No. 1, January 213 213 IJMERR. All Rights Reserved PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION

More information

Investigation of the Effect of Dynamic Capillary Pressure on Waterflooding in Extra Low Permeability Reservoirs

Investigation of the Effect of Dynamic Capillary Pressure on Waterflooding in Extra Low Permeability Reservoirs Copyright 013 Tech Science Press SL, vol.9, no., pp.105-117, 013 Investigation of the Effect of Dynamic Capillary Pressure on Waterflooding in Extra Low Permeability Reservoirs Tian Shubao 1, Lei Gang

More information

Temperature Dependence of the Viscosity of Hydrocarbon Fractions

Temperature Dependence of the Viscosity of Hydrocarbon Fractions Temperature Dependence of the Viscosity of Hydrocarbon Fractions Pavol Daučík*, Jozef Višňovský, Jozef Ambro, Elena Hájeková Institute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical

More information

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

More information

Gases and Kinetic-Molecular Theory: Chapter 12. Chapter Outline. Chapter Outline

Gases and Kinetic-Molecular Theory: Chapter 12. Chapter Outline. Chapter Outline Gases and Kinetic-Molecular heory: Chapter Chapter Outline Comparison of Solids, Liquids, and Gases Composition of the Atmosphere and Some Common Properties of Gases Pressure Boyle s Law: he Volume-Pressure

More information

FLOW COMPUTERS METERING, MONITORING, & DATA ACQUISITIONS. Sami Halilah Dynamic Flow Computers Houston, Texas

FLOW COMPUTERS METERING, MONITORING, & DATA ACQUISITIONS. Sami Halilah Dynamic Flow Computers Houston, Texas FLOW COMPUTERS METERING, MONITORING, & DATA ACQUISITIONS Sami Halilah Dynamic Flow Computers Houston, Texas GENERAL LAYOUT This paper presents information about applications of flow computers in the oil

More information

Viscosity: A Property of fluids 307-6 Compare the viscosity of various liquids 307-7 Describe factors that can modify the viscosity of a liquid 208-6

Viscosity: A Property of fluids 307-6 Compare the viscosity of various liquids 307-7 Describe factors that can modify the viscosity of a liquid 208-6 Viscosity: A Property of fluids 307-6 Compare the viscosity of various liquids 307-7 Describe factors that can modify the viscosity of a liquid 208-6 Design an experiment to test the viscosity of various

More information

Chemistry 13: States of Matter

Chemistry 13: States of Matter Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

More information

Volume Correction Factor Calculation Development in American Petroleum Institute

Volume Correction Factor Calculation Development in American Petroleum Institute Volume Correction Factor Calculation Development in American Petroleum Institute Presented at 2012 API Asia Conference and Expo March 6-8, 2012 Ken Mei Chevron Energy Technology Company Richmond, CA USA

More information

Calculation of the Current Transformer Accuracy Limit Factor Application Note

Calculation of the Current Transformer Accuracy Limit Factor Application Note Calculation of the Current Transformer Application Note kansikuva_bw 1MRS 755481 Issued: 09.11.2004 Version: A/09.11.2004 Calculation of the Current Transformer Application Note Contents: 1. Scope...4

More information