The Classical Particle Coupled to External Electromagnetic Field Symmetries and Conserved Quantities. Resumo. Abstract

Size: px
Start display at page:

Download "The Classical Particle Coupled to External Electromagnetic Field Symmetries and Conserved Quantities. Resumo. Abstract"

Transcription

1 The Classical Particle Couple to External Electromagnetic Fiel Symmetries an Conserve Quantities G. D. Barbosa R. Thibes, Universiae Estaual o Suoeste a Bahia Departamento e Estuos Básicos e Instrumentais R. R. Ferreira Universiae Estaual o Suoeste a Bahia Departamento e Ciências Exatas Resumo Consieramos uma partícula clássica acoplaa a um campo eletromagnético externo, em ambos os regimes relativístico e não-relativístico. O acoplamento é construío através o potencial eletromagnético satisfazeno as equações e Maxwell clássicas. Revemos o teorema e Noether a nível clássico associano simetrias infinitesimais a quantiaes conservaas. As simetrias funamentais o espaço-tempo são investigaas consierano uma ação não-relativística e outra relativística em um referencial particular. Consierano algumas hipóteses e simetria sobre a variação a ação calculamos em etalhes as quantiaes conservaas. Palavras-chave Simetrias, teorema e Noether, ação clássica, constantes e movimento, grupo e Lorentz. Abstract We consier a classical particle minimally couple to an external electromagnetic fiel, in both non-relativistic an relativistic regimes. The coupling is constructe via the electromagnetic potential which is assume to satisfy the classical Maxwell equations. We review Noether s theorem at classical level associating infinitesimal symmetries to conserve quantities. The funamental space-time symmetries are investigate consiering a non-relativistic an a relativistic action in a particular reference frame. Consiering some symmetry hypothesis on the action variation we work out in etail the corresponing conserve quantities. Keywors Simmetries, Noether s theorem, classical action, conserve quantities, Lorentz group. 1 Introuction The celebrate Noether s theorem [1, 2, 3], originally state an prove by the German mathematician Emmy Noether in 1915 an first publishe in 1918 [1], relates continuous ifferentiable symmetries of the classical action to conserve quantities, i.e., constants of motion. Such connection is achieve through Hamilton s principle of least action [2, 3, 4]. That is a central result in theoretical physics, with eep consequences not only to Classical Physics but also to Quantum Fiel Theory, for example in the stuy of Noether currents an

2 anomalies at quantum level [5]. The latter ones, for instance, concern classically conserve quantities which are not quantum mechanically conserve; i.e., anomalies are relate to the breaking of Noether s theorem at quantum level [5, 6]. Besies its practical applications, Noether s theorem has also a certain philosophical appeal. It relates the more funamental conservation laws of nature, such as energy an momentum, to simple symmetries of the very spacetime continuum we live in, such as time an space translations. It also plays an important role in relating the invariance of physical laws uner symmetry operations, incluing for instance the equivalence of ifferent inertial frames, with corresponing conserve quantities [2, 3]. The present paper is organize as follows. In section 2 below, we iscuss symmetries of the action in classical mechanics. We introuce an prove Noether s theorem using the Lagrangian formalism. In section 3 we iscuss the nonrelativistic particle couple to external electromagnetic fiel, applying Noether s theorem an calculating the conserve quantities. In section 4 we generalize the previous results to the relativistic particle, particularly consiering Lorentz symmetries. We close in the last section with some perspectives an concluing remarks. 2 Noether s Theorem Consier a classical system escribe by n generalize coorinates q i, i = 1,...,n, with time evolution governe by the Lagrangian function L = L(q i, q i,t). The action S of the system is given by the integral S = t2 L(q i (t), q i (t),t). (1) The real parameter t represents the physical time. Loosely speaking, Noether s theorem states that to each continuous symmetry of action (1) correspons a constant of motion. Suppose we perform an infinitesimal transformation in the coorinates q i (t) an time t; if the action (1) remains invariant then there is a conserve quantity for each real parameter of the transformation. We shall be more explicit in this statement an proof below. Hamilton s principle of least action applie to (1) leas to the Euler-Lagrange equations of motion [2, 3] L L = 0, (2) q i q i whose solution q i = q i (t) gives us the temporal evolution of the system. Associate to the system (1) we efine the energy function h as h(q i, q i,t) = q i L q i L, (3) also known as Jacobi integral. A simple calculation, using (2), leas to h = L t. (4) Thus we see that if the Lagrangian of the system oes not epen explicitly on time, then the Jacobi integral (3) is a constant of motion. Consier now the q i an t coorinates transformation t t = t+ǫx(q,t), q i q i = q i +ǫψ i (q,t), (5)

3 where ǫ represents an infinitesimal real parameter an X an Ψ i are given real functions of the generalize coorinates. The corresponing variation of the action (1) reas t 2 S = L(q i(t ), q i (t ) t2,t ) L(q i (t), q i(t),t). (6) t 1 At this point we may finally state an prove Noether s theorem: Theorem (Noether) Given a classical physical system governe by action S in (1), an an infinitesimal transformation of variables (5), if the corresponing variation of the action (6) assumes the form S = ǫg(q(t),t) t 2 t1 for some (possibly zero) function G(q,t), then C L ( q i X Ψ i ) LX +G (7) q i isaconstantofmotion. Inotherwors, ifthetransformation(5)isasymmetryofthelagrangian up to a total erivative then C = 0, (8) with C given by (7). proof: Applying the infinitesimal transformation (5) to (1) we may rewrite the action variation (6) as = t2 t2 where we have efine S = L(q i +ǫψ i, q i +ǫξ i,t+ǫx)(1+ǫẋ) L(q i, q i,t), { } L(q i, q i,t)+ [ L ǫψ i + L ǫξ i ]+ L t2 q i q i t ǫx (1+ǫẊ) L(q i, q i,t), t2 ξ i Ψ i q i Ẋ. (9) Reagrouping an keeping only terms up to first orer in ǫ we obtain { t2 [ L S = ǫ Ψ i + L ] } ξ i + L q i q i t X +LẊ. (10) Now the S = ǫg(q(t),t) t 2 t1 hypothesis leas immeiately to Noether s conition [ L Ψ i +( q Ψ i q i Ẋ) L ] i q i +LẊ + L X = Ġ. (11) t Finally using the Euler-Lagrange equations (2) an relations (3) an (4), Noether s conition (11) can be rewritten as [ ] Ψ i ( L )+ q Ψ L i hẋ i q h i X = { } L Ψ i hx = Ġ, (12) q i

4 or simply concluing thus the proof of the theorem. [ ] L ( q i X Ψ i ) LX +G = 0, (13) q i When the function G(q, t) ientically vanishes, the transformation is a full symmetry of the Lagrangian, otherwise the transforme Lagrangian iffers from the original one by the total time erivative ǫġ(q,t) generating thus the same equations of motion. Naturally, for a given action S, it is possible to have more than one conserve quantity C; for each inepenent symmetry (5) of the same action we have a ifferent conserve quantity (7). 3 Non Relativistic Point Particle in External Electromagnetic Fiel Let us consier a classical nonrelativistic particle embee in an external electromagnetic fiel. The particle has mass m an electrical charge q an is escribe by the position vector r(t) with respect to a inertial frame. The Lagrangian L(r,ṙ,t) of this system can be constructe from the particle kinetic energy minus the interacting potential energy between the particle an the electromagnetic fiel. In Gaussian units, we may thus write it as L(r,ṙ,t) = mṙ2 2 qϕ(r,t)+ q cṙ A(r,t), (14) where ϕ(r,t) an A(r,t) represent respectively the scalar an vector potentials, an c is the vacuum spee of light. We are tacitly assuming orinary three-imensional space. The potentials ϕ(r,t) an A(r,t) are external fiels in the sense that they represent given functions of space-time. Different functions ϕ an A lea to istinct electromagnetic fiel configurations E an B which are given by E(r,t) = ϕ 1 A c t, B(r,t) = A. (15) The Euler-Lagrange equations erive from (14) rea m r+ q ( cȧ = q ϕ ṙ ) c A, (16) an can be rewritten using (15) as q m r = qe+ (17) cṙ B, which can be promptly recognize as Newton s secon law for a particle moving uner the Lorentz electromagnetic force. Summarizing, the Lagrangian (14) consistently escribes a nonrelativistic particle couple to a given external electromagnetic fiel, with equations of motion (17). Now we turn our attention to the symmetries an conserve quantities of (14). What are the symmetries of the action associate to Lagrangian (14)? The answer obviously epens on the functional form of the potentials ϕ an A. Let us analyse in the following the possibility of realization of the funamental space-time symmetries in (14), namely, time an spatial translations, spatial rotations an boosts.

5 Time an Spatial Translations The energy function (3) corresponing to Lagrangian (14) reas h(r,ṙ,t) = 1 2 mṙ2 +qϕ(r,t), (18) an inee represents the total energy of the system, being the sum of the particle kinetic energy an the electric potential energy. Thus, from (4), the conition for the energy (18) to represent a constant of motion amounts to 0 = L t = q ϕ q A + t cṙ t. (19) If the potentials o not epen explicitly on time, then the Lagrangian (14) is trivially invariant uner time translation an (5) gives us a symmetry with X 1 an Ψ i 0 whose conserve quantity (7) is precisely (18). On the other han, if the potentials carry an explicitly time epenence out, then (18) oes not represent a constant of motion. However, still in this case, we may have a conserve quantity for (14) associate to time translational symmetry. Performing an infinitesimal time translation t t = t+ǫ in (14), it changes by the amount δl = L t δt = ǫq t Using the first equation of (15) it is possible to rewrite (20) as ( ϕ+ ṙ ) c A. (20) δl = ǫq[ ϕ+e ṙ]. (21) Thus if the electric power qe.ṙ transmitte by the fiel to the particle is null, we conclue from (7), with G = qϕ, that the particle kinetic energy mṙ 2 /2 is a conserve quantity. This comprises, in other wors, the well-known fact that the magnetic fiel cannot change the particle s spee. Next we iscuss spatial translational symmetry. Let n be a constant unit vector in threeimensional space. Performing an infinitesimal spatial translation along the fixe n irection r = r+ǫn, t = t. (22) the Lagrangian (14) changes to [ L = L+q ϕ+ ṙ ] c.a nǫ. (23) Once again we see we have two possibilities. First, if the potentials themselves enjoy translational invariance in the n irection, which means ϕ n = 0, an A i n = 0, (24) then L = L an (7) gives us C ST = [mṙ+ q c A ] n (25) as a conserve quantity. We interpret (25) as the n-component of the total linear momentum of the system, mae up from the sum of the particle an fiel linear momenta along the n irection.

6 Notice that (25) is also the n projection of the Hamiltonian canonical momentum associate to (14). The secon possibility allows for L an L to iffer by a total time erivative. In this case we write L = L+δL in (23) an rearrange δl using (15) in orer to obtain δl = q ( E+ ṙ c B ) nǫ+ ( q c A n ) ǫ. (26) Consequently, if the n-component of the Lorentz force applie to the particle is null, the transforme Lagrangian iffers from the original one by a total time erivative Ġǫ with G = q A n, (27) c an (7) gives us the familiar result of particle linear momentum conservation (mṙ n) = 0. (28) We see that uner a translational symmetry operation, if both the particle an the fiel remain invariant, then we have the system total linear momentum conservation as in (25); however, if the fiel oes not remain invariant, then the particle linear momentum is conserve, as in (28), only if the applie electromagnetic force is null. Spatial Rotations Let us focus now on spatial rotations. Performing an infinitesimal rotation ǫ aroun a fixe axis n, the particle coorinates transform as r = r+ǫn r, t = t, (29) an the corresponing Lagrangian variation reas [ ( δl = q φ ṙ )] c A (n r)ǫ+ q A (n ṙ)ǫ. (30) c If it so happens that the system configuration is fully symmetric uner arbitrary spatial rotations aroun n, then δl in (30) is null an we have, as consequence from (7)-(8), the conservation of the total angular momentum projection [ C SR = r (mṙ+ q )] c A n. (31) If it is not the case that (30) vanishes ientically, we may rewrite it as δl = ǫr (qe+ q ) cṙ B n+ǫ [ q ] c (r A) n. (32) Once more we have use the electromagnetic fiel equations (15) to obtain (32) from (30). From (32) we infer that, if the torque ue to the external electromagnetic fiel on the particle is null, the variation of the Lagrangian is a total time erivative. In this case, with G = q c (r A) n, Noether s theorem gives us [(r mṙ) n] = 0. (33) So we see that null external torque leas to the particle angular momentum conservation even if the fiel configuration oes not respect rotational symmetry.

7 Galilean Boosts The previous transformations all involve only rest reference frames. Now let us consier a change of coorinates to a inertial frame moving with constant velocity relative to the first, along a fixe n irection. Since we are not yet consiering the relativistic case we escribe it by a Galilean infinitesimal transformation r = r+ǫnt, t = t. (34) The infinitesimal parameter ǫ represents the relative velocity between the two inertial frames. The system Lagrangian (14) transforms uner (34) as δl = ǫ [( q ) ] c At+mr n +ǫ (qe+ q ) cṙ B nt. (35) If the n-component of the external force is zero, the Lagrangian variation (35) is a total time erivative. Noether s theorem then leas, from (7), to the center of mass position conservation C GB = ( mṙt+mr) n, (36) which in turn gives an immeiate solution for the particle vector position projection along n (r n) = (ṙ n)t+(r 0 n) (37) for some constant r 0. This simply signals consistently the lack of acceleration for the particle along the n irection. 4 Relativistic Particle in External Electromagnetic Fiel In this section we generalize the previous analyses to the relativistic case. Obviously the kinetic energy term in Lagrangian (14) is not invariant uner a general Lorentz transformation an so is not consistent with the special theory of relativity. We can write a Lagrangian for the relativistic particle embee in an external electromagnetic fiel as L(r,ṙ,t) = m 1 ṙ2 q qϕ+ (38) c2 cṙ A, where once more ϕ(r,t) an A(r,t) are the scalar an vector potentials. The Euler-Lagrange equations corresponing to (38) rea mṙ + q ( 1 ṙ2 cȧ = q ϕ ṙ ) c A, (39) or simply mṙ q = qe+ (40) 1 ṙ2 cṙ B, by means of (15). Equation (40) is the relativistic generalization of (17) an can be interprete as the relativistic Newton s secon law of motion justifying thus the use of (38).

8 In fact (38) is written for a particular reference frame an is not Lorentz invariant. However, incluing integration along time, the corresponing action can be written as S = L = τ { m q } c Uµ A µ (41) being τ the proper time an U µ = (γc,γṙ) the relativistic quarivelocity. Action (41) is manifestly Lorentz invariant. We are now reay to look for other conserve quantities associate to (38) through Noether s Theorem. Time an Spatial Translations A irect calculation of the energy function (3) for (38) leas to the expression h(r,ṙ,t) = mc2 +qϕ. (42) 1 ṙ2 As we have alreay pointe out, if the Lagrangian oes not epen explicitly on time, the energy function prouces a constant of motion. In the present situation this happens if the potentials φ an A in (38) o not exhibit an explicit time epenence; in this case the total energy of the system (42) is conserve. If the potentials o have an explicitly time epenence then an infinitesimal translation in time t t + ǫ leas again to equations (20) an (21). Following the same line of reasoning, we conclue that if the transmitte electric power E ṙ is null then we have, from (7), the conservation of the quantity E = mc2 (43) 1 ṙ2 which represents the relativistic particle s energy. Concerning spatial translations, if (38) remains invariant uner an infinitesimal isplacement along a fixe n irection r = r+ǫn, (44) the corresponing Noether conserve quantity (7) reas C RST = mṙ q + 1 ṙ2 c A n. (45) That means that the total relativistic linear momentum of the particle-plus-fiel system is conserve along the n irection. Similarly to the non-relativistic case, even if (38) is not fully invariant uner spatial translations, equations (23) an (26) hol. Assuming the n-component of the Lorentz force to be null we are le through (7), with G given by (27), to the conservation of the particle relativistic momentum along the n-irection mṙ 1 ṙ2 n = 0. (46) Equations (45) an (46) are respectively the relativistic generalizations of (25) an (28).

9 Spatial Rotations Let us perform a spatial rotation (29) in the relativistic system (38). If the Lagrangian (38) enjoys full rotational invariance it immeiately follows from (7) that the generalization of (31) reas C RSR = r mṙ q + 1 ṙ2 c A n, (47) which means the n-projection of the total relativistic momentum of the particle an fiel is conserve. Furthermore, if (38) is not rotational invariant, a simple calculation shows that (30) an (32) rea exactly the same an express the variation of (38) uner (29). Then, if the electromagnetic torque applie by the fiel on the particle is null, the Lagrangian variation (32) is a total time erivative an (33) generalizes to r mṙ 1 ṙ2 n = 0, (48) expressing now the conservation of only the particle angular momentum along the n-irection. Lorentz Boosts A Lorentz boost is a homogeneous Lorentz transformation connecting two inertial frames with constant relative velocity an no spatial rotation. In usual relativistic notation an homogeneous infinitesimal Lorentz transformation can be written as x α x α = (δ α β +ω α β)x β, (49) being ω α β antisymmetric an representing six real inepenent infinitesimal parameters corresponing to three egrees of freeom escribing orinary spatial rotations an three escribing Lorentz boosts. In the stanar vectorial notation we have been using, an infinitesimal Lorentz boost along the spatial n irection can be written as r = r+ǫnt, t = t+ ǫ c2(n r), (50) where the infinitesimal parameter ǫ represents the relative velocity between the two frames. Clearly (50) is the relativistic generalization of the infinitesimal Galilean boost (34). Since the transformation (50) explicitly changes the time, it is not enough to check the Lagrangian variation - rather we shoul stuy the action variation (6) uner (50) which reas t2 [( ) ( S = ǫ qe+qṙ c B nt+q(ṙ E) n.r )+ [ q ( n r )]] c A nt qφ (51) In case of null external n-projection force an null transmitte electric power the variation S is a total time erivative an (7) gives us the conserve quantity which generalizes (36). C LB = m ) 1/2 (1 ṙ2 (r ṙt) n (52)

10 5 Conclusion Noether s theorem connects continuous symmetries of the classical action to conserve quantities. We have reviewe an prove Noether s theorem at classical level. We have applie Noether s theorem to a system mae up of a particle interacting with an external electromagnetic fiel, consiering both relativistic an nonrelativistic cases. We have iscusse the consequences of all space-time symmetries of the action, calculating the corresponing conserve quantities. We have seen that when a space-time transformation is performe in the particle s space-time coorinates, the fiel s behavior uner the transformation may lea to ifferent results, namely to conservation of quantities either relate solely to the particle or to the whole configuration set, particle plus fiel. Acknowlegment The authors gratefully acknowlege the Brazilian research agencies Conselho Nacional e Desenvolvimento Científico e Tcnológico (CNPq) an Funação e Amparo à Pesquisa o Estao a Bahia (FAPESB) for finacial support. Referências [1] E. Noether, Invariante Variationsprobleme, Nachr. Gesell. Wissenchaft. Göttinger 2, 235, [2] H. Golstein, C. Poole, an J. Safko, Classical Mechanics, Aison-Wesley, San Francisco, [3] N. A. Lemos, Mecânica Analítica, E. Livraria a Física, São Paulo, [4] A. O. Lopes, Introução à Mecânica Clássica, Eusp, São Paulo, [5] C. Itzykson an J. B. Zuber, Quantum Fiel Theory, Dover Publications, Mineola, [6] K. Fujikawa an H. Suzuki, Path Integral an Quantum Anomalies, Oxfor University Press, Oxfor, 2004.

Chapter 2 Review of Classical Action Principles

Chapter 2 Review of Classical Action Principles Chapter Review of Classical Action Principles This section grew out of lectures given by Schwinger at UCLA aroun 1974, which were substantially transforme into Chap. 8 of Classical Electroynamics (Schwinger

More information

Lecture L25-3D Rigid Body Kinematics

Lecture L25-3D Rigid Body Kinematics J. Peraire, S. Winall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L25-3D Rigi Boy Kinematics In this lecture, we consier the motion of a 3D rigi boy. We shall see that in the general three-imensional

More information

Lagrangian and Hamiltonian Mechanics

Lagrangian and Hamiltonian Mechanics Lagrangian an Hamiltonian Mechanics D.G. Simpson, Ph.D. Department of Physical Sciences an Engineering Prince George s Community College December 5, 007 Introuction In this course we have been stuying

More information

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7)

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7) Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the following

More information

Definition of the spin current: The angular spin current and its physical consequences

Definition of the spin current: The angular spin current and its physical consequences Definition of the spin current: The angular spin current an its physical consequences Qing-feng Sun 1, * an X. C. Xie 2,3 1 Beijing National Lab for Conense Matter Physics an Institute of Physics, Chinese

More information

4. Important theorems in quantum mechanics

4. Important theorems in quantum mechanics TFY4215 Kjemisk fysikk og kvantemekanikk - Tillegg 4 1 TILLEGG 4 4. Important theorems in quantum mechanics Before attacking three-imensional potentials in the next chapter, we shall in chapter 4 of this

More information

Maxwell equations in Lorentz covariant integral form

Maxwell equations in Lorentz covariant integral form ENEÑANZA REVITA MEXIANA DE FÍIA E 52 (1 84 89 JUNIO 2006 Maxwell equations in Lorentz covariant integral form E. Ley Koo Instituto e Física, Universia Nacional Autónoma e México, Apartao Postal 20-364,

More information

The Quick Calculus Tutorial

The Quick Calculus Tutorial The Quick Calculus Tutorial This text is a quick introuction into Calculus ieas an techniques. It is esigne to help you if you take the Calculus base course Physics 211 at the same time with Calculus I,

More information

CURVES: VELOCITY, ACCELERATION, AND LENGTH

CURVES: VELOCITY, ACCELERATION, AND LENGTH CURVES: VELOCITY, ACCELERATION, AND LENGTH As examples of curves, consier the situation where the amounts of n-commoities varies with time t, qt = q 1 t,..., q n t. Thus, the amount of the commoities are

More information

Given three vectors A, B, andc. We list three products with formula (A B) C = B(A C) A(B C); A (B C) =B(A C) C(A B);

Given three vectors A, B, andc. We list three products with formula (A B) C = B(A C) A(B C); A (B C) =B(A C) C(A B); 1.1.4. Prouct of three vectors. Given three vectors A, B, anc. We list three proucts with formula (A B) C = B(A C) A(B C); A (B C) =B(A C) C(A B); a 1 a 2 a 3 (A B) C = b 1 b 2 b 3 c 1 c 2 c 3 where the

More information

JON HOLTAN. if P&C Insurance Ltd., Oslo, Norway ABSTRACT

JON HOLTAN. if P&C Insurance Ltd., Oslo, Norway ABSTRACT OPTIMAL INSURANCE COVERAGE UNDER BONUS-MALUS CONTRACTS BY JON HOLTAN if P&C Insurance Lt., Oslo, Norway ABSTRACT The paper analyses the questions: Shoul or shoul not an iniviual buy insurance? An if so,

More information

Factoring Dickson polynomials over finite fields

Factoring Dickson polynomials over finite fields Factoring Dickson polynomials over finite fiels Manjul Bhargava Department of Mathematics, Princeton University. Princeton NJ 08544 manjul@math.princeton.eu Michael Zieve Department of Mathematics, University

More information

Lagrange s equations of motion for oscillating central-force field

Lagrange s equations of motion for oscillating central-force field Theoretical Mathematics & Applications, vol.3, no., 013, 99-115 ISSN: 179-9687 (print), 179-9709 (online) Scienpress Lt, 013 Lagrange s equations of motion for oscillating central-force fiel A.E. Eison

More information

The Concept of the Effective Mass Tensor in GR. The Equation of Motion

The Concept of the Effective Mass Tensor in GR. The Equation of Motion The Concept of the Effective Mass Tensor in GR The Equation of Motion Mirosław J. Kubiak Zespół Szkół Technicznych, Gruziąz, Polan Abstract: In the papers [, ] we presente the concept of the effective

More information

Chapter 22 The Hamiltonian and Lagrangian densities. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries

Chapter 22 The Hamiltonian and Lagrangian densities. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries Chapter 22 The Hamiltonian and Lagrangian densities from my book: Understanding Relativistic Quantum Field Theory Hans de Vries January 2, 2009 2 Chapter Contents 22 The Hamiltonian and Lagrangian densities

More information

Reading: Ryden chs. 3 & 4, Shu chs. 15 & 16. For the enthusiasts, Shu chs. 13 & 14.

Reading: Ryden chs. 3 & 4, Shu chs. 15 & 16. For the enthusiasts, Shu chs. 13 & 14. 7 Shocks Reaing: Ryen chs 3 & 4, Shu chs 5 & 6 For the enthusiasts, Shu chs 3 & 4 A goo article for further reaing: Shull & Draine, The physics of interstellar shock waves, in Interstellar processes; Proceeings

More information

19.2. First Order Differential Equations. Introduction. Prerequisites. Learning Outcomes

19.2. First Order Differential Equations. Introduction. Prerequisites. Learning Outcomes First Orer Differential Equations 19.2 Introuction Separation of variables is a technique commonly use to solve first orer orinary ifferential equations. It is so-calle because we rearrange the equation

More information

Solutions of Laplace s equation in 3d

Solutions of Laplace s equation in 3d Solutions of Laplace s equation in 3 Motivation The general form of Laplace s equation is: Ψ = 0 ; it contains the laplacian, an nothing else. This section will examine the form of the solutions of Laplaces

More information

Simple harmonic motion

Simple harmonic motion PH-122- Dynamics Page 1 Simple harmonic motion 02 February 2011 10:10 Force opposes the displacement in A We assume the spring is linear k is the spring constant. Sometimes called stiffness constant Newton's

More information

Lecture 13: Differentiation Derivatives of Trigonometric Functions

Lecture 13: Differentiation Derivatives of Trigonometric Functions Lecture 13: Differentiation Derivatives of Trigonometric Functions Derivatives of the Basic Trigonometric Functions Derivative of sin Derivative of cos Using the Chain Rule Derivative of tan Using the

More information

Assessment Plan for Learning Outcomes for BA/BS in Physics

Assessment Plan for Learning Outcomes for BA/BS in Physics Department of Physics and Astronomy Goals and Learning Outcomes 1. Students know basic physics principles [BS, BA, MS] 1.1 Students can demonstrate an understanding of Newton s laws 1.2 Students can demonstrate

More information

LECTURE 15: LINEAR ARRAY THEORY - PART I

LECTURE 15: LINEAR ARRAY THEORY - PART I LECTURE 5: LINEAR ARRAY THEORY - PART I (Linear arrays: the two-element array; the N-element array with uniform amplitue an spacing; broa - sie array; en-fire array; phase array). Introuction Usually the

More information

Special Relativity and Electromagnetism Yannis PAPAPHILIPPOU CERN

Special Relativity and Electromagnetism Yannis PAPAPHILIPPOU CERN Special Relativity and Electromagnetism Yannis PAPAPHILIPPOU CERN United States Particle Accelerator School, University of California - Santa Cruz, Santa Rosa, CA 14 th 18 th January 2008 1 Outline Notions

More information

(We assume that x 2 IR n with n > m f g are twice continuously ierentiable functions with Lipschitz secon erivatives. The Lagrangian function `(x y) i

(We assume that x 2 IR n with n > m f g are twice continuously ierentiable functions with Lipschitz secon erivatives. The Lagrangian function `(x y) i An Analysis of Newton's Metho for Equivalent Karush{Kuhn{Tucker Systems Lus N. Vicente January 25, 999 Abstract In this paper we analyze the application of Newton's metho to the solution of systems of

More information

Measures of distance between samples: Euclidean

Measures of distance between samples: Euclidean 4- Chapter 4 Measures of istance between samples: Eucliean We will be talking a lot about istances in this book. The concept of istance between two samples or between two variables is funamental in multivariate

More information

On Adaboost and Optimal Betting Strategies

On Adaboost and Optimal Betting Strategies On Aaboost an Optimal Betting Strategies Pasquale Malacaria 1 an Fabrizio Smerali 1 1 School of Electronic Engineering an Computer Science, Queen Mary University of Lonon, Lonon, UK Abstract We explore

More information

Homework 8. problems: 10.40, 10.73, 11.55, 12.43

Homework 8. problems: 10.40, 10.73, 11.55, 12.43 Hoework 8 probles: 0.0, 0.7,.55,. Proble 0.0 A block of ass kg an a block of ass 6 kg are connecte by a assless strint over a pulley in the shape of a soli isk having raius R0.5 an ass M0 kg. These blocks

More information

Tracking Control of a Class of Hamiltonian Mechanical Systems with Disturbances

Tracking Control of a Class of Hamiltonian Mechanical Systems with Disturbances Proceeings of Australasian Conference on Robotics an Automation, -4 Dec 4, The University of Melbourne, Melbourne, Australia Tracking Control of a Class of Hamiltonian Mechanical Systems with Disturbances

More information

Isothermal quantum dynamics: Investigations for the harmonic oscillator

Isothermal quantum dynamics: Investigations for the harmonic oscillator Isothermal quantum ynamics: Investigations for the harmonic oscillator Dem Fachbereich Physik er Universität Osnabrück zur Erlangung es Graes eines Doktors er Naturwissenschaften vorgelegte Dissertation

More information

Differentiability of Exponential Functions

Differentiability of Exponential Functions Differentiability of Exponential Functions Philip M. Anselone an John W. Lee Philip Anselone (panselone@actionnet.net) receive his Ph.D. from Oregon State in 1957. After a few years at Johns Hopkins an

More information

Answers to the Practice Problems for Test 2

Answers to the Practice Problems for Test 2 Answers to the Practice Problems for Test 2 Davi Murphy. Fin f (x) if it is known that x [f(2x)] = x2. By the chain rule, x [f(2x)] = f (2x) 2, so 2f (2x) = x 2. Hence f (2x) = x 2 /2, but the lefthan

More information

SOME NOTES ON THE HYPERBOLIC TRIG FUNCTIONS SINH AND COSH

SOME NOTES ON THE HYPERBOLIC TRIG FUNCTIONS SINH AND COSH SOME NOTES ON THE HYPERBOLIC TRIG FUNCTIONS SINH AND COSH Basic Definitions In homework set # one of the questions involves basic unerstaning of the hyperbolic functions sinh an cosh. We will use this

More information

An analysis of the classical Doppler Effect [1] revisited

An analysis of the classical Doppler Effect [1] revisited An analysis of the classical Doppler Effect [] reisite Bernhar othenstein Politehnica niersity of Timisoara Physics Dept. Timisoara omania E-mail: bernhar_rothenstein@yahoo.com Corina Nafornita Politehnica

More information

Scalar : Vector : Equal vectors : Negative vectors : Proper vector : Null Vector (Zero Vector): Parallel vectors : Antiparallel vectors :

Scalar : Vector : Equal vectors : Negative vectors : Proper vector : Null Vector (Zero Vector): Parallel vectors : Antiparallel vectors : ELEMENTS OF VECTOS 1 Scalar : physical quantity having only magnitue but not associate with any irection is calle a scalar eg: time, mass, istance, spee, work, energy, power, pressure, temperature, electric

More information

Sensitivity Analysis of Non-linear Performance with Probability Distortion

Sensitivity Analysis of Non-linear Performance with Probability Distortion Preprints of the 19th Worl Congress The International Feeration of Automatic Control Cape Town, South Africa. August 24-29, 214 Sensitivity Analysis of Non-linear Performance with Probability Distortion

More information

Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry

Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry Apeiron, Vol. 15, No. 3, July 2008 206 Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry Krzysztof Rȩbilas Zak lad

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS Contents 1. Moment generating functions 2. Sum of a ranom number of ranom variables 3. Transforms

More information

Integral Regular Truncated Pyramids with Rectangular Bases

Integral Regular Truncated Pyramids with Rectangular Bases Integral Regular Truncate Pyramis with Rectangular Bases Konstantine Zelator Department of Mathematics 301 Thackeray Hall University of Pittsburgh Pittsburgh, PA 1560, U.S.A. Also: Konstantine Zelator

More information

arxiv:1309.1857v3 [gr-qc] 7 Mar 2014

arxiv:1309.1857v3 [gr-qc] 7 Mar 2014 Generalize holographic equipartition for Friemann-Robertson-Walker universes Wen-Yuan Ai, Hua Chen, Xian-Ru Hu, an Jian-Bo Deng Institute of Theoretical Physics, LanZhou University, Lanzhou 730000, P.

More information

Special Theory of Relativity

Special Theory of Relativity June 1, 2010 1 1 J.D.Jackson, Classical Electrodynamics, 3rd Edition, Chapter 11 Introduction Einstein s theory of special relativity is based on the assumption (which might be a deep-rooted superstition

More information

arxiv:physics/0004029v1 [physics.ed-ph] 14 Apr 2000

arxiv:physics/0004029v1 [physics.ed-ph] 14 Apr 2000 arxiv:physics/0004029v1 [physics.ed-ph] 14 Apr 2000 Lagrangians and Hamiltonians for High School Students John W. Norbury Physics Department and Center for Science Education, University of Wisconsin-Milwaukee,

More information

Relativistic Electromagnetism

Relativistic Electromagnetism Chapter 8 Relativistic Electromagnetism In which it is shown that electricity and magnetism can no more be separated than space and time. 8.1 Magnetism from Electricity Our starting point is the electric

More information

FOURIER TRANSFORM TERENCE TAO

FOURIER TRANSFORM TERENCE TAO FOURIER TRANSFORM TERENCE TAO Very broaly speaking, the Fourier transform is a systematic way to ecompose generic functions into a superposition of symmetric functions. These symmetric functions are usually

More information

9.3. Diffraction and Interference of Water Waves

9.3. Diffraction and Interference of Water Waves Diffraction an Interference of Water Waves 9.3 Have you ever notice how people relaxing at the seashore spen so much of their time watching the ocean waves moving over the water, as they break repeately

More information

Unsteady Flow Visualization by Animating Evenly-Spaced Streamlines

Unsteady Flow Visualization by Animating Evenly-Spaced Streamlines EUROGRAPHICS 2000 / M. Gross an F.R.A. Hopgoo Volume 19, (2000), Number 3 (Guest Eitors) Unsteay Flow Visualization by Animating Evenly-Space Bruno Jobar an Wilfri Lefer Université u Littoral Côte Opale,

More information

CHAPTER 5 : CALCULUS

CHAPTER 5 : CALCULUS Dr Roger Ni (Queen Mary, University of Lonon) - 5. CHAPTER 5 : CALCULUS Differentiation Introuction to Differentiation Calculus is a branch of mathematics which concerns itself with change. Irrespective

More information

Witt#5e: Generalizing integrality theorems for ghost-witt vectors [not completed, not proofread]

Witt#5e: Generalizing integrality theorems for ghost-witt vectors [not completed, not proofread] Witt vectors. Part 1 Michiel Hazewinkel Sienotes by Darij Grinberg Witt#5e: Generalizing integrality theorems for ghost-witt vectors [not complete, not proofrea In this note, we will generalize most of

More information

The wave equation is an important tool to study the relation between spectral theory and geometry on manifolds. Let U R n be an open set and let

The wave equation is an important tool to study the relation between spectral theory and geometry on manifolds. Let U R n be an open set and let 1. The wave equation The wave equation is an important tool to stuy the relation between spectral theory an geometry on manifols. Let U R n be an open set an let = n j=1 be the Eucliean Laplace operator.

More information

Laws of Motion and Conservation Laws

Laws of Motion and Conservation Laws Laws of Motion and Conservation Laws The first astrophysics we ll consider will be gravity, which we ll address in the next class. First, though, we need to set the stage by talking about some of the basic

More information

State of Stress at Point

State of Stress at Point State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

More information

As customary, choice (a) is the correct answer in all the following problems.

As customary, choice (a) is the correct answer in all the following problems. PHY2049 Summer 2012 Instructor: Francisco Rojas Exam 1 As customary, choice (a) is the correct answer in all the following problems. Problem 1 A uniformly charge (thin) non-conucting ro is locate on the

More information

Mannheim curves in the three-dimensional sphere

Mannheim curves in the three-dimensional sphere Mannheim curves in the three-imensional sphere anju Kahraman, Mehmet Öner Manisa Celal Bayar University, Faculty of Arts an Sciences, Mathematics Department, Muraiye Campus, 5, Muraiye, Manisa, urkey.

More information

Here the units used are radians and sin x = sin(x radians). Recall that sin x and cos x are defined and continuous everywhere and

Here the units used are radians and sin x = sin(x radians). Recall that sin x and cos x are defined and continuous everywhere and Lecture 9 : Derivatives of Trigonometric Functions (Please review Trigonometry uner Algebra/Precalculus Review on the class webpage.) In this section we will look at the erivatives of the trigonometric

More information

BESSEL FUNCTIONS. 1. Introduction The standard form for any second order homogeneous differential

BESSEL FUNCTIONS. 1. Introduction The standard form for any second order homogeneous differential BESSEL FUNCTIONS FAYEZ KAROJI, CASEY TSAI, AND RACHEL WEYRENS Abstract. We briefly aress how to solve Bessel s ifferential equation an escribe its solutions, Bessel functions. Aitionally, we iscuss two

More information

MSc. Econ: MATHEMATICAL STATISTICS, 1995 MAXIMUM-LIKELIHOOD ESTIMATION

MSc. Econ: MATHEMATICAL STATISTICS, 1995 MAXIMUM-LIKELIHOOD ESTIMATION MAXIMUM-LIKELIHOOD ESTIMATION The General Theory of M-L Estimation In orer to erive an M-L estimator, we are boun to make an assumption about the functional form of the istribution which generates the

More information

arxiv:physics/0106088v1 [physics.ed-ph] 27 Jun 2001

arxiv:physics/0106088v1 [physics.ed-ph] 27 Jun 2001 Introducing Time Dependence into the Static Maxwell Equations arxiv:physics/0106088v1 [physics.ed-ph] 27 Jun 2001 Avraham Gal Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

More information

THE LEAP-FROG AND THE SOLAR SYSTEM

THE LEAP-FROG AND THE SOLAR SYSTEM THE LEAP-FROG AND THE SOLAR SYSTEM A STABLE ORBIT IN THE 3-BODY PROBLEM Practical Numerical Simulations Assignment 1 Michælmas Term 2011 Fionn Fitzmaurice fionnf@maths.tcd.ie 1 Introduction In this code,

More information

Quantum Mechanics I. Peter S. Riseborough. August 29, 2013

Quantum Mechanics I. Peter S. Riseborough. August 29, 2013 Quantum Mechanics I Peter S. Riseborough August 9, 3 Contents Principles of Classical Mechanics 9. Lagrangian Mechanics........................ 9.. Exercise............................. Solution.............................3

More information

MATH 125: LAST LECTURE

MATH 125: LAST LECTURE MATH 5: LAST LECTURE FALL 9. Differential Equations A ifferential equation is an equation involving an unknown function an it s erivatives. To solve a ifferential equation means to fin a function that

More information

Dynamics. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30

Dynamics. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30 Dynamics Basilio Bona DAUIN-Politecnico di Torino 2009 Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30 Dynamics - Introduction In order to determine the dynamics of a manipulator, it is

More information

arxiv:1408.3381v1 [physics.gen-ph] 17 Sep 2013

arxiv:1408.3381v1 [physics.gen-ph] 17 Sep 2013 Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry arxiv:1408.3381v1 [physics.gen-ph] 17 Sep 2013 Krzysztof Rȩbilas

More information

Inverse Trig Functions

Inverse Trig Functions Inverse Trig Functions c A Math Support Center Capsule February, 009 Introuction Just as trig functions arise in many applications, so o the inverse trig functions. What may be most surprising is that

More information

Web Appendices to Selling to Overcon dent Consumers

Web Appendices to Selling to Overcon dent Consumers Web Appenices to Selling to Overcon ent Consumers Michael D. Grubb MIT Sloan School of Management Cambrige, MA 02142 mgrubbmit.eu www.mit.eu/~mgrubb May 2, 2008 B Option Pricing Intuition This appenix

More information

Web Appendices of Selling to Overcon dent Consumers

Web Appendices of Selling to Overcon dent Consumers Web Appenices of Selling to Overcon ent Consumers Michael D. Grubb A Option Pricing Intuition This appenix provies aitional intuition base on option pricing for the result in Proposition 2. Consier the

More information

Physics 53. Rotational Motion 1. We're going to turn this team around 360 degrees. Jason Kidd

Physics 53. Rotational Motion 1. We're going to turn this team around 360 degrees. Jason Kidd Physics 53 Rotational Motion 1 We're going to turn this team around 360 degrees. Jason Kidd Rigid bodies To a good approximation, a solid object behaves like a perfectly rigid body, in which each particle

More information

Introduction to Integration Part 1: Anti-Differentiation

Introduction to Integration Part 1: Anti-Differentiation Mathematics Learning Centre Introuction to Integration Part : Anti-Differentiation Mary Barnes c 999 University of Syney Contents For Reference. Table of erivatives......2 New notation.... 2 Introuction

More information

M147 Practice Problems for Exam 2

M147 Practice Problems for Exam 2 M47 Practice Problems for Exam Exam will cover sections 4., 4.4, 4.5, 4.6, 4.7, 4.8, 5., an 5.. Calculators will not be allowe on the exam. The first ten problems on the exam will be multiple choice. Work

More information

Chapter 2 Kinematics of Fluid Flow

Chapter 2 Kinematics of Fluid Flow Chapter 2 Kinematics of Flui Flow The stuy of kinematics has flourishe as a subject where one may consier isplacements an motions without imposing any restrictions on them; that is, there is no nee to

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

The one-year non-life insurance risk

The one-year non-life insurance risk The one-year non-life insurance risk Ohlsson, Esbjörn & Lauzeningks, Jan Abstract With few exceptions, the literature on non-life insurance reserve risk has been evote to the ultimo risk, the risk in the

More information

Optimal Control Policy of a Production and Inventory System for multi-product in Segmented Market

Optimal Control Policy of a Production and Inventory System for multi-product in Segmented Market RATIO MATHEMATICA 25 (2013), 29 46 ISSN:1592-7415 Optimal Control Policy of a Prouction an Inventory System for multi-prouct in Segmente Market Kuleep Chauhary, Yogener Singh, P. C. Jha Department of Operational

More information

arxiv:physics/9902008v1 [physics.class-ph] 2 Feb 1999

arxiv:physics/9902008v1 [physics.class-ph] 2 Feb 1999 arxiv:physics/9902008v1 [physics.class-ph] 2 Feb 1999 The energy conservation law in classical electrodynamics E.G.Bessonov Abstract In the framework of the classical Maxwell-Lorentz electrodynamics the

More information

Lecture 8: Maxwell s Equations and Electrical Circuits.

Lecture 8: Maxwell s Equations and Electrical Circuits. Whites, EE 8 Lecture 8 Page of 9 Lecture 8: Maxwell s Equations an Electrical ircuits. Electrical circuit analysis is usually presente as a theory unto itself. However, the basis of electrical circuit

More information

ThroughputScheduler: Learning to Schedule on Heterogeneous Hadoop Clusters

ThroughputScheduler: Learning to Schedule on Heterogeneous Hadoop Clusters ThroughputScheuler: Learning to Scheule on Heterogeneous Haoop Clusters Shehar Gupta, Christian Fritz, Bob Price, Roger Hoover, an Johan e Kleer Palo Alto Research Center, Palo Alto, CA, USA {sgupta, cfritz,

More information

n-parameter families of curves

n-parameter families of curves 1 n-parameter families of curves For purposes of this iscussion, a curve will mean any equation involving x, y, an no other variables. Some examples of curves are x 2 + (y 3) 2 = 9 circle with raius 3,

More information

Exponential Functions: Differentiation and Integration. The Natural Exponential Function

Exponential Functions: Differentiation and Integration. The Natural Exponential Function 46_54.q //4 :59 PM Page 5 5 CHAPTER 5 Logarithmic, Eponential, an Other Transcenental Functions Section 5.4 f () = e f() = ln The inverse function of the natural logarithmic function is the natural eponential

More information

HW 7 Q 14,20,20,23 P 3,4,8,6,8. Chapter 7. Rotational Motion of the Object. Dr. Armen Kocharian

HW 7 Q 14,20,20,23 P 3,4,8,6,8. Chapter 7. Rotational Motion of the Object. Dr. Armen Kocharian HW 7 Q 14,20,20,23 P 3,4,8,6,8 Chapter 7 Rotational Motion of the Object Dr. Armen Kocharian Axis of Rotation The radian is a unit of angular measure The radian can be defined as the arc length s along

More information

15.2. First-Order Linear Differential Equations. First-Order Linear Differential Equations Bernoulli Equations Applications

15.2. First-Order Linear Differential Equations. First-Order Linear Differential Equations Bernoulli Equations Applications 00 CHAPTER 5 Differential Equations SECTION 5. First-Orer Linear Differential Equations First-Orer Linear Differential Equations Bernoulli Equations Applications First-Orer Linear Differential Equations

More information

Using Stein s Method to Show Poisson and Normal Limit Laws for Fringe Subtrees

Using Stein s Method to Show Poisson and Normal Limit Laws for Fringe Subtrees AofA 2014, Paris, France DMTCS proc. (subm., by the authors, 1 12 Using Stein s Metho to Show Poisson an Normal Limit Laws for Fringe Subtrees Cecilia Holmgren 1 an Svante Janson 2 1 Department of Mathematics,

More information

Part 1. Relativity. Special theory of relativity. Chapter 27. Historical Background. Special Theory of Relativity

Part 1. Relativity. Special theory of relativity. Chapter 27. Historical Background. Special Theory of Relativity Part 1 Relativity Chapter 7 Special theory of relativity Historical Background By the beginning of th century experimental observation that Newtonian s mechanics was not able to explain (Michelson's and

More information

Detecting Possibly Fraudulent or Error-Prone Survey Data Using Benford s Law

Detecting Possibly Fraudulent or Error-Prone Survey Data Using Benford s Law Detecting Possibly Frauulent or Error-Prone Survey Data Using Benfor s Law Davi Swanson, Moon Jung Cho, John Eltinge U.S. Bureau of Labor Statistics 2 Massachusetts Ave., NE, Room 3650, Washington, DC

More information

Math 230.01, Fall 2012: HW 1 Solutions

Math 230.01, Fall 2012: HW 1 Solutions Math 3., Fall : HW Solutions Problem (p.9 #). Suppose a wor is picke at ranom from this sentence. Fin: a) the chance the wor has at least letters; SOLUTION: All wors are equally likely to be chosen. The

More information

Lab 4: Diffraction of Light

Lab 4: Diffraction of Light Lab 4: iffraction of Light 1 Introuction Refer to Appenix for photos of the apparatus iffraction an interference are important phenomena that istinguish waves from particles. Thomas Young first emonstrate

More information

Orbits of the Lennard-Jones Potential

Orbits of the Lennard-Jones Potential Orbits of the Lennard-Jones Potential Prashanth S. Venkataram July 28, 2012 1 Introduction The Lennard-Jones potential describes weak interactions between neutral atoms and molecules. Unlike the potentials

More information

PHYS 251 HONOURS CLASSICAL MECHANICS 2014 Homework Set 6 Solutions

PHYS 251 HONOURS CLASSICAL MECHANICS 2014 Homework Set 6 Solutions PHYS 51 HONOURS CLASSICAL MECHANICS 014 Homework Set 6 Solutions 6.5. Spring on a T Let the l-rod be horizontal (parallel to the x axis at t = 0. Then, as it rotates with constant angular frequency ω,

More information

A Comparison of Performance Measures for Online Algorithms

A Comparison of Performance Measures for Online Algorithms A Comparison of Performance Measures for Online Algorithms Joan Boyar 1, Sany Irani 2, an Kim S. Larsen 1 1 Department of Mathematics an Computer Science, University of Southern Denmark, Campusvej 55,

More information

THEORETICAL MECHANICS

THEORETICAL MECHANICS PROF. DR. ING. VASILE SZOLGA THEORETICAL MECHANICS LECTURE NOTES AND SAMPLE PROBLEMS PART ONE STATICS OF THE PARTICLE, OF THE RIGID BODY AND OF THE SYSTEMS OF BODIES KINEMATICS OF THE PARTICLE 2010 0 Contents

More information

Firewall Design: Consistency, Completeness, and Compactness

Firewall Design: Consistency, Completeness, and Compactness C IS COS YS TE MS Firewall Design: Consistency, Completeness, an Compactness Mohame G. Goua an Xiang-Yang Alex Liu Department of Computer Sciences The University of Texas at Austin Austin, Texas 78712-1188,

More information

Sensor Network Localization from Local Connectivity : Performance Analysis for the MDS-MAP Algorithm

Sensor Network Localization from Local Connectivity : Performance Analysis for the MDS-MAP Algorithm Sensor Network Localization from Local Connectivity : Performance Analysis for the MDS-MAP Algorithm Sewoong Oh an Anrea Montanari Electrical Engineering an Statistics Department Stanfor University, Stanfor,

More information

Average Angular Velocity

Average Angular Velocity Average Angular Velocity Hanno Essén Department of Mechanics Royal Institute of Technology S-100 44 Stockholm, Sweden 199, December Abstract This paper addresses the problem of the separation of rotational

More information

i( t) L i( t) 56mH 1.1A t = τ ln 1 = ln 1 ln 1 6.67ms

i( t) L i( t) 56mH 1.1A t = τ ln 1 = ln 1 ln 1 6.67ms Exam III PHY 49 Summer C July 16, 8 1. In the circuit shown, L = 56 mh, R = 4.6 Ω an V = 1. V. The switch S has been open for a long time then is suenly close at t =. At what value of t (in msec) will

More information

The Standard Form of a Differential Equation

The Standard Form of a Differential Equation Fall 6 The Stanar Form of a Differential Equation Format require to solve a ifferential equation or a system of ifferential equations using one of the comman-line ifferential equation solvers such as rkfie,

More information

Search Advertising Based Promotion Strategies for Online Retailers

Search Advertising Based Promotion Strategies for Online Retailers Search Avertising Base Promotion Strategies for Online Retailers Amit Mehra The Inian School of Business yeraba, Inia Amit Mehra@isb.eu ABSTRACT Web site aresses of small on line retailers are often unknown

More information

APPLIED MATHEMATICS ADVANCED LEVEL

APPLIED MATHEMATICS ADVANCED LEVEL APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

More information

The electronic Hamiltonian in an electromagnetic field

The electronic Hamiltonian in an electromagnetic field The electronic Hamiltonian in an electromagnetic field Trygve Helgaker Department of Chemistry, University of Oslo, P.O.B. 1033 Blindern, N-0315 Oslo, Norway Poul Jørgensen and Jeppe Olsen Department of

More information

Coupled best proximity point theorems for proximally g-meir-keelertypemappings in partially ordered metric spaces

Coupled best proximity point theorems for proximally g-meir-keelertypemappings in partially ordered metric spaces Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 DOI 10.1186/s13663-015-0355-9 R E S E A R C H Open Access Couple best proximity point theorems for proximally g-meir-keelertypemappings in

More information

Universal Gravity Based on the Electric Universe Model

Universal Gravity Based on the Electric Universe Model Universal Gravity Base on the Electric Universe Moel By Frerik Nygaar frerik_nygaar@hotmail.com Nov 015, Porto Portugal. Introuction While most people are aware of both Newton's Universal Law of Gravity

More information

Generally Covariant Quantum Mechanics

Generally Covariant Quantum Mechanics Chapter 15 Generally Covariant Quantum Mechanics by Myron W. Evans, Alpha Foundation s Institutute for Advance Study (AIAS). (emyrone@oal.com, www.aias.us, www.atomicprecision.com) Dedicated to the Late

More information

Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations

Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 3.3 Differentiation of Polynomials an Rational Functions In tis section we begin te task of iscovering rules for ifferentiating various classes of

More information

F ij = Gm im j r i r j 3 ( r j r i ).

F ij = Gm im j r i r j 3 ( r j r i ). Physics 3550, Fall 2012 Newton s Third Law. Multi-particle systems. Relevant Sections in Text: 1.5, 3.1, 3.2, 3.3 Newton s Third Law. You ve all heard this one. Actioni contrariam semper et qualem esse

More information