Risk Adjustment for Poker Players


 Neil McKinney
 3 years ago
 Views:
Transcription
1 Risk Ajustment for Poker Players William Chin DePaul University, Chicago, Illinois Marc Ingenoso Conger Asset Management LLC, Chicago, Illinois September, 2006 Introuction In this article we consier risk aversion for avantage poker players. We iscuss a sense in which poker players can proportionally Kellybet. This results in a metho of prescribing bankroll requirements epening on risk aversion. It also provies a companion to the results of [CI] (in this volume) whose formulæ will apply to poker players exercising bankroll management an stake selection as prescribe. Employing a continuous iffusion moel as in [CI], we show that if stakes are chosen in accorance with bankroll as prescribe, then the bankroll will follow the same stochastic process as for a fractional Kelly bettor with unit variance. One s riskaversion can be parameterize by an instantaneous risk of ruin, or equivalently by a Kelly fraction k, which in turn correspons to a utility function. The Kelly fractions we recommen are ones commonly use by blackjack professionals. In the secon section we use the concept of Certainty Equivalent (CE) to quantify how big a pot must be in orer to call a bet with a rawing han, epening on risk aversion. This makes precise a common assertion that one shoul forgo borerline positive expectation wagers that have high variance. As one might expect, except for longshot raws an low bankroll situations, the effect of riskaversion is small but not negligible. We solve for the CE breakeven points exactly for a range of Kelly fractions an provie numerical computations. Benefitting from the brevity of the onehalf Kelly CE breakeven formula, we obtain a simplifie formula to approximate CE breakeven points, in the last subsection. Our investigation is base on limit holem. With sufficient ata the same consierations shoul apply to other wagering, such as nolimit holem 1
2 an tournaments. The excess pot os values are analogous to riskaverse playing inices in blackjack. 1 Proportional Betting for Poker Players A common rough benchmark for limit holem players (at least up to mistakes) is an hourly expectation of 1 big bet an a variance of 100 big bets square. Thus the unitless ratio of hourly expectation to hourly stanar eviation is 10. While your mileage may vary, we shall see that for our analysis, the ratios of expectation to variance an expectation to stanar eviation are what matter. Some games may have higher expectation, but often their variance is higher, an the reverse may occur. We moel the benchmark situation as Brownian motion with linear rift r = 1 (big bets/hour) an hourly stanar eviation s = 10 big bets. Poker players o not resize their bets as they o in blackjack. But they essentially choose their betting levels by which game they play. Let us assume a fixe ratio of expectation to stanar eviation equal to a positive constant r/s. We moel this game as Brownian motion with linear rift as earlier in this section. The resulting risk of ruin is given in [CI, 3.3 Corollary 3] as exp( 2xr/s 2 ) where x is the bankroll. Now let us assume that the player s risk tolerance is specifie by her Kelly fraction k, an their attenant risk of ruin exp( 2/k). Setting the two risks of ruin equal, we get i.e. xr/s 2 = 1/k x = s 2 /kr This says that the k times Kelly player ieally has a bankroll always equal to s 2 /kr. We note for our benchmark (s 2 /r = 100) game: An optimal (full Kelly) player ieally always choose a game where the bankroll is 100 big bets, an this gives the optimal geometric growth rate. 2
3 As we note in [CI, section 1], betting with k > 1 is always suboptimal. Therefore is always wrong to have less than s 2 /r (=100 big bets in 1 benchmark) as a bankroll. A 3 Kelly player will have 300 big bets. The more conservative quarterkelly players nee 00 big bets, etc. This gives an answer to bankroll requirements for holem players in terms of fractional Kelly betting. The range of answers seem be higher than bankroll recommenations commonly given (sometimes by erroneous reasoning) by poker experts, e.g. [Mal], Overall, more conservative money management is recommene. Important reasons for scaling back k for poker versus blackjack inclue the relative lack of certainty about r an s. Using a value a k = 1/6 an a bank of 600 big bets woul not seem unreasonable. As we pointe out above, even smaller values of k may be appropriate. For an iniviual, the bankroll is one s total net worth minus expenses (incluing the present value of future earnings). However, many efy this efinition an play with a gambling bankroll or what they can affor to lose. In such artificial cases, playing closer to the optimal k = 1 may be recommene. As a practical matter, suppose one settles at a risk tolerance of say aroun k = 1/6 or k = 1/5 an is playing a game with 600 big bets. If a losing streak of 100 big bets occurs, then it is time to consier scaling back to a smaller game. Although the resizing is not perfect, one can operate within certain risk tolerance bouns. One s bankroll B with constant rate of return r an stanar eviation s (for a session of fixe length) is moele by the stochastic equation B = rt + sw, which results in Brownian motion with linear rift at rate r. Mathematically, the player that chooses stakes accoring to his or her bankroll as we have just prescribe is equivalent to a fractional Kelly bettor. Precisely, the equivalence is given by the following observation, whose proof is a simple algebraic simplification. Conclusion 1 Consier the equation B = rt + sw where W is a stanar Wiener process. If µ = r/s is a positive constant an stakes are always chosen so that B = s 2 /(kr), then the equation is the same as B = kµ 2 Bt+kµBW. The bankroll will thus follow the same process as the fractional Kelly bettor. The latter equation is our iffusion for k times Kelly, with unit, as iscusse in section 1 in [CI]. Proof. Set µ = r s 3
4 an assume that this ratio is constant. A player who continuously ajusts stakes so that B = s2 kr satisfies B = r B B t + sb B W = r kr Bt + s kr BW s 2 s 2 ( r ) 2 r = k Bt + k s s BW = kµ 2 Bt + kµbw This is proportional betting paraigm for fractional Kelly betting, with growth rate µ = r s an σ = 1. 2 Micro Risk Ajustment A basic wager is to win a pot of p bets, risking a call of 1 unit where the rawing os are 1 :, i.e., the wager will be won with probability The expecte value of the wager is p = p + 1. Let x = p the excess pot os. It is ruimentary that p = (i.e. x = 0) is the breakeven point for expectation. The Certainty Equivalent (CE) of a wager X is the riskfree value that has utility equal to the expecte utility of X. CE is use as a riskajuste way of comparing bets, epening on the choice of utility function u(t). We use utility functions u(t) = t1 1 k 1 1 k which correspon to the Kelly fraction k with 0 < k < 1. Full Kelly betting at k 1 correspons to u(t) = ln t. We CE equal to zero an solve for x using various values of, k an B. It is important to keep in min that the values of B an x are measure in units of bets. So if when the (limit holem) pot is raise your bankroll is numerically halve. The values of x give the excess pot size require to break even in CE, in excess of what woul be require by pure expectation. Thus, to break even in CE the pot size nees to be p = x +.
5 2.1 k = 1 The CE breakeven point for logarithmic utility is expresse by v(u(b 1) u(b + x + )( )) = B where u(t) = ln t an v(t) = exp t,which has exact solution for x: 2.2 k =.5 f(, B) = x = B exp ( (ln(b 1) + (ln B) ) B We set u(t) = t 1 = v(t) an obtain the relatively simple CE breakeven point function ( + 1) f(x, B) = B k = 1/3 Let u(t) = 1/t 2 an v(t) = ( t) 1 2. quaratic breakeven equation is The meaningful solution to the x = 1 2 (1 + 2B + B 2 2B) (2B 2 2B B 2 + B 2 + B 2 2B 3 2 (B 2 + B 2 B 3 + 5B B 3 + 6B 2B 5 B 5 + B 6 )). 2. k = 1/ Let u(t) = 1/t 3 an v(t) = ( t) 1 3. The meaningful solution to the cubic breakeven equation is B x = B 2 3B B 3 + 3B 2 3B ( ( B 3 + 3B 2 3B + 1 ) ( B 2 3B B 3 + 3B 2 3B ) ) B 5
6 2.5 Breakeven tables with fixe k Using the breakeven formulae above we tabulate values of x. The values of are chosen to reflect some holem rawing os. E.g. = 6 is a longshot raw to a single out, whereas = is approximately for a straight or flush raw. k = 1 6 B = B = B = B = k = 1/2 6 B = B = B = B = k = 1/3 6 B = B = B = B =
7 k = 1/ 6 B = B = B = B = The missing values o not exist as real numbers, so unless the pot has imaginary chips, you shoul not call in these situations. The paraoxical lack of real solutions is an is explaine by the fact that the utilty function is boune above. Notice that the values for fixe kb (e.g. kb = 100 in bolface) are very close for a range of values of B an. This is perhaps unsurprising given the popular continuous CE approximation E s2 p 2kB with expectation E = +1, though it is an approximation that we have iscare as inaccurate for the current computations. 2.6 Approximations We use k =.5 as a moel an ajust for other k s proportionally x = ( + 1) 2k(B 1) or as a slightly more crue unerestimate: ( + 1) x = 2kB For the sake of comparison, we show the approximate values versus the more cruely unerestimate ones for two values of kb. The result is that the approximate values are quite goo except for the longshot raws. kb = 50 6 k = k = k = 1/ k = 1/ (+1) 2kB
8 kb = k = k = k = k = (+1) References [CI] W. Chin an M. Ingenoso, Risk Formulæ for Proportional Betting. [Mal] M. Malmuth, Gambling Theory an Other Topics, Two Plus Two Publishing Las Vegas Poker Essays, Two Plus Two Publishing
Risk Formulæ for Proportional Betting
Risk Formulæ for Proportional Betting William Chin DePaul University, Chicago, Illinois Marc Ingenoso Conger Asset Management LLC, Chicago, Illinois September 9, 2006 Introduction A canon of the theory
More informationRisk Management for Derivatives
Risk Management or Derivatives he Greeks are coming the Greeks are coming! Managing risk is important to a large number o iniviuals an institutions he most unamental aspect o business is a process where
More informationCURRENCY OPTION PRICING II
Jones Grauate School Rice University Masa Watanabe INTERNATIONAL FINANCE MGMT 657 Calibrating the Binomial Tree to Volatility BlackScholes Moel for Currency Options Properties of the BS Moel Option Sensitivity
More informationOptimal Betting Spreads
1 Optimal Betting Spreads The tables of Optimal Betting Spreads, in Chapters 610 of The Brh Systems Book, contain all the information which a player requires to design Betting Schemes which fit their
More informationBetting with the Kelly Criterion
Betting with the Kelly Criterion Jane June 2, 2010 Contents 1 Introduction 2 2 Kelly Criterion 2 3 The Stock Market 3 4 Simulations 5 5 Conclusion 8 1 Page 2 of 9 1 Introduction Gambling in all forms,
More informationOn Adaboost and Optimal Betting Strategies
On Aaboost an Optimal Betting Strategies Pasquale Malacaria 1 an Fabrizio Smerali 1 1 School of Electronic Engineering an Computer Science, Queen Mary University of Lonon, Lonon, UK Abstract We explore
More informationIntroduction to the Rebate on Loss Analyzer Contact: JimKilby@usa.net 7024367954
Introduction to the Rebate on Loss Analyzer Contact: JimKilby@usa.net 7024367954 One of the hottest marketing tools used to attract the premium table game customer is the "Rebate on Loss." The rebate
More informationLoss rebates. December 27, 2004
Loss rebates December 27, 2004 1 Introduction The game is defined by a list of payouts u 1, u 2,..., u l, and a list of probabilities p 1, p 2,..., p l, p i = 1. We allow u i to be rational numbers, not
More informationLecture 17: Implicit differentiation
Lecture 7: Implicit ifferentiation Nathan Pflueger 8 October 203 Introuction Toay we iscuss a technique calle implicit ifferentiation, which provies a quicker an easier way to compute many erivatives we
More informationProbability and Expected Value
Probability and Expected Value This handout provides an introduction to probability and expected value. Some of you may already be familiar with some of these topics. Probability and expected value are
More informationMSc. Econ: MATHEMATICAL STATISTICS, 1995 MAXIMUMLIKELIHOOD ESTIMATION
MAXIMUMLIKELIHOOD ESTIMATION The General Theory of ML Estimation In orer to erive an ML estimator, we are boun to make an assumption about the functional form of the istribution which generates the
More informationPhantom bonuses. November 22, 2004
Phantom bonuses November 22, 2004 1 Introduction The game is defined by a list of payouts u 1, u 2,..., u l, and a list of probabilities p 1, p 2,..., p l, p i = 1. We allow u i to be rational numbers,
More informationThe oneyear nonlife insurance risk
The oneyear nonlife insurance risk Ohlsson, Esbjörn & Lauzeningks, Jan Abstract With few exceptions, the literature on nonlife insurance reserve risk has been evote to the ultimo risk, the risk in the
More informationCHAPTER 5 : CALCULUS
Dr Roger Ni (Queen Mary, University of Lonon)  5. CHAPTER 5 : CALCULUS Differentiation Introuction to Differentiation Calculus is a branch of mathematics which concerns itself with change. Irrespective
More informationAutomatic Bet Tracker!
Russell Hunter Street Smart Roulette Automatic Bet Tracker! Russell Hunter Publishing, Inc. Street Smart Roulette Automatic Bet Tracker 2015 Russell Hunter and Russell Hunter Publishing, Inc. All Rights
More informationCalibration of the broad band UV Radiometer
Calibration of the broa ban UV Raiometer Marian Morys an Daniel Berger Solar Light Co., Philaelphia, PA 19126 ABSTRACT Mounting concern about the ozone layer epletion an the potential ultraviolet exposure
More informationExpected Value. 24 February 2014. Expected Value 24 February 2014 1/19
Expected Value 24 February 2014 Expected Value 24 February 2014 1/19 This week we discuss the notion of expected value and how it applies to probability situations, including the various New Mexico Lottery
More informationState of Louisiana Office of Information Technology. Change Management Plan
State of Louisiana Office of Information Technology Change Management Plan Table of Contents Change Management Overview Change Management Plan Key Consierations Organizational Transition Stages Change
More informationPicking Winners is For Losers: A Strategy for Optimizing Investment Outcomes
Picking Winners is For Losers: A Strategy for Optimizing Investment Outcomes Clay graham DePaul University Risk Conference Las Vegas  November 11, 2011 REMEMBER Picking a winner is not at all the same
More information1 Interest rates, and riskfree investments
Interest rates, and riskfree investments Copyright c 2005 by Karl Sigman. Interest and compounded interest Suppose that you place x 0 ($) in an account that offers a fixed (never to change over time)
More informationChapter 7: Proportional Play and the Kelly Betting System
Chapter 7: Proportional Play and the Kelly Betting System Proportional Play and Kelly s criterion: Investing in the stock market is, in effect, making a series of bets. Contrary to bets in a casino though,
More informationHow to Beat Online Roulette!
Martin J. Silverthorne How to Beat Online Roulette! Silverthorne Publications, Inc. How to Beat Online Roulette! COPYRIGHT 2015 Silverthorne Publications Inc. All rights reserved. Except for brief passages
More informationy or f (x) to determine their nature.
Level C5 of challenge: D C5 Fining stationar points of cubic functions functions Mathematical goals Starting points Materials require Time neee To enable learners to: fin the stationar points of a cubic
More informationThe New Mexico Lottery
The New Mexico Lottery 26 February 2014 Lotteries 26 February 2014 1/27 Today we will discuss the various New Mexico Lottery games and look at odds of winning and the expected value of playing the various
More informationWe employed reinforcement learning, with a goal of maximizing the expected value. Our bot learns to play better by repeated training against itself.
Date: 12/14/07 Project Members: Elizabeth Lingg Alec Go Bharadwaj Srinivasan Title: Machine Learning Applied to Texas Hold 'Em Poker Introduction Part I For the first part of our project, we created a
More informationThe Ultimate Blackjack System
The Ultimate Blackjack System Thank you Thank you for your interest in this incredible system. Soon you will be making money from online Blackjack. This book comes with full resale rights. Please feel
More information10.2 Systems of Linear Equations: Matrices
SECTION 0.2 Systems of Linear Equations: Matrices 7 0.2 Systems of Linear Equations: Matrices OBJECTIVES Write the Augmente Matrix of a System of Linear Equations 2 Write the System from the Augmente Matrix
More informationAnswers to the Practice Problems for Test 2
Answers to the Practice Problems for Test 2 Davi Murphy. Fin f (x) if it is known that x [f(2x)] = x2. By the chain rule, x [f(2x)] = f (2x) 2, so 2f (2x) = x 2. Hence f (2x) = x 2 /2, but the lefthan
More informationTexas Hold em. From highest to lowest, the possible five card hands in poker are ranked as follows:
Texas Hold em Poker is one of the most popular card games, especially among betting games. While poker is played in a multitude of variations, Texas Hold em is the version played most often at casinos
More informationפרויקט מסכם לתואר בוגר במדעים )B.Sc( במתמטיקה שימושית
המחלקה למתמטיקה Department of Mathematics פרויקט מסכם לתואר בוגר במדעים )B.Sc( במתמטיקה שימושית הימורים אופטימליים ע"י שימוש בקריטריון קלי אלון תושיה Optimal betting using the Kelly Criterion Alon Tushia
More informationChapter 2 Review of Classical Action Principles
Chapter Review of Classical Action Principles This section grew out of lectures given by Schwinger at UCLA aroun 1974, which were substantially transforme into Chap. 8 of Classical Electroynamics (Schwinger
More informationThe BlackScholes Formula
FIN40008 FINANCIAL INSTRUMENTS SPRING 2008 The BlackScholes Formula These notes examine the BlackScholes formula for European options. The BlackScholes formula are complex as they are based on the
More informationRating Systems for Fixed Odds Football Match Prediction
FootballData 2003 1 Rating Systems for Fixed Odds Football Match Prediction What is a Rating System? A rating system provides a quantitative measure of the superiority of one football team over their
More informationWeek 5: Expected value and Betting systems
Week 5: Expected value and Betting systems Random variable A random variable represents a measurement in a random experiment. We usually denote random variable with capital letter X, Y,. If S is the sample
More informationSection 7C: The Law of Large Numbers
Section 7C: The Law of Large Numbers Example. You flip a coin 00 times. Suppose the coin is fair. How many times would you expect to get heads? tails? One would expect a fair coin to come up heads half
More informationMathematical Analysis Of Packs Poker. September 22, 2014. Prepared For John Feola New Vision Gaming 5 Samuel Phelps Way North Reading, MA 01864
Mathematical Analysis Of Packs Poker September 22, 2014 Prepared For John Feola New Vision Gaming 5 Samuel Phelps Way North Reading, MA 01864 Office: 978 6641515 Fax: 978664  5117 www.newvisiongaming.com
More informationUCLA STAT 13 Introduction to Statistical Methods for the Life and Health Sciences. Chapter 9 Paired Data. Paired data. Paired data
UCLA STAT 3 Introuction to Statistical Methos for the Life an Health Sciences Instructor: Ivo Dinov, Asst. Prof. of Statistics an Neurology Chapter 9 Paire Data Teaching Assistants: Jacquelina Dacosta
More informationCh 10. Arithmetic Average Options and Asian Opitons
Ch 10. Arithmetic Average Options an Asian Opitons I. Asian Option an the Analytic Pricing Formula II. Binomial Tree Moel to Price Average Options III. Combination of Arithmetic Average an Reset Options
More informationPurpose of the Experiments. Principles and Error Analysis. ε 0 is the dielectric constant,ε 0. ε r. = 8.854 10 12 F/m is the permittivity of
Experiments with Parallel Plate Capacitors to Evaluate the Capacitance Calculation an Gauss Law in Electricity, an to Measure the Dielectric Constants of a Few Soli an Liqui Samples Table of Contents Purpose
More information19.2. First Order Differential Equations. Introduction. Prerequisites. Learning Outcomes
First Orer Differential Equations 19.2 Introuction Separation of variables is a technique commonly use to solve first orer orinary ifferential equations. It is socalle because we rearrange the equation
More informationLagrangian and Hamiltonian Mechanics
Lagrangian an Hamiltonian Mechanics D.G. Simpson, Ph.D. Department of Physical Sciences an Engineering Prince George s Community College December 5, 007 Introuction In this course we have been stuying
More informationCrossOver Analysis Using TTests
Chapter 35 CrossOver Analysis Using ests Introuction his proceure analyzes ata from a twotreatment, twoperio (x) crossover esign. he response is assume to be a continuous ranom variable that follows
More informationFluid Pressure and Fluid Force
0_0707.q //0 : PM Page 07 SECTION 7.7 Section 7.7 Flui Pressure an Flui Force 07 Flui Pressure an Flui Force Fin flui pressure an flui force. Flui Pressure an Flui Force Swimmers know that the eeper an
More informationDuring the course of our research on NBA basketball, we found out a couple of interesting principles.
After mining all the available NBA data for the last 15 years, we found the keys to a successful basketball betting system: If you follow this system exactly, you can expect to hit 90% of your NBA bets.
More informationSOME ASPECTS OF GAMBLING WITH THE KELLY CRITERION. School of Mathematical Sciences. Monash University, Clayton, Victoria, Australia 3168
SOME ASPECTS OF GAMBLING WITH THE KELLY CRITERION Ravi PHATARFOD School of Mathematical Sciences Monash University, Clayton, Victoria, Australia 3168 In this paper we consider the problem of gambling with
More informationLearn How to Use The Roulette Layout To Calculate Winning Payoffs For All Straightup Winning Bets
Learn How to Use The Roulette Layout To Calculate Winning Payoffs For All Straightup Winning Bets Understand that every square on every street on every roulette layout has a value depending on the bet
More informationMODELLING OF TWO STRATEGIES IN INVENTORY CONTROL SYSTEM WITH RANDOM LEAD TIME AND DEMAND
art I. robobabilystic Moels Computer Moelling an New echnologies 27 Vol. No. 23 ransport an elecommunication Institute omonosova iga V9 atvia MOEING OF WO AEGIE IN INVENOY CONO YEM WIH ANOM EA IME AN
More informationTABLE OF CONTENTS. ROULETTE FREE System #1  2 ROULETTE FREE System #2  4  5
IMPORTANT: This document contains 100% FREE gambling systems designed specifically for ROULETTE, and any casino game that involves even money bets such as BLACKJACK, CRAPS & POKER. Please note although
More informationOver the past few years, management in
Effects of Downloadable Credit Free Play on Revenue by Stephen M. Simon Over the past few years, management in many casinos have observed a decrease in the Hold percent on their casino floors. They have
More information6.042/18.062J Mathematics for Computer Science. Expected Value I
6.42/8.62J Mathematics for Computer Science Srini Devadas and Eric Lehman May 3, 25 Lecture otes Expected Value I The expectation or expected value of a random variable is a single number that tells you
More informationDifferentiability of Exponential Functions
Differentiability of Exponential Functions Philip M. Anselone an John W. Lee Philip Anselone (panselone@actionnet.net) receive his Ph.D. from Oregon State in 1957. After a few years at Johns Hopkins an
More informationTHE WINNING ROULETTE SYSTEM by http://www.webgoldminer.com/
THE WINNING ROULETTE SYSTEM by http://www.webgoldminer.com/ Is it possible to earn money from online gambling? Are there any 100% sure winning roulette systems? Are there actually people who make a living
More informationExponential Functions: Differentiation and Integration. The Natural Exponential Function
46_54.q //4 :59 PM Page 5 5 CHAPTER 5 Logarithmic, Eponential, an Other Transcenental Functions Section 5.4 f () = e f() = ln The inverse function of the natural logarithmic function is the natural eponential
More informationM147 Practice Problems for Exam 2
M47 Practice Problems for Exam Exam will cover sections 4., 4.4, 4.5, 4.6, 4.7, 4.8, 5., an 5.. Calculators will not be allowe on the exam. The first ten problems on the exam will be multiple choice. Work
More informationExpected Value and the Game of Craps
Expected Value and the Game of Craps Blake Thornton Craps is a gambling game found in most casinos based on rolling two six sided dice. Most players who walk into a casino and try to play craps for the
More information2 HYPERBOLIC FUNCTIONS
HYPERBOLIC FUNCTIONS Chapter Hyperbolic Functions Objectives After stuying this chapter you shoul unerstan what is meant by a hyperbolic function; be able to fin erivatives an integrals of hyperbolic functions;
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS Contents 1. Moment generating functions 2. Sum of a ranom number of ranom variables 3. Transforms
More informationMA 1125 Lecture 14  Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.
MA 5 Lecture 4  Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the
More informationBetting systems: how not to lose your money gambling
Betting systems: how not to lose your money gambling G. Berkolaiko Department of Mathematics Texas A&M University 28 April 2007 / Mini Fair, Math Awareness Month 2007 Gambling and Games of Chance Simple
More informationModelling and Resolving Software Dependencies
June 15, 2005 Abstract Many Linux istributions an other moern operating systems feature the explicit eclaration of (often complex) epenency relationships between the pieces of software
More informationDigital barrier option contract with exponential random time
IMA Journal of Applie Mathematics Avance Access publishe June 9, IMA Journal of Applie Mathematics ) Page of 9 oi:.93/imamat/hxs3 Digital barrier option contract with exponential ranom time Doobae Jun
More informationSensitivity Analysis of Nonlinear Performance with Probability Distortion
Preprints of the 19th Worl Congress The International Feeration of Automatic Control Cape Town, South Africa. August 2429, 214 Sensitivity Analysis of Nonlinear Performance with Probability Distortion
More informationTwoState Options. John Norstad. jnorstad@northwestern.edu http://www.norstad.org. January 12, 1999 Updated: November 3, 2011.
TwoState Options John Norstad jnorstad@northwestern.edu http://www.norstad.org January 12, 1999 Updated: November 3, 2011 Abstract How options are priced when the underlying asset has only two possible
More informationBetting Terms Explained www.sportsbettingxtra.com
Betting Terms Explained www.sportsbettingxtra.com To most people betting has a language of its own, so to help, we have explained the main terms you will come across when betting. STAKE The stake is the
More information7. Continuously Varying Interest Rates
7. Continuously Varying Interest Rates 7.1 The Continuous Varying Interest Rate Formula. Suppose that interest is continuously compounded with a rate which is changing in time. Let the present time be
More informationJON HOLTAN. if P&C Insurance Ltd., Oslo, Norway ABSTRACT
OPTIMAL INSURANCE COVERAGE UNDER BONUSMALUS CONTRACTS BY JON HOLTAN if P&C Insurance Lt., Oslo, Norway ABSTRACT The paper analyses the questions: Shoul or shoul not an iniviual buy insurance? An if so,
More information20122013 Enhanced Instructional Transition Guide Mathematics Algebra I Unit 08
01013 Enhance Instructional Transition Guie Unit 08: Exponents an Polynomial Operations (18 ays) Possible Lesson 01 (4 ays) Possible Lesson 0 (7 ays) Possible Lesson 03 (7 ays) POSSIBLE LESSON 0 (7 ays)
More informationIntelligent Agent for Playing Casino Card Games
Intelligent Agent for Playing Casino Card Games Sanchit Goyal Department of Computer Science University of North Dakota Grand Forks, ND 58202 sanchitgoyal01@gmail.com Ruchitha Deshmukh Department of Computer
More informationApplying the Kelly criterion to lawsuits
Law, Probability and Risk (2010) 9, 139 147 Advance Access publication on April 27, 2010 doi:10.1093/lpr/mgq002 Applying the Kelly criterion to lawsuits TRISTAN BARNETT Faculty of Business and Law, Victoria
More information3 More on Accumulation and Discount Functions
3 More on Accumulation and Discount Functions 3.1 Introduction In previous section, we used 1.03) # of years as the accumulation factor. This section looks at other accumulation factors, including various
More informationMeasures of distance between samples: Euclidean
4 Chapter 4 Measures of istance between samples: Eucliean We will be talking a lot about istances in this book. The concept of istance between two samples or between two variables is funamental in multivariate
More informationFootball Bets Explained
Football Bets Explained www.eurofootballtrader.co.uk If you are new to football betting, or have never previously bet on specialist markets such as, Corners, Bookings, Goal Times, Handicaps, etc., this
More informationA Generalization of Sauer s Lemma to Classes of LargeMargin Functions
A Generalization of Sauer s Lemma to Classes of LargeMargin Functions Joel Ratsaby University College Lonon Gower Street, Lonon WC1E 6BT, Unite Kingom J.Ratsaby@cs.ucl.ac.uk, WWW home page: http://www.cs.ucl.ac.uk/staff/j.ratsaby/
More informationPublished in 2003 by High Stakes Publishing, 21 Great Ormond Street, London, WC1N 3JB www.highstakes.co.uk. Copyright Joseph Buchdahl
Published in 2003 by High Stakes Publishing, 21 Great Ormond Street, London, WC1N 3JB www.highstakes.co.uk Copyright Joseph Buchdahl The right of Joseph Buchdahl to be identified as author of this work
More informationAlgebra I. In this technological age, mathematics is more important than ever. When students
In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,
More informationarxiv:1112.0829v1 [math.pr] 5 Dec 2011
How Not to Win a Million Dollars: A Counterexample to a Conjecture of L. Breiman Thomas P. Hayes arxiv:1112.0829v1 [math.pr] 5 Dec 2011 Abstract Consider a gambling game in which we are allowed to repeatedly
More informationThe Kelly Criterion. A closer look at how estimation errors affect portfolio performance. by Adrian Halhjem Sælen. Advisor: Professor Steinar Ekern
NORGES HANDELSHØYSKOLE Bergen, Fall 2012 The Kelly Criterion A closer look at how estimation errors affect portfolio performance by Adrian Halhjem Sælen Advisor: Professor Steinar Ekern Master Thesis in
More informationDEVELOPING A MODEL THAT REFLECTS OUTCOMES OF TENNIS MATCHES
DEVELOPING A MODEL THAT REFLECTS OUTCOMES OF TENNIS MATCHES Barnett T., Brown A., and Clarke S. Faculty of Life and Social Sciences, Swinburne University, Melbourne, VIC, Australia ABSTRACT Many tennis
More information$2 4 40 + ( $1) = 40
THE EXPECTED VALUE FOR THE SUM OF THE DRAWS In the game of Keno there are 80 balls, numbered 1 through 80. On each play, the casino chooses 20 balls at random without replacement. Suppose you bet on the
More informationChapter 4 Lecture Notes
Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a realvalued function defined on the sample space of some experiment. For instance,
More informationGame Theory and Poker
Game Theory and Poker Jason Swanson April, 2005 Abstract An extremely simplified version of poker is completely solved from a game theoretic standpoint. The actual properties of the optimal solution are
More informationA UNIQUE COMBINATION OF CHANCE & SKILL
A UNIQUE COMBINATION OF CHANCE & SKILL The popularity of blackjack stems from its unique combination of chance and skill. The object of the game is to form a hand closer to 21 than the dealer without going
More informationMATHEMATICS OF FINANCE AND INVESTMENT
MATHEMATICS OF FINANCE AND INVESTMENT G. I. FALIN Department of Probability Theory Faculty of Mechanics & Mathematics Moscow State Lomonosov University Moscow 119992 g.falin@mail.ru 2 G.I.Falin. Mathematics
More informationAnswer Key to Problem Set #2: Expected Value and Insurance
Answer Key to Problem Set #2: Expected Value and Insurance 1. (a) We have u (w) = 1 2 w 1 2, so u (w) = 1 4 w 3 2. As we will see below, u (w) < 0 indicates that the individual is riskaverse. (b) The
More informationA New Evaluation Measure for Information Retrieval Systems
A New Evaluation Measure for Information Retrieval Systems Martin Mehlitz martin.mehlitz@ailabor.e Christian Bauckhage Deutsche Telekom Laboratories christian.bauckhage@telekom.e Jérôme Kunegis jerome.kunegis@ailabor.e
More informationHow to Play Blackjack Alex Powell, Jayden Dodson, Triston Williams, Michael DuVall University of North Texas TECM 1700 10/27/2014
How to Play Blackjack Alex Powell, Jayden Dodson, Triston Williams, Michael DuVall University of North Texas TECM 1700 10/27/2014 Blackjack Blackjack is a fun game that can be played either for money at
More informationThe Kelly criterion for spread bets
IMA Journal of Applied Mathematics 2007 72,43 51 doi:10.1093/imamat/hxl027 Advance Access publication on December 5, 2006 The Kelly criterion for spread bets S. J. CHAPMAN Oxford Centre for Industrial
More informationDouble Deck Blackjack
Double Deck Blackjack Double Deck Blackjack is far more volatile than Multi Deck for the following reasons; The Running & True Card Counts can swing drastically from one Round to the next So few cards
More informationThe overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES
INTRODUCTION TO CHANCE VARIABILITY WHAT DOES THE LAW OF AVERAGES SAY? 4 coins were tossed 1600 times each, and the chance error number of heads half the number of tosses was plotted against the number
More informationnparameter families of curves
1 nparameter families of curves For purposes of this iscussion, a curve will mean any equation involving x, y, an no other variables. Some examples of curves are x 2 + (y 3) 2 = 9 circle with raius 3,
More information15.2. FirstOrder Linear Differential Equations. FirstOrder Linear Differential Equations Bernoulli Equations Applications
00 CHAPTER 5 Differential Equations SECTION 5. FirstOrer Linear Differential Equations FirstOrer Linear Differential Equations Bernoulli Equations Applications FirstOrer Linear Differential Equations
More informationAn intertemporal model of the real exchange rate, stock market, and international debt dynamics: policy simulations
This page may be remove to conceal the ientities of the authors An intertemporal moel of the real exchange rate, stock market, an international ebt ynamics: policy simulations Saziye Gazioglu an W. Davi
More informationBonus Maths 2: Variable Bet Sizing in the Simplest Possible Game of Poker (JB)
Bonus Maths 2: Variable Bet Sizing in the Simplest Possible Game of Poker (JB) I recently decided to read Part Three of The Mathematics of Poker (TMOP) more carefully than I did the first time around.
More informationAn Introduction to Utility Theory
An Introduction to Utility Theory John Norstad jnorstad@northwestern.edu http://www.norstad.org March 29, 1999 Updated: November 3, 2011 Abstract A gentle but reasonably rigorous introduction to utility
More informationCHAPTER 6 RISK AND RISK AVERSION
CHAPTER 6 RISK AND RISK AVERSION RISK AND RISK AVERSION Risk with Simple Prospects Risk, Speculation, and Gambling Risk Aversion and Utility Values Risk with Simple Prospects The presence of risk means
More informationValuing Stock Options: The BlackScholesMerton Model. Chapter 13
Valuing Stock Options: The BlackScholesMerton Model Chapter 13 Fundamentals of Futures and Options Markets, 8th Ed, Ch 13, Copyright John C. Hull 2013 1 The BlackScholesMerton Random Walk Assumption
More information6.3 Microbial growth in a chemostat
6.3 Microbial growth in a chemostat The chemostat is a wielyuse apparatus use in the stuy of microbial physiology an ecology. In such a chemostat also known as continuousflow culture), microbes such
More informationUsing simulation to calculate the NPV of a project
Using simulation to calculate the NPV of a project Marius Holtan Onward Inc. 5/31/2002 Monte Carlo simulation is fast becoming the technology of choice for evaluating and analyzing assets, be it pure financial
More information2urbo Blackjack 21.99. 2 9 Hold their face value
2urbo Blackjack Type of Game The game of 2urbo Blackjack utilizes a playerdealer position and is a California game. The playerdealer shall collect all losing wagers, pay all winning wagers, and may not
More informationLecture 2: The Kelly criterion for favorable games: stock market investing for individuals
Lecture 2: The Kelly criterion for favorable games: stock market investing for individuals David Aldous September 8, 2014 Most adults drive/own a car Few adults work in the auto industry. By analogy Most
More information