EXAMPLE 1: THREE-SPAN CONTINUOUS STRAIGHT COMPOSITE I GIRDER Load and Resistance Factor Design (Third Edition -- Customary U.S.

Size: px
Start display at page:

Download "EXAMPLE 1: THREE-SPAN CONTINUOUS STRAIGHT COMPOSITE I GIRDER Load and Resistance Factor Design (Third Edition -- Customary U.S."

Transcription

1 EXAMPLE 1: THREE-SPAN CONTINUOUS STRAIGHT COMPOSITE I GIRDER Load and Resistance Factor Design (Third Edition -- Customary U.S. Units) by Michael A. Grubb, P.E. Bridge Software Development International, Ltd. Cranberry Township, PA and Robert E. Schmidt, E.I.T. SITE-Blauvelt Engineers Pittsburgh, PA DESIGN PARAMETERS SPECIFICATIONS: LRFD Third Edition (004) STRUCTURAL STEEL: - ASTM A 709 Grade HPS 70W for flanges in negative-flexure regions - ASTM A 709 Grade 50W for all other girder and cross-frame steel CONCRETE: f' c 4.0 ksi REINFORCING STEEL: F y 60 ksi ADTT:,000 trucks per day Design Example 3-1

2 BRIDGE CROSS-SECTION CROSS-FRAMES (Article ) The need for diaphragms or cross-frames shall be investigated for all stages of assumed construction procedures and the final condition. The investigation should include, but not be limited to the following: Transfer of lateral wind loads from the bottom of the girder to the deck & from the deck to the bearings, Stability of the bottom flange for all loads when it is in compression, Stability of the top flange in compression prior to curing of the deck, Consideration of any flange lateral bending effects, and Distribution of vertical dead & live loads applied to the structure. Design Example 3-

3 BRIDGE FRAMING PLAN CROSS-SECTION PROPORTIONS Web Depth Span-to-Depth Ratios (Table ) 0.03L 0.03(175.0) 5.6 ft 67. in. Use 69.0 in. Web Thickness (Article ) D ( ) 0.46 in. t w min. Design Example 3-3

4 CROSS-SECTION PROPORTIONS (continued) Flange Width (Article ) ( ) D/6 69.0/ in. b f min. L (1) 85 ( ) 14.1in. b fc min. Flange Thickness (Article ) ( t ) 1.1t 1.1( 0.565) 0.6 in. f min w Design Example 3-4

5 CROSS-SECTION PROPORTIONS (continued) Flange Width-to-Thickness (Article ) b t f 18 ( 0.875) 10.3 f < 1.0 ok Flange Moments of Inertia (Article ) I I yc yt ( ) ( 18) < 0.51 < 10 ok 1 DEAD LOADS (Article 3.5.1) Component Dead Load (DC 1 ) DC 1 component dead load acting on the noncomposite section - Concrete deck k/ft (incl. integral w.s.) - Overhang tapers 0.14 k/ft - Deck haunches k/ft - SIP forms k/ft - Cross-frames 0.10 k/ft & details TOTAL k/ft 4 girders k/ft + girder weight Design Example 3-5

6 DEAD LOADS (continued) Component Dead Load (DC ) DC component dead load acting on the composite section - Barriers 0.50/ 0.60 k/ft Note: Distributed equally to exterior girder & adjacent interior girder Wearing Surface Load (DW) - Wearing surface [0.05 x 40.0]/4 girders 0.50 k/ft Note: Distributed equally to each girder Basic LRFD Design Live Load HL-93 - (Article ) Design Truck: or Design Tandem: Pair of 5.0 KIP axles spaced 4.0 FT apart superimposed on Design Lane Load 0.64 KLF uniformly distributed load Design Example 3-6

7 LRFD Negative Moment Loading (Article ) For negative moment between points of permanent-load contraflexure & interior-pier reactions, check an additional load case: Add a second design truck to the design lane load, with a minimum headway between the front and rear axles of the two trucks equal to 50 feet. Fix the rear-axle spacing of both design trucks at 14 feet, and Reduce all loads by 10 percent. LRFD Fatigue Load (Article ) Design Truck only > w/ fixed 30-ft rearaxle spacing placed in a single lane Design Example 3-7

8 LOAD for OPTIONAL LIVE-LOAD DEFLECTION EVALUATION Refer to Article : Deflection is taken as the larger of: - That resulting from the design truck by itself. - That resulting from 5% of the design truck together with the design lane load. WIND LOADS (Article 3.8) DZ D V P PB Ł VB ł VDZ PB 10,000 P B base wind pressure ksf for beams V DZ design wind velocity at elevation Z V B base wind velocity at 30 ft height 100 mph Eq. ( ) For this example, assume the bridge is 35 ft above low ground & located in open country. Design Example 3-8

9 WIND LOADS (continued) V DZ.5V o V Ł V 30 B ln ł Ł Z Z o ł Eq. ( ) V o friction velocity 8. mph for open country V 30 wind velocity at 30 ft above low ground V B 100 mph in absence of better information Z height of structure above low ground (> 30 ft) Z o friction length of upstream fetch 0.3 ft for open country WIND LOADS (continued) w V DZ.5 Ł100 ł Ł0.3 ł Ø( 103.0) ø PD 0.050Œ œ ksf º 10,000 ß ( 8.0) ln mph PD hexp 0.053(10.41) 0.55 kips / ft > 0.3 kips / ft ok Design Example 3-9

10 Basic LRFD Design Equation S? i? i Q i fr n R r Eq. ( ) where:? i? D? R? I? i 0.95 for maximum g s? i h h h 0.95 for minimum g s D R I? i Load factor f Resistance factor Q i Nominal force effect R n Nominal resistance R r Factored resistance fr n 1 Load Combinations and Load Factors Load Combination Limit State DC DD DW EH EV ES LL IM CE BR PL LS WA WS WL FR TU CR SH TG SE Use One of These at a Time EQ IC CT CV STRENGTH-I? p /1.0? TG? SE STRENGTH-II? p /1.0? TG? SE STRENGTH-III? p /1.0? TG? SE STRENGTH-IV EH, EV, ES, DW DC ONLY? p / STRENGTH-V? p /1.0? TG? SE EXTREME-I? p? EQ EXTREME-II? p SERVICE-I /1.0? TG? SE SERVICE-II / SERVICE-III /1.0? TG? SE FATIGUE-LL, IM & CE ONLY Design Example 3-10

11 Load Factors for Permanent Loads,? p Load Factor Type of Load Maximum Minimum DC: Component and Attachments DD: Downdrag DW: Wearing Surfaces and Utilities EH: Horizontal Earth Pressure Active At-Rest EV: Vertical Earth Pressure Overall Stability Retaining Structure Rigid Buried Structure Rigid Frames N/A LRFD LOAD COMBINATIONS (continued) Construction Loads (Article 3.4.): STRENGTH I - Construction loads -> Load factor DW -> Load factor 1.5 STRENGTH III - Construction dead loads -> Load factor Wind loads -> Load factor DW -> Load factor 1.5 STRENGTH V - Construction dead loads -> Load factor DW -> Load factor 1.5 Design Example 3-11

12 STRUCTURAL ANALYSIS Summary -- Live-Load Distribution Factors: Strength Limit State Interior Girder Exterior Girder Bending Moment lanes lanes Shear 1.08 lanes lanes Fatigue Limit State Interior Girder Exterior Girder Bending Moment lanes lanes Shear lanes lanes STRUCTURAL ANALYSIS (continued) Distribution Factor for Live-Load Deflection: NL DF m3 ŁNb ł lanes Ł 4 ł Design Example 3-1

13 STRUCTURAL ANALYSIS (continued) Dynamic Load Allowance Impact (IM) COMPONENT Deck Joints All Limit States All Other Components - Fatigue & Fracture Limit State - All Other Limit States (applied to design truck only not to design lane load) IM 75% 15% 33% Design Example 3-13

14 Design Example 3-14

15 STRUCTURAL ANALYSIS (continued) Live Load Deflection Design Truck + IM (SERVICE I): (D LL+IM ) end span 0.91 in. (governs) (D LL+IM ) center span 1.3 in. (governs) 100% Design Lane + 5% Design Truck + IM (SERVICE I): (D LL+IM ) end span (0.91) 0.83 in. (D LL+IM ) center span (1.3) 1.16 in. Design Example 3-15

16 LRFD LIMIT STATES The LRFD Specifications require examination of the following limit states: SERVICE LIMIT STATE FATIGUE & FRACTURE LIMIT STATE STRENGTH LIMIT STATE - (CONSTRUCTIBILITY) EXTREME EVENT LIMIT STATE SECTION PROPERTIES Section L 1 ) Effective Flange Width (Article ): Interior Girder or or 1.0t s L 4 b x 1 4 tf 1.0 ( 9.0) in in. (governs) average spacing of girders in. + Design Example 3-16

17 SECTION PROPERTIES (continued) Section L 1 ) or or Effective Flange Width (Article ): Exterior Girder L x in t s btf ( 9.0) in. 4 + widthof the overhang in in. (governs) SECTION PROPERTIES (continued) Section L 1 ) Plastic Moment (Article D Appendix D): P + P t w + P 3,060 kips < 3,763 kips \ PNA is in the top flange,use Case II P c s M p A F steel y 0.85f ' b c 75.5(50) 3,763 kips eff t s 0.85(4.0)(100.0)(9.0) 3,060 kips tc ØPw + Pt - Ps ø y 1 Œ + P œ º c ß 0.44 in. from the top of the top flange [ y + ( tc - y) ] + [ Psds + Pw dw + Ptdt ] Pc tc M p 170,38 kip -in. 14,199 kip- ft Design Example 3-17

18 SECTION PROPERTIES (continued) Section L 1 ) Yield Moment (Article D Appendix D): M M M M + M MD1 MD M F y + + S S S NC LT AD (,0)( 1) 1.5( 335)( 1) ( 3)( 1) Ø Œ + º 1,973 M 78,06 kip- in. 6,517 kip-ft AD y y y D1 [ (,0) + 1.5( 335) ( 3) + 6,517] D + M 10,171kip-ft AD (M p / M y 1.4) ST,483 MAD ø +,706œ ß SECTION PROPERTIES (continued) Section - Interior Pier) Effective Flange Width (Art ): Exterior Girder in. Min. Concrete Deck Reinforcement (Article ): 9.0 Ø ø A 1 Œ º 1 Ł łł 1 łß œ ( 43.0) ft 4,776 in deck. 0.01(4,776) in in. ft in. in (100.5) in. from bot. of the deck Design Example 3-18

19 Constructibility DECK-PLACEMENT SEQUENCE Design Example 3-19

20 Table 1: Moments from Deck-Placement Analysis Span -> 1 Unfactored Dead-Load Moments (kip-ft) Length (ft) Steel Weight SIP Forms (SIP) Cast Sum of Casts + SIP Max. +M DC + DW Deck, haunches + SIP M 35 +,537,889 kip-ft Table : Vertical Deflections from Deck-Placement Analysis Span ->1 Unfactored Vertical Dead-Load Deflections (In.) Length (ft) Steel Weight SIP Forms (SIP) Cast Sum of Casts + SIP DC + DW Total Deck, haunches + SIP Design Example 3-0

21 Table 3: Unfactored Vertical Dead-Load Reactions from Deck-Placement Analysis (kips) Abut. 1 Pier 1 Pier Abut. Steel Weight sum SIP Forms (SIP) sum Cast sum Cast sum Cast sum Sum of Casts + SIP DC + DW Total Deck, haunches SIP DECK-PLACEMENT ANALYSIS (continued) Calculate f bu : (at Section 1-1 -> 56-0 from abut.) For STRENGTH I: Top flange: Bot. flange: 1.0(1.5)(,889)(1) fbu -7.41ksi 1, (1.5)(,889)(1) f bu 1.96 ksi 1,973 For STRENGTH IV: Top flange: Bot. flange: 1.0(1.5)(,889)(1) fbu ksi 1, (1.5)(,889)(1) f bu 6.36 ksi 1,973 Design Example 3-1

22 DECK-OVERHANG LOADS F P tan a 3.5 ft a tan -1 Ł 5.75 ft ł o 31.3 DECK OVERHANG LOADS (continued) Deck overhang weight: P 55 lbs/ft Construction loads: Overhang deck forms: Screed rail: Walkway: Railing: Finishing machine: P 40 lbs/ft P 85 lbs/ft P 15 lbs/ft P 5 lbs/ft P 3000 lbs Design Example 3-

23 DECK OVERHANG LOADS (continued) Determine if amplification of first-order compression-flange f l is required: L b 4-0 If: L 1.L b p CbR f F bm b yc then, no amplification f 0.85 l fl1 fbm Otherwise: Eq. ( ) 1- Ł F cr ł f l1 Or: f l (AF)fl f 1 l1 DECK OVERHANG LOADS (continued) R b 1.0 L 1.L b bm C b 1.0 f bm f bu ksi (STRENGTH IV) p CbR f F b yc Eq. ( ) L 1.0r p yc Eq. ( ) t E F where: r t b fc 1 Dct 1 1+ Ł 3bfct w fc ł Eq. ( ) Design Example 3-3

24 DECK OVERHANG LOADS (continued) For the steel section at Section 1-1, D c in. 16 r t 3.90 in (0.5) 1 1 Ł (1) ł 1.0(3.90) 9,000 L p 7.83 ft (1.0) 1. b ( 7.83) ft < L 4.0 ft DECK OVERHANG LOADS (continued) Therefore, amplification of the first-order compression-flange f l is required: CbRbp E Fcr Calculate F cr : L Eq. ( ) b Ł rt ł 1.0(1.0) p (9,000) 4(1) Ł 3.90 ł Fcr 5.49 ksi Note: F cr may exceed R b R h F yc in this calculation. Note: assumes K 1.0 (see Appendix A of example) Design Example 3-4

25 DECK OVERHANG LOADS (continued) The amplification factor is determined as: For STRENGTH I: 0.85 AF 1.78 > Ł 5.49 ł ok For STRENGTH IV: 0.85 AF.8 > Ł 5.49 ł ok DECK OVERHANG LOADS (continued) For STRENGTH I: Dead loads: [ + 1.5( ) ] lbs / ft P (55) F F P tana 731.3tan( 31.3 o l ) F L ( 4) M b l l 1.34 kip - ft 1 1 M 1.34(1) Top flange: f l l 6.00 ksi Sl 1(16) lbs / ft M 1.34(1) Bot. flange: f l l 3.45 ksi Sl 1.375(18) 6 Design Example 3-5

26 DECK OVERHANG LOADS (continued) For STRENGTH I: Finishing machine: [ ] 4,500 lbs P (3000) F P Ptana 4,500 tan( 31.3 o l ),736 lbs P.736( 4) M Lb l l 8.1 kip - ft 8 8 M 8.1(1) Top flange: f l l.31ksi Sl 1(16) 6 M 8.1(1) Bot. flange: f l l 1.33 ksi Sl 1.375(18) 6 DECK OVERHANG LOADS (continued) For STRENGTH I: Top flange: f l total ksi * AF (8.31)(1.78) ksi < 0.6F yf 30 ksi ok Bot. flange: f l total ksi * AF (4.78)(1.0) 4.78 ksi < 0.6F yf 30 ksi ok Design Example 3-6

27 DECK OVERHANG LOADS (continued) For STRENGTH IV: Dead loads: P 1.0[ 1.5( )] 795 lbs / ft F F P tan a 795 tan(31.3 o l ) lbs / ft F L ( 4) M b l l 3.0 kip - ft 1 1 M 3.0(1) Top flange: f l l 6.5 ksi Sl 1(16) 6 M 3.0(1) Bot. flange: f l l 3.75 ksi Sl 1.375(18) 6 Finishing machine: Not considered DECK OVERHANG LOADS (continued) For STRENGTH IV: Top flange: f l total 6.5 ksi * AF 6.5(.8) ksi ksi < 0.6F yf 30 ksi ok Bot. flange: f l total 3.75 ksi * AF 3.75(1.0) 3.75 ksi 3.75 ksi < 0.6F yf 30 ksi ok Design Example 3-7

28 CONSTRUCTIBILITY - FLEXURE (Article ) Determine if the section is a slender-web section: 5.7 E F yc D t D t w w c E F yc (38.63) 0.5 c Eq. ( ) , < Therefore, the section is a slender-web section. Go to Article to compute F nc. CONSTRUCTIBILITY - FLEXURE (Article ) For discretely braced compression flanges: f f f R F Eq. ( ) bu + l f h yc f 1 3 bu + fl f bu f F f F f f crw nc Eq. ( ) Eq. ( ) For discretely braced tension flanges: f f f R F Eq. ( ) bu + l f h yt Design Example 3-8

29 LOCAL BUCKLING RESISTANCE Top Flange (Article ) Determine the slenderness ratio of the top flange: l 0.38 l b t 16 1 fc f fc ( ) E F , pf yc 9. Since l f <l pf : F R R F Eq. ( ) F FLB nc b nc 1.0(1.0)(50) 50.0 ksi h yc Flexural Resistance - Composite Sections in Negative Flexure & Noncomposite Sections F n or M n F max or M M max max Basic Form of All FLB & LTB Eqs Fyr λf λpf Fnc 1 1 RbR hfyc nc b hf yc R F Anchor point 1 h yc λrf λpf nc b hf yc Fyr Lb L p Fnc Cb 1 1 RbRhFyc RbRhFyc RhF yc Lr L p F RR F RR Anchor point F r or M r r compact noncompact (inelastic buckling) nonslender F F RRF nc cr slender (elastic buckling) b h yc b bπ Lb C R r t E L p or λ λ p pf L r λor r λ rf L b or b fc /t fc Design Example 3-9

30 LAT. TORSIONAL BUCKLING RESISTANCE (Article ) Determine the limiting unbraced length, L r : L pr r t E F yr Eq. ( ) where: F 0.7F F yr yc yw F yr 0.7(50) 35.0 ksi < 50 ksi ( 0.5F yc 5 ksi ok) Therefore: p(3.90) 9,000 L r 9.39 ft LAT. TORSIONAL BUCKLING RESISTANCE (Article ) Since L p 7.83 ft < L b 4.0 ft < L r 9.39 ft: Ø F - L yr b p F nc Cb Œ1-1- RbRhFyc Ł RhFyc łł Lr -Lp ł F nc º Ø 1.0Œ1 1 º - Ł - L Eq. ( ) Therefore: F ncltb ksi (< F ncflb 50.0 ksi) œ ß ø ø ( 1.0) (1.0)(50) ksi 1.0(50) œ łł - łß < 1.0(1.0)(50) 50 ksi R b R h F yc \ F nc F ncltb ksi Design Example 3-30

31 Flexural Resistance - Composite Sections in Negative Flexure & Noncomposite Sections F n or M n F max or M M max max Basic Form of All FLB & LTB Eqs Fyr λf λpf Fnc 1 1 RbR hfyc nc b hf yc R F Anchor point 1 h yc λrf λpf nc b hf yc Fyr Lb L p Fnc Cb 1 1 RbRhFyc RbRhFyc RhF yc Lr L p F RR F RR Anchor point F r or M r r compact noncompact (inelastic buckling) nonslender F F RRF nc cr slender (elastic buckling) b h yc b bπ Lb C R r t E L p or λ λ p pf L r λor r λ rf L b or b fc /t fc CONSTRUCTIBILITY - FLEXURE Top Flange For STRENGTH I: fbu 4.0 ksi < 50.0 ksi + fl ffrhfyc Eq. ( ) f bu + f l ksi ksi 4.0 ksi ffrhfyc 1.0(1.0)(50) 50.0 ksi f bu + l f F f nc f bu 3.34 ksi < ksi ok ( Ratio ) 1 + fl fffnc Eq. ( ) f ksi + ksi 3.34 ksi (38.75) ksi ok (Ratio 0.835) Design Example 3-31

32 WEB BEND-BUCKLING RESISTANCE (Article ) F 0.9Ek D Ł t w ł crw k k min(r F h 9 ( D ) c D 9 ( ) yc,f yw ) Eq. ( ) 0.9(9,000)(8.7) Fcrw ksi < RhFyc 1.0(50) 50 ksi 69.0 Ł 0.5 ł ok CONSTRUCTIBILITY - FLEXURE Web & Top Flange (continued) fbu fffcrw Eq. ( ) fffcrw 1.0(39.33) ksi ksi < ksi ok (Ratio 0.697) For STRENGTH IV: fbu + fl ffrhfyc Eq. ( ) f bu + f l ksi ksi ksi ffrhfyc 1.0(1.0)(50) 50.0 ksi ksi < 50.0 ksi ok (Ratio 0.955) Design Example 3-3

33 CONSTRUCTIBILITY - FLEXURE Top Flange (continued) & Web 1 fbu + fl fffnc Eq. ( ) fbu + fl ksi + ksi ksi 3 3 fffnc 1.0(38.75) ksi 37.85ksi < ksi ok (Ratio 0.977) fbu fffcrw Eq. ( ) fffcrw 1.0(39.33) ksi ksi < ksi ok (Ratio 0.836) CONSTRUCTIBILITY Wind Load - Section 1-1 Calculate f bu due to the steel weight within the unbraced length containing Section 1-1: For STRENGTH III: Top Flange: Bottom Flange: 1.0(1.5)(35)(1) f bu ksi 1, (1.5)(35)(1) f bu.68 ksi 1,973 Calculate the factored wind force on the steel section: ( 1.5) 1.0 (0.053)( ) W kips / ft 1 Design Example 3-33

34 BRIDGE FRAMING PLAN CONSTRUCTIBILITY Wind Load - Section 1-1 (continued) Assume Span 1 of the structure resists the lateral wind force as a propped cantilever with an effective span length of 10-0 (i.e. assume top lateral bracing provides an effective line of fixity 0-0 from the pier): 9 9 M1-1 WLe (0.403)(10.0) 408.0kip - ft (Note: refined 3D analysis > kip-ft) Design Example 3-34

35 CONSTRUCTIBILITY Wind Load - Section 1-1 (continued) Proportion total lateral moment to top & bottom flanges according to relative lateral stiffness of each flange. Then, divide total lateral moment equally to each girder: 1(16) Top Flg: I l in Bot Flg: 1.375(18) I l in Top Flange: Bottom Flange: 408.0(341.3) Ml kip - ft ( ) (668.3) Ml 67.5 kip - ft ( )4 CONSTRUCTIBILITY Wind Load - Section 1-1 (continued) Separate calculations indicate that lateral bending stresses in the top (compression) flange may be determined from a first-order analysis (i.e. no amplification is required). Top Flange: f l 34.48(1) 9.70 ksi < 0.6Fyf 30.0 ksi 1(16) 6 ok Bottom Flange: f l 67.5(1) ksi < 0.6Fyf 30.0 ksi 1.375(18) 6 ok Design Example 3-35

36 BRIDGE FRAMING PLAN CONSTRUCTIBILITY Wind Load - Section 1-1 (continued) Calculate the shear in the propped cantilever at the assume effective line of fixity: V 5 WL 8 5 (0.403)(10.0) 8 f -f e 30.3 kips Resolve the shear into a compressive force in the diagonal of the top bracing: P 30.3 Ł (0.0) + (1.0) 1.0 ł kips Design Example 3-36

37 CONSTRUCTIBILITY Wind Load - Section 1-1 (continued) Separate calculations (see example) indicate a compressive force of kips in the diagonal to the self-weight of the steel. Therefore, the total compressive force in the bracing diagonal is: ( kips) + ( kips) kips (Note: refined 3D analysis > kips) CONSTRUCTIBILITY Wind Load - Section 1-1 (continued) Estimate the maximum lateral deflection of Span 1 of the structure (i.e. the propped cantilever) due to the factored wind load using the total lateral moments of inertia of the top & bottom flanges of all four girders at Section 1-1: 4 4 D l max. WL 0.403(10.0) (1,78) e 185EI 185(9,000)( )4 (Note: refined 3D analysis > 7.0 inches) 6.7 in. If the top lateral bracing were not present: L e > D l max. 1.3 inches Design Example 3-37

38 CONSTRUCTIBILITY Performance Ratios POSITIVE-MOMENT REGION, SPAN 1 (Section 1-1) Constructibility (Slender-web section) Flexure (STRENGTH I) Eq. ( ) Top flange Eq. ( ) Top flange Eq. ( ) Web bend buckling Eq. ( ) Bottom flange Flexure (STRENGTH III Wind load on noncomposite structure) Eq. ( ) Top flange 0.61 Eq. ( ) Top flange Eq. ( ) Web bend buckling Eq. ( ) Bottom flange 0.7 Flexure (STRENGTH IV) Eq. ( ) Top flange Eq. ( ) Top flange Eq. ( ) Web bend buckling Eq. ( ) Bottom flange 0.60 Shear (96-0 from the abutment) (STRENGTH IV) CONSTRUCTIBILITY Shear (Article ) Interior panels of stiffened webs must satisfy: V V u fvvcr Eq. ( ) ( V ) 1.0(1.5)( -79) 119 kips u DC - 1 at 96-0 from the abutment V n Vcr CVp Eq. ( ) Vp 0.58F yw Dtw 1,001kips C 0.66 (for 07-inch stiffener spacing) 0.66(1,001) 66 kips > V 119 kips (Ratio 0.447) cr u - Design Example 3-38

39 CONSTRUCTIBILITY Section - (Interior Pier) In regions of negative flexure, the constructibility checks for flexure generally do not control because the sizes of the flanges in these regions are normally governed by the sum of the factored dead and live load stresses at the strength limit state. Also, the maximum accumulated negative moments during the deck placement in these regions typically do not differ significantly from the calculated DC 1 negative moments. Deck overhang brackets and wind loads do induce lateral bending into the flanges, which can be considered using the flexural design equations. Web bend-buckling and shear should always be checked in these regions for critical stages of construction (refer to the design example). CONSTRUCTIBILITY Concrete Deck (Article ) Unless longitudinal reinforcement is provided according to the provisions of Article , f deck ff r 0.9f r ' fr 0.4 fc ksi ff r 0.90(0.480) 0.43 ksi Design Example 3-39

40 Table 1: Moments from Deck-Placement Analysis Span -> 1 Unfactored Dead-Load Moments (kip-ft) Length (ft) Steel Weight SIP Forms (SIP) Cast Sum of Casts + SIP Max. +M DC + DW Deck, haunches + SIP M 35 +,537,889 kip-ft CONSTRUCTIBILITY Concrete Deck (continued) Calculate the longitudinal concrete deck tensile stress at the end of Cast 1 (use n 8): 1.0(1.5)( -1,403)(3.0)(1) f deck ksi > 0.43 ksi 161,518(8) Therefore, provide one-percent longitudinal reinforcement (No. 6 bars or 1 ). Extend to 95.0 feet from the abutment. Tensile force (0.453)(100.0)(9.0) 408 kips Design Example 3-40

41 Service Limit State SERVICE LIMIT STATE Elastic Deformations (Article ) Use suggested minimum span-to-depth ratios (optional - Article ) Check live-load deflections (optional - Article.5..6.): 140.0(1) End Spans: DALLOW.10 in. > 0.91in (1) Center Span: DALLOW.63 in. > 1.3 in. 800 ok ok Design Example 3-41

42 SERVICE LIMIT STATE Permanent Deformations (Article ) Under the SERVICE II load combination: 1.0DC + 1.0DW + 1.3(LL+IM) Top steel flange of composite sections: f f 0.95RhFyf Eq. ( ) Bottom steel flange of composite sections: f f f + l 0.95RhFyf Eq. ( ) Web bend-buckling: f c Fcrw Eq. ( ) SERVICE LIMIT STATE Permanent Deformations (continued) Check top flange (Section 1-1): 0.95Rh F 0.95(1.0)(50) ksi yf f f 0.95RhFyf Ø1.0(,0) 1.0(335+ 3) 1.3(3,510) ø f f 1.0Œ ksi 1,581 4,863 13,805 œ º ß -.30 ksi < ksi (Ratio 0.469) ok Design Example 3-4

43 SERVICE LIMIT STATE Permanent Deformations (continued) Check bottom flange (Section 1-1): f f f + l 0.95RhFyf f f Ø1.0(,0) 1.0Œ º 1, ( ) 1.3(3,510) ø ksi,483,706 œ ß (Ratio 0.775) For composite sections in positive flexure with D/t w 150, web bend-buckling need not be checked at the service limit state ksi + 0 < ksi ok SERVICE LIMIT STATE Permanent Deformations (continued) Check Section - (interior pier): Article for members with shear connectors provided throughout their entire length that also satisfy the provisions of Article (i.e. one percent longitudinal reinforcement is provided in the deck wherever the tensile stress in the deck due to the factored construction loads or the SERVICE II load combination exceeds the modulus of rupture), flexural stresses caused by SERVICE II loads applied to the composite section may be computed using the shortterm or long-term composite section, as appropriate, assuming the concrete deck is effective for both positive and negative flexure. Design Example 3-43

44 SERVICE LIMIT STATE Permanent Deformations (continued) Check Section - (interior pier): Flange major-axis bending stresses at Section - and at the first flange transition located 15-0 from the interior pier are checked under the SERVICE II load combination and do not control. Stresses acting on the composite section are computed assuming the concrete is effective for negative flexure, as permitted in Article Web bend-buckling must be checked for composite sections in negative flexure under the SERVICE II load combination: f c F crw Eq. ( ) WEB BEND-BUCKLING RESISTANCE (Article ) F 0.9Ek D Ł t w ł crw min(r F h yc 0.7) Eq. ( ) 9 where: k D Eq. ( ) According to Article D6.3.1 (Appendix D), for composite sections in negative flexure at the service limit state where the concrete is considered effective in tension for computing flexural stresses on the composite section, as permitted in Article , D c is to be computed as: - fc Eq. (D ) D c d - t fc 0 Ł fc + ft ł,f ( ) c D yw Design Example 3-44

45 WEB BEND-BUCKLING RESISTANCE (Article ) Check the bottom-flange transition (controls): Ø1.0( -,656 ) 1.0( ) 1.3( -,709 ) ø f f 1.0 Œ ksi º 1,789,46,463 œ ß - ( ) D c in. > 0 Ł ł 9 k.9 ( ) ok 0.9(9,000)(.9) 39.7ksi < 39.7 ksi 69.0 ok Ratio (0.979) Ł 0.565ł Fcrw SERVICE LIMIT STATE Performance Ratios POSITIVE-MOMENT REGION, SPAN 1 (Section 1-1) Service Limit State Live-load deflection Permanent deformations (SERVICE II) Eq. ( ) Top flange Eq. ( ) Bottom flange INTERIOR-PIER SECTION (Section -) Permanent deformations (SERVICE II) Eq. ( ) Top Section Eq. ( ) Top Flange transition Eq. ( ) Bottom Section Eq. ( ) Bottom Flange transition Eq. ( ) Web bend Section Eq. ( ) Web bend Flange transition Design Example 3-45

46 SERVICE LIMIT STATE Concrete Deck (Article ) Calculate the longitudinal concrete deck tensile stress in Span 1 at 95.0 ft from the abutment (use n 8): 1.0[ 1.0(87) + 1.0(83) + 1.3( -1,701)](3.0)(1) fdeck ksi 161,518(8) Therefore, extend the one-percent longitudinal reinforcement (No. 6 bars or 1 ) to 94.0 feet from the abutment. f deck ksi < 0.43 ksi ok > 0.90fr 0.43 ksi Fatigue & Fracture Limit State Design Example 3-46

47 FATIGUE RESISTANCE FIRST PRINCIPAL For lower traffic volumes, fatigue resistance is inversely proportional to the cube of the effective stress range. Design Example 3-47

48 FATIGUE RESISTANCE SECOND PRINCIPAL For higher traffic volumes, fatigue resistance is infinite if the maximum stress range is less than the constant-amplitude fatigue threshold. FATIGUE LOAD (Article ) The specified load condition for fatigue is a single truck; the current HS0 truck with a fixed rearaxle spacing of The truck occupies a single lane on the bridge -- not multiple lanes. The fatigue load produces a lower calculated stress range than the Standard Specifications. Design Example 3-48

Introduction to LRFD, Loads and Loads Distribution

Introduction to LRFD, Loads and Loads Distribution Introduction to LRFD, Loads and Loads Distribution Thomas K. Saad, P.E. Federal Highway Administration Chicago, IL Evolution of Design Methodologies SLD Methodology: (f t ) D + (f t ) L 0.55F y, or 1.82(f

More information

Overhang Bracket Loading. Deck Issues: Design Perspective

Overhang Bracket Loading. Deck Issues: Design Perspective Deck Issues: Design Perspective Overhang Bracket Loading Deck overhangs and screed rails are generally supported on cantilever brackets during the deck pour These brackets produce an overturning couple

More information

A transverse strip of the deck is assumed to support the truck axle loads. Shear and fatigue of the reinforcement need not be investigated.

A transverse strip of the deck is assumed to support the truck axle loads. Shear and fatigue of the reinforcement need not be investigated. Design Step 4 Design Step 4.1 DECK SLAB DESIGN In addition to designing the deck for dead and live loads at the strength limit state, the AASHTO-LRFD specifications require checking the deck for vehicular

More information

A.2 AASHTO Type IV, LRFD Specifications

A.2 AASHTO Type IV, LRFD Specifications A.2 AASHTO Type IV, LRFD Specifications A.2.1 INTRODUCTION A.2.2 DESIGN PARAMETERS 1'-5.0" Detailed example showing sample calculations for design of typical Interior AASHTO Type IV prestressed concrete

More information

LRFD Bridge Design. AASHTO LRFD Bridge Design Specifications. Loading and General Information

LRFD Bridge Design. AASHTO LRFD Bridge Design Specifications. Loading and General Information LRFD Bridge Design AASHTO LRFD Bridge Design Specifications Loading and General Information Created July 2007 This material is copyrighted by The University of Cincinnati, Dr. James A Swanson, and Dr.

More information

3.2 DEFINITIONS, cont. Revise or add the following definitions::

3.2 DEFINITIONS, cont. Revise or add the following definitions:: CALIFORNIA AMENDMENTS TO AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS THIRD EDITION W/ INTERIMS THRU 2006 _3-2A, 3-3A 3.2 DEFINITIONS, cont. Revise or add the following definitions:: Permanent Loads Loads

More information

APPENDIX H DESIGN CRITERIA FOR NCHRP 12-79 PROJECT NEW BRIDGE DESIGNS

APPENDIX H DESIGN CRITERIA FOR NCHRP 12-79 PROJECT NEW BRIDGE DESIGNS APPENDIX H DESIGN CRITERIA FOR NCHRP 12-79 PROJECT NEW BRIDGE DESIGNS This appendix summarizes the criteria applied for the design of new hypothetical bridges considered in NCHRP 12-79 s Task 7 parametric

More information

SLAB DESIGN EXAMPLE. Deck Design (AASHTO LRFD 9.7.1) TYPICAL SECTION. County: Any Hwy: Any Design: BRG Date: 7/2010

SLAB DESIGN EXAMPLE. Deck Design (AASHTO LRFD 9.7.1) TYPICAL SECTION. County: Any Hwy: Any Design: BRG Date: 7/2010 County: Any Hwy: Any Design: BRG Date: 7/2010 SLAB DESIGN EXAMPLE Design example is in accordance with the AASHTO LRFD Bridge Design Specifications, 5th Ed. (2010) as prescribed by TxDOT Bridge Design

More information

Chapter 12 LOADS AND LOAD FACTORS NDOT STRUCTURES MANUAL

Chapter 12 LOADS AND LOAD FACTORS NDOT STRUCTURES MANUAL Chapter 12 LOADS AND LOAD FACTORS NDOT STRUCTURES MANUAL September 2008 Table of Contents Section Page 12.1 GENERAL... 12-1 12.1.1 Load Definitions... 12-1 12.1.1.1 Permanent Loads... 12-1 12.1.1.2 Transient

More information

Steel Bridge Design Handbook

Steel Bridge Design Handbook U.S. Department of Transportation Federal Highway Administration Steel Bridge Design Handbook Loads and Load Combinations Publication No. FHWA-IF-12-052 - Vol. 7 November 2012 Notice This document is disseminated

More information

CHAPTER 13 CONCRETE COLUMNS

CHAPTER 13 CONCRETE COLUMNS CHAER 13 CONCREE COUMNS ABE OF CONENS 13.1 INRODUCION... 13-1 13.2 YES OF COUMNS... 13-1 13.3 DESIGN OADS... 13-1 13.4 DESIGN CRIERIA... 13-2 13.4.1 imit States... 13-2 13.4.2 Forces... 13-2 13.5 AROXIMAE

More information

Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column

Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column Design of reinforced concrete columns Type of columns Failure of reinforced concrete columns Short column Column fails in concrete crushed and bursting. Outward pressure break horizontal ties and bend

More information

Canadian Standards Association

Canadian Standards Association S6S1-10 10.10.2.2 Laterally supported members When continuous lateral support is provided to the compression flange of a member subjected to bending about its major axis, the factored moment resistance,

More information

Reinforced Concrete Slab Design Using the Empirical Method

Reinforced Concrete Slab Design Using the Empirical Method Reinforced Concrete Slab Design Using the Empirical Method BridgeSight Solutions for the AASHTO LRFD Bridge Design Specifications BridgeSight Software TM Creators of effective and reliable solutions for

More information

Basics of Reinforced Concrete Design

Basics of Reinforced Concrete Design Basics of Reinforced Concrete Design Presented by: Ronald Thornton, P.E. Define several terms related to reinforced concrete design Learn the basic theory behind structural analysis and reinforced concrete

More information

SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

More information

Long-term serviceability of the structure Minimal maintenance requirements Economical construction Improved aesthetics and safety considerations

Long-term serviceability of the structure Minimal maintenance requirements Economical construction Improved aesthetics and safety considerations Design Step 7.1 INTEGRAL ABUTMENT DESIGN General considerations and common practices Integral abutments are used to eliminate expansion joints at the end of a bridge. They often result in Jointless Bridges

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar Problem 1 Design a hand operated overhead crane, which is provided in a shed, whose details are: Capacity of crane = 50 kn Longitudinal spacing of column = 6m Center to center distance of gantry girder

More information

Design of an Industrial Truss

Design of an Industrial Truss Design of an Industrial Truss Roofing U 2 U 3 Ridge U 4 Sagrod 24 U 1 U 5 L 0 L 1 L 2 L 3 L 4 L 5 L 6 6@20 = 120 Elevation of the Truss Top Cord Bracing Sagrod Purlin at top, Bottom Cord Bracing at bottom

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges 7.7 Truss bridges Fig. 7.21 some of the trusses that are used in steel bridges Truss Girders, lattice girders or open web girders are efficient and economical structural systems, since the members experience

More information

ETABS. Integrated Building Design Software. Composite Floor Frame Design Manual. Computers and Structures, Inc. Berkeley, California, USA

ETABS. Integrated Building Design Software. Composite Floor Frame Design Manual. Computers and Structures, Inc. Berkeley, California, USA ETABS Integrated Building Design Software Composite Floor Frame Design Manual Computers and Structures, Inc. Berkeley, California, USA Version 8 January 2002 Copyright The computer program ETABS and all

More information

Index 20010 Series Prestressed Florida-I Beams (Rev. 07/12)

Index 20010 Series Prestressed Florida-I Beams (Rev. 07/12) Index 20010 Series Prestressed Florida-I Beams (Rev. 07/12) Design Criteria AASHTO LRFD Bridge Design Specifications, 6th Edition; Structures Detailing Manual (SDM); Structures Design Guidelines (SDG)

More information

INTRODUCTION TO BEAMS

INTRODUCTION TO BEAMS CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis

More information

SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

More information

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading: SEISMIC DESIGN Various building codes consider the following categories for the analysis and design for earthquake loading: 1. Seismic Performance Category (SPC), varies from A to E, depending on how the

More information

Challenging Skew: Higgins Road Steel I-Girder Bridge over I-90 OTEC 2015 - October 27, 2015 Session 26

Challenging Skew: Higgins Road Steel I-Girder Bridge over I-90 OTEC 2015 - October 27, 2015 Session 26 2014 HDR Architecture, 2014 2014 HDR, HDR, Inc., all all rights reserved. Challenging Skew: Higgins Road Steel I-Girder Bridge over I-90 OTEC 2015 - October 27, 2015 Session 26 Brandon Chavel, PhD, P.E.,

More information

SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED

SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED NOTE: MOMENT DIAGRAM CONVENTION In PT design, it is preferable to draw moment diagrams

More information

International Nursing and Rehab Center Addition 4815 S. Western Blvd. Chicago, IL

International Nursing and Rehab Center Addition 4815 S. Western Blvd. Chicago, IL PROJECT International Nursing and Rehab Center Addition 4815 S. Western Blvd. Chicago, IL EXP. 11/30/2014 STRUCTURAL CALCULATIONS July 24, 2014 BOWMAN, BARRETT & ASSOCIATES INC. CONSULTING ENGINEERS 312.228.0100

More information

Design Parameters for Steel Special Moment Frame Connections

Design Parameters for Steel Special Moment Frame Connections SEAOC 2011 CONVENTION PROCEEDINGS Design Parameters for Steel Special Moment Frame Connections Scott M. Adan, Ph.D., S.E., SECB, Chair SEAONC Structural Steel Subcommittee Principal Adan Engineering Oakland,

More information

LOAD TESTING FOR BRIDGE RATING: DEAN S MILL OVER HANNACROIS CREEK

LOAD TESTING FOR BRIDGE RATING: DEAN S MILL OVER HANNACROIS CREEK REPORT FHWA/NY/SR-06/147 LOAD TESTING FOR BRIDGE RATING: DEAN S MILL OVER HANNACROIS CREEK OSMAN HAG-ELSAFI JONATHAN KUNIN SPECIAL REPORT 147 TRANSPORTATION RESEARCH AND DEVELOPMENT BUREAU New York State

More information

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples FOUNDATION DESIGN Proportioning elements for: Transfer of seismic forces Strength and stiffness Shallow and deep foundations Elastic and plastic analysis Foundation Design 14-1 Load Path and Transfer to

More information

STRUCTURAL STEEL STRUCTURES

STRUCTURAL STEEL STRUCTURES Chapter 16 STRUCTURAL STEEL STRUCTURES SCDOT BRIDGE DESIGN MANUAL April 2006 Table of Contents Section Page 16.1 GENERAL...16-1 16.1.1 Economical Steel Superstructure Design...16-1 16.1.1.1 Rolled Beams

More information

III. Compression Members. Design of Steel Structures. Introduction. Compression Members (cont.)

III. Compression Members. Design of Steel Structures. Introduction. Compression Members (cont.) ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University it of Maryland Compression Members Following subjects are covered:

More information

National Council of Examiners for Engineering and Surveying. Principles and Practice of Engineering Structural Examination

National Council of Examiners for Engineering and Surveying. Principles and Practice of Engineering Structural Examination Structural Effective Beginning with the April 2011 The structural engineering exam is a breadth and exam examination offered in two components on successive days. The 8-hour Vertical Forces (Gravity/Other)

More information

Detailing of Reinforcment in Concrete Structures

Detailing of Reinforcment in Concrete Structures Chapter 8 Detailing of Reinforcment in Concrete Structures 8.1 Scope Provisions of Sec. 8.1 and 8.2 of Chapter 8 shall apply for detailing of reinforcement in reinforced concrete members, in general. For

More information

ABSTRACT 1. INTRODUCTION 2. DESCRIPTION OF THE SEGMENTAL BEAM

ABSTRACT 1. INTRODUCTION 2. DESCRIPTION OF THE SEGMENTAL BEAM Ninth LACCEI Latin American and Caribbean Conference (LACCEI 11), Engineering for a Smart Planet, Innovation, Information Technology and Computational Tools for Sustainable Development, August 3-, 11,

More information

THREE-SPAN CONTINUOUS STRAIGHT COMPOSITE I GIRDER Load and Resistance Factor Design (Third Edition -- Customary U.S. Units)

THREE-SPAN CONTINUOUS STRAIGHT COMPOSITE I GIRDER Load and Resistance Factor Design (Third Edition -- Customary U.S. Units) EXAMPLE 1: THREE-SPAN CONTINUOUS STRAIGHT COMPOSITE I GIRDER Load and Resistance Factor Design (Third Edition -- Customary U.S. Units) by Michael A. Grubb, P.E. Bridge Sotware Development International,

More information

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems:

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems: Reading Assignment SLAB DESIGN Chapter 9 of Text and, Chapter 13 of ACI318-02 Introduction ACI318 Code provides two design procedures for slab systems: 13.6.1 Direct Design Method (DDM) For slab systems

More information

Optimising plate girder design

Optimising plate girder design Optimising plate girder design NSCC29 R. Abspoel 1 1 Division of structural engineering, Delft University of Technology, Delft, The Netherlands ABSTRACT: In the design of steel plate girders a high degree

More information

Session 5D: Benefits of Live Load Testing and Finite Element Modeling in Rating Bridges

Session 5D: Benefits of Live Load Testing and Finite Element Modeling in Rating Bridges Session 5D: Benefits of Live Load Testing and Finite Element Modeling in Rating Bridges Douglas R. Heath P.E., Structural Engineer Corey Richard P.E., Project Manager AECOM Overview Bridge Testing/Rating

More information

TECHNICAL NOTE. Design of Diagonal Strap Bracing Lateral Force Resisting Systems for the 2006 IBC. On Cold-Formed Steel Construction INTRODUCTION

TECHNICAL NOTE. Design of Diagonal Strap Bracing Lateral Force Resisting Systems for the 2006 IBC. On Cold-Formed Steel Construction INTRODUCTION TECHNICAL NOTE On Cold-Formed Steel Construction 1201 15th Street, NW, Suite 320 W ashington, DC 20005 (202) 785-2022 $5.00 Design of Diagonal Strap Bracing Lateral Force Resisting Systems for the 2006

More information

Preliminary steel concrete composite bridge design charts for Eurocodes

Preliminary steel concrete composite bridge design charts for Eurocodes Preliminary steel concrete composite bridge 90 Rachel Jones Senior Engineer Highways & Transportation Atkins David A Smith Regional Head of Bridge Engineering Highways & Transportation Atkins Abstract

More information

Compression Members: Structural elements that are subjected to axial compressive forces

Compression Members: Structural elements that are subjected to axial compressive forces CHAPTER 3. COMPRESSION MEMBER DESIGN 3.1 INTRODUCTORY CONCEPTS Compression Members: Structural elements that are subjected to axial compressive forces onl are called columns. Columns are subjected to axial

More information

The following sketches show the plans of the two cases of one-way slabs. The spanning direction in each case is shown by the double headed arrow.

The following sketches show the plans of the two cases of one-way slabs. The spanning direction in each case is shown by the double headed arrow. 9.2 One-way Slabs This section covers the following topics. Introduction Analysis and Design 9.2.1 Introduction Slabs are an important structural component where prestressing is applied. With increase

More information

Steel joists and joist girders are

Steel joists and joist girders are THE STEEL CONFERENCE Hints on Using Joists Efficiently By Tim Holtermann, S.E., P.E.; Drew Potts, P.E.; Bob Sellers, P.E.; and Walt Worthley, P.E. Proper coordination between structural engineers and joist

More information

16. Beam-and-Slab Design

16. Beam-and-Slab Design ENDP311 Structural Concrete Design 16. Beam-and-Slab Design Beam-and-Slab System How does the slab work? L- beams and T- beams Holding beam and slab together University of Western Australia School of Civil

More information

FEBRUARY 2014 LRFD BRIDGE DESIGN 4-1

FEBRUARY 2014 LRFD BRIDGE DESIGN 4-1 FEBRUARY 2014 LRFD BRIDGE DESIGN 4-1 4. STRUCTURAL ANALYSIS AND EVALUATION The analysis of bridges and structures is a mixture of science and engineering judgment. In most cases, use simple models with

More information

ispan, A Light Steel Floor System

ispan, A Light Steel Floor System ispan, A Light Steel Floor System D.M. Fox 1, R.M. Schuster 2, and M.R. Strickland 3 Abstract Described in this paper is a cold-formed steel floor system called ispan. The system is comprised of multi-functional

More information

1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona

1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona for Earthen Material and Straw Bale Structures SECTION 70 - GENERAL "APPENDIX CHAPTER 7 - EARTHEN MATERIAL STRUCTURES 70. Purpose. The purpose of this chapter is to establish minimum standards of safety

More information

MATERIALS AND MECHANICS OF BENDING

MATERIALS AND MECHANICS OF BENDING HAPTER Reinforced oncrete Design Fifth Edition MATERIALS AND MEHANIS OF BENDING A. J. lark School of Engineering Department of ivil and Environmental Engineering Part I oncrete Design and Analysis b FALL

More information

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 10: Guidance to developers of software for the design of composite beams

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 10: Guidance to developers of software for the design of composite beams STEEL BUILDINGS IN EUROPE Multi-Storey Steel Buildings Part 10: Guidance to developers of software for the design of Multi-Storey Steel Buildings Part 10: Guidance to developers of software for the design

More information

SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP

SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3279 SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP Yuming DING 1, Bruce HAMERSLEY 2 SUMMARY Vancouver

More information

Reinforced Concrete Design

Reinforced Concrete Design FALL 2013 C C Reinforced Concrete Design CIVL 4135 ii 1 Chapter 1. Introduction 1.1. Reading Assignment Chapter 1 Sections 1.1 through 1.8 of text. 1.2. Introduction In the design and analysis of reinforced

More information

BRIDGE DESIGN SPECIFICATIONS APRIL 2000 SECTION 9 - PRESTRESSED CONCRETE

BRIDGE DESIGN SPECIFICATIONS APRIL 2000 SECTION 9 - PRESTRESSED CONCRETE SECTION 9 - PRESTRESSED CONCRETE Part A General Requirements and Materials 9.1 APPLICATION 9.1.1 General The specifications of this section are intended for design of prestressed concrete bridge members.

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

How to Design Helical Piles per the 2009 International Building Code

How to Design Helical Piles per the 2009 International Building Code ABSTRACT How to Design Helical Piles per the 2009 International Building Code by Darin Willis, P.E. 1 Helical piles and anchors have been used in construction applications for more than 150 years. The

More information

Evaluation of Bridge Performance and Rating through Nondestructive

Evaluation of Bridge Performance and Rating through Nondestructive Evaluation of Bridge Performance and Rating through Nondestructive Load Testing Final Report Prepared by: Andrew Jeffrey, Sergio F. Breña, and Scott A.Civjan University of Massachusetts Amherst Department

More information

Technical Notes 3B - Brick Masonry Section Properties May 1993

Technical Notes 3B - Brick Masonry Section Properties May 1993 Technical Notes 3B - Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 402-92) and Specifications

More information

Structural Design Calculation For Pergola

Structural Design Calculation For Pergola Structural Design Calculation For Pergola Revision :5 Prepared by :EC Date : 8/10/009 CONTENTS 1. Introduction... Design Code and Reference 3. Design Synopsis 4. Design Parameters 4.1 Design Load. 4. Design

More information

Chapter - 3 Design of Rectangular Beams and One-way Slabs

Chapter - 3 Design of Rectangular Beams and One-way Slabs Rectangular Beams and One-way Slabs Page 1 of 9 Chapter - 3 Design of Rectangular Beams and One-way Slabs 12 h A 12 strip in a simply supported one-way slab h b=12 L Rectangular Beams and One-way Slabs

More information

Two-Way Post-Tensioned Design

Two-Way Post-Tensioned Design Page 1 of 9 The following example illustrates the design methods presented in ACI 318-05 and IBC 2003. Unless otherwise noted, all referenced table, figure, and equation numbers are from these books. The

More information

Formwork for Concrete

Formwork for Concrete UNIVERSITY OF WASHINGTON DEPARTMENT OF CONSTRUCTION MANAGEMENT CM 420 TEMPORARY STRUCTURES Winter Quarter 2007 Professor Kamran M. Nemati Formwork for Concrete Horizontal Formwork Design and Formwork Design

More information

Design rules for bridges in Eurocode 3

Design rules for bridges in Eurocode 3 Design rules for bridges in Eurocode 3 Gerhard Sedlacek Christian üller Survey of the Eurocodes EN 1991 EN 1990 Eurocode: Basis of Design EN 1992 to EN 1996 Eurocode 1: Actions on Structures Eurocode 2:

More information

DESIGN OF PRESTRESSED BARRIER CABLE SYSTEMS

DESIGN OF PRESTRESSED BARRIER CABLE SYSTEMS 8601 North Black Canyon Highway Suite 103 Phoenix, AZ 8501 For Professionals Engaged in Post-Tensioning Design Issue 14 December 004 DESIGN OF PRESTRESSED BARRIER CABLE SYSTEMS by James D. Rogers 1 1.0

More information

MODULE E: BEAM-COLUMNS

MODULE E: BEAM-COLUMNS MODULE E: BEAM-COLUMNS This module of CIE 428 covers the following subjects P-M interaction formulas Moment amplification Web local buckling Braced and unbraced frames Members in braced frames Members

More information

Evaluation of Appropriate Maintenance, Repair and Rehabilitation Methods for Iowa Bridges

Evaluation of Appropriate Maintenance, Repair and Rehabilitation Methods for Iowa Bridges T. J. Wipf, F. S. Fanous, F. W. Klaiber, A. S. Eapen Evaluation of Appropriate Maintenance, Repair and Rehabilitation Methods for Iowa Bridges April 2003 Sponsored by the Iowa Department of Transportation

More information

Page 1 of 18 28.4.2008 Sven Alexander Last revised 1.3.2010. SB-Produksjon STATICAL CALCULATIONS FOR BCC 250

Page 1 of 18 28.4.2008 Sven Alexander Last revised 1.3.2010. SB-Produksjon STATICAL CALCULATIONS FOR BCC 250 Page 1 of 18 CONTENT PART 1 BASIC ASSUMPTIONS PAGE 1.1 General 1. Standards 1.3 Loads 1. Qualities PART ANCHORAGE OF THE UNITS.1 Beam unit equilibrium 3. Beam unit anchorage in front..1 Check of capacity..

More information

Nueva Edición del libro clásico para estudiantes de grado.

Nueva Edición del libro clásico para estudiantes de grado. Nueva Edición del libro clásico para estudiantes de grado. Ha aparecido la quinta edición del que ya se ha convertido en uno de los libros más vendidos de Diseño de estructuras de Acero para su uso en

More information

TABLE OF CONTENTS. Roof Decks 172 B, BA, BV Deck N, NA Deck. Form Decks 174.6 FD,.6 FDV Deck 1.0 FD, 1.0 FDV Deck 1.5 FD Deck 2.0 FD Deck 3.

TABLE OF CONTENTS. Roof Decks 172 B, BA, BV Deck N, NA Deck. Form Decks 174.6 FD,.6 FDV Deck 1.0 FD, 1.0 FDV Deck 1.5 FD Deck 2.0 FD Deck 3. Pages identified with the NMBS Logo as shown above, have been produced by NMBS to assist specifiers and consumers in the application of New Millennium Building Systems Deck products. Pages identified with

More information

Section 5A: Guide to Designing with AAC

Section 5A: Guide to Designing with AAC Section 5A: Guide to Designing with AAC 5A.1 Introduction... 3 5A.3 Hebel Reinforced AAC Panels... 4 5A.4 Hebel AAC Panel Design Properties... 6 5A.5 Hebel AAC Floor and Roof Panel Spans... 6 5A.6 Deflection...

More information

Module 3. Limit State of Collapse - Flexure (Theories and Examples) Version 2 CE IIT, Kharagpur

Module 3. Limit State of Collapse - Flexure (Theories and Examples) Version 2 CE IIT, Kharagpur Module 3 Limit State of Collapse - Flexure (Theories and Examples) Lesson 4 Computation of Parameters of Governing Equations Instructional Objectives: At the end of this lesson, the student should be able

More information

[TECHNICAL REPORT I:]

[TECHNICAL REPORT I:] [Helios Plaza] Houston, Texas Structural Option Adviser: Dr. Linda Hanagan [TECHNICAL REPORT I:] Structural Concepts & Existing Conditions Table of Contents Executive Summary... 2 Introduction... 3 Structural

More information

FOOTING DESIGN EXAMPLE

FOOTING DESIGN EXAMPLE County: Any Design: BRG Date: 10/007 Hwy: Any Ck Dsn: BRG Date: 10/007 FOOTING DESIGN EXAMPLE Design: Based on AASHTO LRFD 007 Specifications, TxDOT LRFD Bridge Design Manual, and TxDOT Project 0-4371

More information

External Post-Tensioning for Full-Depth Precast Deck Panels

External Post-Tensioning for Full-Depth Precast Deck Panels A B AccelBridge External Post-Tensioning for Full-Depth Precast Deck Panels A B ABC Made Simple. Information Prepared for 2012 Virginia Concrete Conference presented herein pertains to proprietary products.

More information

2011-2012. Crane Runway Girder. Dr. Ibrahim Fahdah Damascus University. https://sites.google.com/site/ifahdah/home/lectures

2011-2012. Crane Runway Girder. Dr. Ibrahim Fahdah Damascus University. https://sites.google.com/site/ifahdah/home/lectures Crane Runway Girder Dr. Ibrahim Fahdah Damascus University https://sites.google.com/site/ifahdah/home/lectures Components of Crane system The Crane Runway Girder and the Structure Issue1: Vertical Load

More information

Chapter 8. Flexural Analysis of T-Beams

Chapter 8. Flexural Analysis of T-Beams Chapter 8. Flexural Analysis of T-s 8.1. Reading Assignments Text Chapter 3.7; ACI 318, Section 8.10. 8.2. Occurrence and Configuration of T-s Common construction type.- used in conjunction with either

More information

Engineering for Stability in Bridge Construction: A New Manual and Training Course by FHWA/NHI

Engineering for Stability in Bridge Construction: A New Manual and Training Course by FHWA/NHI Engineering for Stability in Bridge Construction: A New Manual and Training Course by FHWA/NHI AASHTO SCOBS T-14 Meeting Saratoga Springs, NY April 20, 2015 Brian Kozy, PhD, P.E. Federal Highway Administration

More information

Simplified Design to BS 5400

Simplified Design to BS 5400 Simplified Design to BS 5400 Bridge Design to the Eurocodes Simplified rules for use in student projects (Document RT1156) Version Date of Issue Purpose Author Technical Reviewer Approved 1 Distribution

More information

Lyang, J., Lee, D., Kung, J. "Reinforced Concrete Bridges." Bridge Engineering Handbook. Ed. Wai-Fah Chen and Lian Duan Boca Raton: CRC Press, 2000

Lyang, J., Lee, D., Kung, J. Reinforced Concrete Bridges. Bridge Engineering Handbook. Ed. Wai-Fah Chen and Lian Duan Boca Raton: CRC Press, 2000 Lyang, J., Lee, D., Kung, J. "Reinforced Concrete Bridges." Bridge Engineering Handbook. Ed. Wai-Fah Chen and Lian Duan Boca Raton: CRC Press, 000 Section II Superstructure Design 9 Reinforced Concrete

More information

Statics of Structural Supports

Statics of Structural Supports Statics of Structural Supports TYPES OF FORCES External Forces actions of other bodies on the structure under consideration. Internal Forces forces and couples exerted on a member or portion of the structure

More information

Joist. Reinforcement. Draft 12/7/02

Joist. Reinforcement. Draft 12/7/02 Joist Reinforcement Draft 12/7/02 1 JOIST REINFORCING The purpose of this CSD Design Aid is to provide procedures and suggested details for the reinforcement of open web steel joists. There are three basic

More information

REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition. Walls are generally used to provide lateral support for:

REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition. Walls are generally used to provide lateral support for: HANDOUT REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition RETAINING WALLS Fifth Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering

More information

ARCH 331 Structural Glossary S2014abn. Structural Glossary

ARCH 331 Structural Glossary S2014abn. Structural Glossary Structural Glossary Allowable strength: Nominal strength divided by the safety factor. Allowable stress: Allowable strength divided by the appropriate section property, such as section modulus or cross

More information

8.2 Elastic Strain Energy

8.2 Elastic Strain Energy Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for

More information

Approximate Analysis of Statically Indeterminate Structures

Approximate Analysis of Statically Indeterminate Structures Approximate Analysis of Statically Indeterminate Structures Every successful structure must be capable of reaching stable equilibrium under its applied loads, regardless of structural behavior. Exact analysis

More information

Draft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 318-14

Draft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 318-14 Draft Table of Contents Building Code Requirements for Structural Concrete and Commentary ACI 318-14 BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318 14) Chapter 1 General 1.1 Scope of ACI 318

More information

4B-2. 2. The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections.

4B-2. 2. The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections. Shear Walls Buildings that use shear walls as the lateral force-resisting system can be designed to provide a safe, serviceable, and economical solution for wind and earthquake resistance. Shear walls

More information

Stability. Security. Integrity.

Stability. Security. Integrity. Stability. Security. Integrity. PN #MBHPT Foundation Supportworks provides quality helical pile systems for both new construction and retrofit applications. 288 Helical Pile System About Foundation Supportworks

More information

PRESTRESSED CONCRETE. Introduction REINFORCED CONCRETE CHAPTER SPRING 2004. Reinforced Concrete Design. Fifth Edition. By Dr. Ibrahim.

PRESTRESSED CONCRETE. Introduction REINFORCED CONCRETE CHAPTER SPRING 2004. Reinforced Concrete Design. Fifth Edition. By Dr. Ibrahim. CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition Fifth Edition PRESTRESSED CONCRETE A. J. Clark School of Engineering Department of Civil and Environmental

More information

bi directional loading). Prototype ten story

bi directional loading). Prototype ten story NEESR SG: Behavior, Analysis and Design of Complex Wall Systems The laboratory testing presented here was conducted as part of a larger effort that employed laboratory testing and numerical simulation

More information

IN-SERVICE PERFORMANCE AND BEHAVIOR CHARACTERIZATION OF THE HYBRID COMPOSITE BRIDGE SYSTEM A CASE STUDY

IN-SERVICE PERFORMANCE AND BEHAVIOR CHARACTERIZATION OF THE HYBRID COMPOSITE BRIDGE SYSTEM A CASE STUDY IN-SERVICE PERFORMANCE AND BEHAVIOR CHARACTERIZATION OF THE HYBRID COMPOSITE BRIDGE SYSTEM A CASE STUDY John M. Civitillo University of Virginia, USA Devin K. Harris University of Virginia, USA Amir Gheitasi

More information

Steel Deck. A division of Canam Group

Steel Deck. A division of Canam Group Steel Deck A division of Canam Group TABLE OF CONTENTS PAGE OUR SERVICES... 4 NOTES ABOUT LOAD TABLES... 5 P-3615 & P-3606 DIMENSIONS & PHYSICAL PROPERTIES... 6 FACTORED AND SERVICE LOADS... 7 P-2436 &

More information

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES Yang-Cheng Wang Associate Professor & Chairman Department of Civil Engineering Chinese Military Academy Feng-Shan 83000,Taiwan Republic

More information

Introduction to Railroad Track Structural Design

Introduction to Railroad Track Structural Design BCR2A 09 Railroad Track Design Including Asphalt Trackbeds Pre-Conference Workshop Introduction to Railroad Track Structural Design Don Uzarski, Ph.D., P.E. uzarski@illinois.edu Interaction, Vertical Load

More information

A. Cylindrical Tank, Fixed-Roof with Rafter & Column (cont.)

A. Cylindrical Tank, Fixed-Roof with Rafter & Column (cont.) According to API 650 Code, Edition Sept. 2003 Page : 23 of 34 9. Seismic Design. [APPENDIX E, API 650] 9.1. Overturning Moment due to Seismic forces applied to bottom of tank shell, M = Z I (C1 Ws Xs +

More information

Chapter 6 ROOF-CEILING SYSTEMS

Chapter 6 ROOF-CEILING SYSTEMS Chapter 6 ROOF-CEILING SYSTEMS Woodframe roof-ceiling systems are the focus of this chapter. Cold-formed steel framing for a roof-ceiling system also is permitted by the IRC but will not be discussed;

More information

METHOD OF STATEMENT FOR STATIC LOADING TEST

METHOD OF STATEMENT FOR STATIC LOADING TEST Compression Test, METHOD OF STATEMENT FOR STATIC LOADING TEST Tension Test and Lateral Test According to the American Standards ASTM D1143 07, ASTM D3689 07, ASTM D3966 07 and Euro Codes EC7 Table of Contents

More information

AASHTOWare Bridge Design and Rating Training. STL8 Single Span Steel 3D Example (BrDR 6.6)

AASHTOWare Bridge Design and Rating Training. STL8 Single Span Steel 3D Example (BrDR 6.6) AASHTOWare Bridge Design and Rating Training STL8 Single Span Steel 3D Example (BrDR 6.6) Last Modified: 4/28/2015 STL8-1 AASHTOWare BrDR 6.5 AASHTOWare Bridge Design and Rating Training STL8 Single Span

More information

Residential Deck Safety, Construction, and Repair

Residential Deck Safety, Construction, and Repair Juneau Permit Center, 4 th Floor Marine View Center, (907)586-0770 This handout is designed to help you build your deck to comply with the 2006 International Residential Building code as modified by the

More information

DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia

DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia DESIGN OF SLABS Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia Introduction Types of Slab Slabs are plate elements

More information