Reinforced Concrete Slab Design Using the Empirical Method

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Reinforced Concrete Slab Design Using the Empirical Method"

Transcription

1 Reinforced Concrete Slab Design Using the Empirical Method BridgeSight Solutions for the AASHTO LRFD Bridge Design Specifications BridgeSight Software TM Creators of effective and reliable solutions for the world s bridge engineers 2688 Venado Way Rescue, CA Phone: Internet:

2 Title Reinforced Concrete Slab Design Using The Empirical Method Publication No. BSS Abstract This design example illustrates the Empirical Design Method for composite concrete bridge decks specified in Article of the AASHTO LRFD Bridge Design Specification. Notes Author Staff - BridgeSight Software Sponsor BridgeSight Software 2688 Venado Way Rescue, CA Specification AASHTO LRFD Bridge Design Specification, 2 nd Edition 1998 Original Publication Date 9/1/99 Date of Latest Revision 9/1/99 Version 1.0 Notice of Copyright Copyright 1999 BridgeSight Software, All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopied, recorded, or otherwise), without prior written permission from BridgeSight Software. i

3 Disclaimer This BridgeSight Solution is provided complements of BridgeSight Software. BridgeSight Software asserts a copyright in this work. BridgeSight Software retains the exclusive ownership of this copy of the BridgeSight Solution. This document is provided AS IS without any warranty, express or implied by anyone using, distributing, copying or otherwise possessing this document. The entire risk as to the use, results and performance of this document is assumed by you. BridgeSight Software does not warrant, guarantee, or make any representations regarding the use of, merchantability or fitness for a particular use of the product. Should this document prove defective, you assume the entire cost of all necessary servicing, repair or correction. Further, BridgeSight Software does not warrant, guarantee, or make any representations regarding the use of, or the results of the use of this document in terms of correctness, accuracy, reliability, currentness, or otherwise and has no obligation to correct errors, make changes, support or distribute updates; and you rely on this document solely at your own risk. BridgeSight Software will not be liable for any damages, service, repair, correction, loss of profit, lost savings, or any other incidental, consequential, or special damages of any nature whatsoever resulting from the use or inability to use this product including any claims, suits or causes of action involving claims of infringement of copyrights, patents, trademarks, trade secrets, or unfair competition. The Licensee indemnifies and holds harmless BridgeSight Software, its officials, employees, and contributors for any injury to the person or property of third parties arising out of the use of or any defect in this document. BridgeSight Software retains all rights not expressly granted. Nothing in this agreement constitutes a waiver of BridgeSight Software s rights under United States copyright laws or any other Federal or State law. ii

4 Introduction One of the first components of a bridge that you will design is the deck. The AASHTO LRFD Bridge Design Specification suggests three different methods for the analysis of bridge decks for slab-on-beam systems. This installment of the BridgeSight Solutions series will give a brief overview of the different analysis methods and will focus on the Empirical Method of design. The Empirical Method is by far the easiest method provided the bridge configuration, materials, and construction techniques satisfy some minimum criteria. This design example is part of the BridgeSight Solutions series. The BridgeSight Solutions series is comprised of design aids and design examples to assist practicing engineers and engineering students learn and implement the AASHTO LRFD Bridge Design Specification. Visit the BridgeSight Solutions section of our web site at for more information. 1

5 Analysis Methods for Decks The LRFD Specification suggests three methods of analysis for slab-on-beam bridge decks; approximate elastic methods, specified in Article , refined methods, specified in Article , or an empirical design method for concrete slabs specified in Article 9.5 The approximate elastic method of analysis simulates the behavior of the bridge deck with transverse strips of deck. The strips are run from edge-to-edge of the bridge deck and are modeled as continuous beams supported at the centerlines of the girders. The refined method of analysis consist of modeling the bridge deck and girder system with finite elements. This is a time consuming process and difficult to validate. Such a method should only be used for special structures. The empirical method is a no analysis method in which a prescribed amount of reinforcement is to be provided in the slab. This BridgeSight Solution will focus on the Empirical Method. Code Reference Empirical Design Method This example will illustrate the empirical design method. The empirical design applies only to the main part of the slab and is not to applied to overhangs. Design of the overhang is beyond the scope of this BridgeSight Solution. For continuous bridge decks, the contribution of the longitudinal bars may be utilized for resisting negative moments at interior supports , Given The cross section and span configuration show below Alignment of bridge is N 90 E Bearing of piers is N 27 E (27 skew angle) Slab concrete has a 28-day strength of 28MPa. The slab is cast-in-place and water cured. Assume a 15 sacrificial wearing surface. Full depth diaphragms are used at lines of supports Slab and girders are made composite Traffic barriers are composite and structurally continuous with the overhang Pier = Pier = Typical Section (All Dimensions Normal To Alignment)

6 Code Reference Span Configuration Determine Effective Length Because of the flared girder lines and the skewed piers, we need to use a coordinate geometry (COGO) model to quickly find the effective length L 1 L 1 /3 C Girder A Girder B L 2 /3 C C 4 L 2 Centerline of Bridge Pier 1 Pier 2 Framing Plan/COGO Model (Girders C-F Omitted for Clairity) The Framing Plan/COGO Model is shown above. The coordinates of the various points shown in the model are: Point X () Y () Some important distances are: Item Distance () L

7 Item Distance () Code Reference L C 2938 S effective between points 9 and S effective between points 11 and Effective Length 2915 Design Depth of Slab Design depth is the gross depth of the slab, less any depth that is expected to be lost as a result of grinding, grooving, or wear. Design Depth = = 225 Effective Length to Design Depth Ratio The effective length to design depth ratio is 2915/225 = 13 Core Depth Core slab depth is shown in the figure below. It can be computed as Core Depth = Gross Slab Depth - Top Cover - Bottom Cover Core Depth Reinforcement Slab Depth Top Cover = 65 (Deck surfaces subject to tire stud or chain wear) Table Bottom Cover = 25 (Bottom of cast-in-place slabs, Up to No. 36 bar) Core Depth = = 150 Check Design Conditions The design conditions listed below must be satisfied to use the empirical design method. If these conditions are met and the reinforcement provisions are satisfied, for other than the deck overhang, the deck may be assumed to satisfy service, fatigue and fracture, and strength limit states requirements Criteria Cross-frames or diaphragms are used throughout the cross-section at lines of support; For cross-section involving torsionally stiff units, such as individual separated box beams ; Satisfied (/No) N/A The supporting components are mode of steel and/or concrete; Precast Concrete I- Beams The deck is fully cast-in-place and water cured; Check your standard 4

8 Criteria The deck is of uniform depth, except for haunches at girder flanges and other local thickening; The ratio of effective length to design depth does not exceed 18.0 and is not less than 6.0; Satisfied (/No) specifications! Core depth of the slab is not less than 100 ; 150 > 100 The effective length, as specified in Article , does not exceed 4100; The minimum depth of slab is not less than 175, excluding a sacrificial wearing surface where applicable; There is an overhang beyond the centerline of the outside girder at least 5.0 times the depth of the slab; this condition is satisfied if the overhang is at least 3.0 times the depth of the slab and a structurally continuous concrete barrier is made composite with the overhang; The specified 28-day strength of the deck concrete is not less than 28MPa The deck is made composite with the supporting structural components 2915 < < /225 = > 3.0 Code Reference Select Reinforcement The slab configuration satisfies the necessary design conditions. The slab must be reinforced with four layers of isotropic reinforcement. Reinforcement shall be located as close to the outside surfaces as permitted by cover requirements. Reinforcement shall be provided in each face of the slab with the outermost layers placed in the direction of the effective length. The minimum amount of reinforcement shall be / of steel for each bottom layer and / of steel for each top layer. Spacing of steel shall not exceed 450. Reinforcing steel shall be Grade 420 or better. Because the skew angle for this structure exceeds 25, the specified reinforcement in both direction shall be doubled in the end zones of the deck. Each end zone shall be taken as a longitudinal distance equal to the effective length of the slab specified in Article Bottom Layer Reinforcement Use two layers of No. 16 bars. The cross-sectional area of a No. 16 bar is The maximum allowable spacing of No. 16 bars is = Use No. 16 bars at 175 in the end zones and No. 16 bars at 350 elsewhere. Top Layer Reinforcement Use two layers of No. 13 bars. The cross-sectional area of a No. 13 bar is The maximum allowable spacing of No. 13 bars is = Use No. 13 bars at 170 in the end zones and No. 13 bars at 340 elsewhere 5

9 Appendix Conversion Factors Multiply By To Produce in ft m in ft m 2 in ft m 3 in ft m 4 lbf N kip kn ton kn lbf/in N/ lbf/ft N/ kip/in kn/m kip/ft 14.6 kn/m lbf kg lbm kg slug kg ft/sec m/sec 2 psi Pa ksi MPa psf Pa ksf MPa F ( t-32 )/1.8 C Reinforcing Bar Properties Bar Size Nominal Mass Nominal Diameter Nominal Area Bar Size Nominal Weight Nominal Diameter Nominal Area No. kg/m 2 No lb/ft in in A-1

A transverse strip of the deck is assumed to support the truck axle loads. Shear and fatigue of the reinforcement need not be investigated.

A transverse strip of the deck is assumed to support the truck axle loads. Shear and fatigue of the reinforcement need not be investigated. Design Step 4 Design Step 4.1 DECK SLAB DESIGN In addition to designing the deck for dead and live loads at the strength limit state, the AASHTO-LRFD specifications require checking the deck for vehicular

More information

APPENDIX H DESIGN CRITERIA FOR NCHRP 12-79 PROJECT NEW BRIDGE DESIGNS

APPENDIX H DESIGN CRITERIA FOR NCHRP 12-79 PROJECT NEW BRIDGE DESIGNS APPENDIX H DESIGN CRITERIA FOR NCHRP 12-79 PROJECT NEW BRIDGE DESIGNS This appendix summarizes the criteria applied for the design of new hypothetical bridges considered in NCHRP 12-79 s Task 7 parametric

More information

Index 20010 Series Prestressed Florida-I Beams (Rev. 07/12)

Index 20010 Series Prestressed Florida-I Beams (Rev. 07/12) Index 20010 Series Prestressed Florida-I Beams (Rev. 07/12) Design Criteria AASHTO LRFD Bridge Design Specifications, 6th Edition; Structures Detailing Manual (SDM); Structures Design Guidelines (SDG)

More information

SLAB DESIGN EXAMPLE. Deck Design (AASHTO LRFD 9.7.1) TYPICAL SECTION. County: Any Hwy: Any Design: BRG Date: 7/2010

SLAB DESIGN EXAMPLE. Deck Design (AASHTO LRFD 9.7.1) TYPICAL SECTION. County: Any Hwy: Any Design: BRG Date: 7/2010 County: Any Hwy: Any Design: BRG Date: 7/2010 SLAB DESIGN EXAMPLE Design example is in accordance with the AASHTO LRFD Bridge Design Specifications, 5th Ed. (2010) as prescribed by TxDOT Bridge Design

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

SHEAR IN SKEWED MULTI-BEAM BRIDGES

SHEAR IN SKEWED MULTI-BEAM BRIDGES 20-7/Task 107 COPY NO. SHEAR IN SKEWED MULTI-BEAM BRIDGES FINAL REPORT Prepared for National Cooperative Highway Research Program Transportation Research Board National Research Council Modjeski and Masters,

More information

Steel Deck. A division of Canam Group

Steel Deck. A division of Canam Group Steel Deck A division of Canam Group TABLE OF CONTENTS PAGE OUR SERVICES... 4 NOTES ABOUT LOAD TABLES... 5 P-3615 & P-3606 DIMENSIONS & PHYSICAL PROPERTIES... 6 FACTORED AND SERVICE LOADS... 7 P-2436 &

More information

A.2 AASHTO Type IV, LRFD Specifications

A.2 AASHTO Type IV, LRFD Specifications A.2 AASHTO Type IV, LRFD Specifications A.2.1 INTRODUCTION A.2.2 DESIGN PARAMETERS 1'-5.0" Detailed example showing sample calculations for design of typical Interior AASHTO Type IV prestressed concrete

More information

FEBRUARY 2014 LRFD BRIDGE DESIGN 4-1

FEBRUARY 2014 LRFD BRIDGE DESIGN 4-1 FEBRUARY 2014 LRFD BRIDGE DESIGN 4-1 4. STRUCTURAL ANALYSIS AND EVALUATION The analysis of bridges and structures is a mixture of science and engineering judgment. In most cases, use simple models with

More information

Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column

Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column Design of reinforced concrete columns Type of columns Failure of reinforced concrete columns Short column Column fails in concrete crushed and bursting. Outward pressure break horizontal ties and bend

More information

Overhang Bracket Loading. Deck Issues: Design Perspective

Overhang Bracket Loading. Deck Issues: Design Perspective Deck Issues: Design Perspective Overhang Bracket Loading Deck overhangs and screed rails are generally supported on cantilever brackets during the deck pour These brackets produce an overturning couple

More information

Optimum proportions for the design of suspension bridge

Optimum proportions for the design of suspension bridge Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering

More information

Four-Span PS Concrete Beam AASHTO Type III Continuous Spans Input

Four-Span PS Concrete Beam AASHTO Type III Continuous Spans Input Four-Span PS Concrete Beam AASHTO Type III Continuous Spans Input As-Built Model Only November, 2011 VDOT VERSION 6.2 1 DETAILED EXAMPLE FOUR-SPAN PS CONCRETE BEAM AASHTO TYPE III CONTINUOUS SPANS INPUT

More information

Chapter 8. Flexural Analysis of T-Beams

Chapter 8. Flexural Analysis of T-Beams Chapter 8. Flexural Analysis of T-s 8.1. Reading Assignments Text Chapter 3.7; ACI 318, Section 8.10. 8.2. Occurrence and Configuration of T-s Common construction type.- used in conjunction with either

More information

Safe & Sound Bridge Terminology

Safe & Sound Bridge Terminology Safe & Sound Bridge Terminology Abutment A retaining wall supporting the ends of a bridge, and, in general, retaining or supporting the approach embankment. Approach The part of the bridge that carries

More information

Tension Development and Lap Splice Lengths of Reinforcing Bars under ACI 318-02

Tension Development and Lap Splice Lengths of Reinforcing Bars under ACI 318-02 ENGINEERING DATA REPORT NUMBER 51 Tension Development and Lap Splice Lengths of Reinforcing Bars under ACI 318-02 A SERVICE OF THE CONCRETE REINFORCING STEEL INSTITUTE Introduction Section 1.2.1 in the

More information

Introduction to LRFD, Loads and Loads Distribution

Introduction to LRFD, Loads and Loads Distribution Introduction to LRFD, Loads and Loads Distribution Thomas K. Saad, P.E. Federal Highway Administration Chicago, IL Evolution of Design Methodologies SLD Methodology: (f t ) D + (f t ) L 0.55F y, or 1.82(f

More information

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES Yang-Cheng Wang Associate Professor & Chairman Department of Civil Engineering Chinese Military Academy Feng-Shan 83000,Taiwan Republic

More information

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading: SEISMIC DESIGN Various building codes consider the following categories for the analysis and design for earthquake loading: 1. Seismic Performance Category (SPC), varies from A to E, depending on how the

More information

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems:

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems: Reading Assignment SLAB DESIGN Chapter 9 of Text and, Chapter 13 of ACI318-02 Introduction ACI318 Code provides two design procedures for slab systems: 13.6.1 Direct Design Method (DDM) For slab systems

More information

AASHTOWare BrDR 6.8 Miscellanous Tutorial How BrDR Computes the Effective Flange Width

AASHTOWare BrDR 6.8 Miscellanous Tutorial How BrDR Computes the Effective Flange Width AASHTOWare BrDR 6.8 Miscellanous Tutorial How BrDR Computes the Effective Flange Width Std Effective Flange Width BrD/BrR/BrDR computes Std effective flange width based on AASHTO Standard Specifications

More information

Rapid Modal Testing System for Live Load Rating of Highway Bridges

Rapid Modal Testing System for Live Load Rating of Highway Bridges Rapid Modal Testing System for Live Load Rating of Highway Bridges Presented by: Jeffrey E. Purdy, PE Pennoni Franklin L. Moon, PhD Pennoni Associate Professor Drexel University Presentation Outline Introduction

More information

Precast Balanced Cantilever Bridge Design Using AASHTO LRFD Bridge Design Specifications

Precast Balanced Cantilever Bridge Design Using AASHTO LRFD Bridge Design Specifications Design Example Precast Balanced Cantilever Bridge Design Using AASHTO LRFD Bridge Design Specifications Prepared by Teddy S. Theryo, PE Major Bridge Service Center Prepared for American Segmental Bridge

More information

The following sketches show the plans of the two cases of one-way slabs. The spanning direction in each case is shown by the double headed arrow.

The following sketches show the plans of the two cases of one-way slabs. The spanning direction in each case is shown by the double headed arrow. 9.2 One-way Slabs This section covers the following topics. Introduction Analysis and Design 9.2.1 Introduction Slabs are an important structural component where prestressing is applied. With increase

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 5, No 2, 2014

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 5, No 2, 2014 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 5, No 2, 2014 Copyright by the authors - Licensee IPA- Under Creative Commons license 3.0 Research article ISSN 0976 4399 Strengthening

More information

Design of cross-girders and slabs in ladder deck bridges

Design of cross-girders and slabs in ladder deck bridges 130 Chris R Hendy Head of Bridge Design and Technology Highways & Transportation Atkins Jessica Sandberg Senior Engineer Highways & Transportation Atkins David Iles Steel Construction Institute Design

More information

USER S GUIDE April 2001 Spencer Engineering, Inc. P.O. Box 321 Carmel, IN Ph: Fax:

USER S GUIDE April 2001 Spencer Engineering, Inc. P.O. Box 321 Carmel, IN Ph: Fax: BARJOIST USER S GUIDE April 2001 Spencer Engineering, Inc. P.O. Box 321 Carmel, IN 46082 Ph: 317-848-2394 Fax: 317-848-2397 www.spencer-engineering.com TABLE OF CONTENTS I. Introduction... 3 II. Joist

More information

Challenging Skew: Higgins Road Steel I-Girder Bridge over I-90 OTEC 2015 - October 27, 2015 Session 26

Challenging Skew: Higgins Road Steel I-Girder Bridge over I-90 OTEC 2015 - October 27, 2015 Session 26 2014 HDR Architecture, 2014 2014 HDR, HDR, Inc., all all rights reserved. Challenging Skew: Higgins Road Steel I-Girder Bridge over I-90 OTEC 2015 - October 27, 2015 Session 26 Brandon Chavel, PhD, P.E.,

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges 7.7 Truss bridges Fig. 7.21 some of the trusses that are used in steel bridges Truss Girders, lattice girders or open web girders are efficient and economical structural systems, since the members experience

More information

Long-term serviceability of the structure Minimal maintenance requirements Economical construction Improved aesthetics and safety considerations

Long-term serviceability of the structure Minimal maintenance requirements Economical construction Improved aesthetics and safety considerations Design Step 7.1 INTEGRAL ABUTMENT DESIGN General considerations and common practices Integral abutments are used to eliminate expansion joints at the end of a bridge. They often result in Jointless Bridges

More information

Chapter 5 Bridge Deck Slabs. Bridge Engineering 1

Chapter 5 Bridge Deck Slabs. Bridge Engineering 1 Chapter 5 Bridge Deck Slabs Bridge Engineering 1 Basic types of bridge decks In-situ reinforced concrete deck- (most common type) Pre-cast concrete deck (minimize the use of local labor) Open steel grid

More information

HOW TO DESIGN CONCRETE STRUCTURES Beams

HOW TO DESIGN CONCRETE STRUCTURES Beams HOW TO DESIGN CONCRETE STRUCTURES Beams Instructions for the Members of BIBM, CEMBUREAU, EFCA and ERMCO: It is the responsibility of the Members (national associations) of BIBM, CEMBUREAU, EFCA and ERMCO

More information

CKEditor for Drupal License Agreement

CKEditor for Drupal License Agreement CKEditor for Drupal License Agreement Version 1.0, November 2011 This document ( Agreement ) is a legal agreement between You, either an individual or a Legal Entity, and CKSource Frederico Knabben ( CKSource

More information

Numerical Analysis of the Moving Formwork Bracket Stress during Construction of a Curved Continuous Box Girder Bridge with Variable Width

Numerical Analysis of the Moving Formwork Bracket Stress during Construction of a Curved Continuous Box Girder Bridge with Variable Width Modern Applied Science; Vol. 9, No. 6; 2015 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education Numerical Analysis of the Moving Formwork Bracket Stress during Construction

More information

Web Site Hosting Service Agreement

Web Site Hosting Service Agreement Web Site Hosting Service Agreement Updated April, 2015 The following agreement is between Softext Publishing Inc. ( SOFTEXT ) of 954 1st Ave West, Owen Sound ON, Canada and You ( Client ). WHEREAS, SOFTEXT

More information

Innovative Use Of FRP For Sustainable Precast Concrete Structures. Sami Rizkalla Distinguished Professor North Carolina State University, USA

Innovative Use Of FRP For Sustainable Precast Concrete Structures. Sami Rizkalla Distinguished Professor North Carolina State University, USA Innovative Use Of FRP For Sustainable Precast Concrete Structures Sami Rizkalla Distinguished Professor North Carolina State University, USA FRP MATERIALS Fibers: GFRP CFRP AFRP + Resins: Epoxy Polyester

More information

Snake River Bridge Load Test Addressing Bridge Management Issues WBES 2015 Reno, NV

Snake River Bridge Load Test Addressing Bridge Management Issues WBES 2015 Reno, NV Snake River Bridge Load Test Addressing Bridge Management Issues WBES 2015 Reno, NV Brice Carpenter, P.E. Bridge Diagnostics, Inc. 1995 57 th Court North, Suite 100 Boulder, CO 80301 (303) 494-3230 bricec@bridgetest.com

More information

DESIGN OF PRESTRESSED BARRIER CABLE SYSTEMS

DESIGN OF PRESTRESSED BARRIER CABLE SYSTEMS 8601 North Black Canyon Highway Suite 103 Phoenix, AZ 8501 For Professionals Engaged in Post-Tensioning Design Issue 14 December 004 DESIGN OF PRESTRESSED BARRIER CABLE SYSTEMS by James D. Rogers 1 1.0

More information

Evaluation of Bridge Performance and Rating through Nondestructive

Evaluation of Bridge Performance and Rating through Nondestructive Evaluation of Bridge Performance and Rating through Nondestructive Load Testing Final Report Prepared by: Andrew Jeffrey, Sergio F. Breña, and Scott A.Civjan University of Massachusetts Amherst Department

More information

Two Way Slab. Problem Statement:

Two Way Slab. Problem Statement: Two Way Slab Problem Statement: Use the ACI 318 Direct Design Method to design an interior bay of a flat plate slab system of multi bay building. The Dimensions of an interior bay are shown in Figure 1.

More information

Stress: The stress in an axially loaded tension member is given by Equation (4.1) P (4.1) A

Stress: The stress in an axially loaded tension member is given by Equation (4.1) P (4.1) A Chapter 4. TENSION MEMBER DESIGN 4.1 INTRODUCTORY CONCEPTS Stress: The stress in an axially loaded tension member is given by Equation (4.1) P f = (4.1) A where, P is the magnitude of load, and A is the

More information

Preliminary steel concrete composite bridge design charts for Eurocodes

Preliminary steel concrete composite bridge design charts for Eurocodes Preliminary steel concrete composite bridge 90 Rachel Jones Senior Engineer Highways & Transportation Atkins David A Smith Regional Head of Bridge Engineering Highways & Transportation Atkins Abstract

More information

AMERICAN INSTITUTES FOR RESEARCH OPEN SOURCE SOFTWARE LICENSE

AMERICAN INSTITUTES FOR RESEARCH OPEN SOURCE SOFTWARE LICENSE AMERICAN INSTITUTES FOR RESEARCH OPEN SOURCE SOFTWARE LICENSE 1. DEFINITIONS. 1.1. "Contributor" means each individual or entity that creates or contributes to the creation of Modifications. 1.2. "Contributor

More information

Terms of Use The Human Face of Big Data Website

Terms of Use The Human Face of Big Data Website Terms of Use The Human Face of Big Data Website Effective Date: September 12 th, 2012 Welcome to The Human Face of Big Data, a project of Against All Odds Productions ( AAOP ). The Human Face of Big Data

More information

Reinforced Concrete Design

Reinforced Concrete Design FALL 2013 C C Reinforced Concrete Design CIVL 4135 ii 1 Chapter 1. Introduction 1.1. Reading Assignment Chapter 1 Sections 1.1 through 1.8 of text. 1.2. Introduction In the design and analysis of reinforced

More information

Type of Force 1 Axial (tension / compression) Shear. 3 Bending 4 Torsion 5 Images 6 Symbol (+ -)

Type of Force 1 Axial (tension / compression) Shear. 3 Bending 4 Torsion 5 Images 6 Symbol (+ -) Cause: external force P Force vs. Stress Effect: internal stress f 05 Force vs. Stress Copyright G G Schierle, 2001-05 press Esc to end, for next, for previous slide 1 Type of Force 1 Axial (tension /

More information

ENTERPRISE EDITION INSTALLER END USER LICENCE AGREEMENT THIS AGREEMENT CONSISTS OF THREE PARTS:

ENTERPRISE EDITION INSTALLER END USER LICENCE AGREEMENT THIS AGREEMENT CONSISTS OF THREE PARTS: ENTERPRISE EDITION INSTALLER END USER LICENCE AGREEMENT THIS AGREEMENT CONSISTS OF THREE PARTS: A. VNC SERVER ENTERPRISE EDITION END USER LICENCE AGREEMENT B. VNC VIEWER ENTERPRISE EDITION END USER LICENCE

More information

Detailing of Reinforcment in Concrete Structures

Detailing of Reinforcment in Concrete Structures Chapter 8 Detailing of Reinforcment in Concrete Structures 8.1 Scope Provisions of Sec. 8.1 and 8.2 of Chapter 8 shall apply for detailing of reinforcement in reinforced concrete members, in general. For

More information

Flexural Strength of Reinforced and Prestressed Concrete T-Beams

Flexural Strength of Reinforced and Prestressed Concrete T-Beams Flexural Strength of Reinforced and Prestressed Concrete T-Beams Richard Brice, P.E. Bridge Software Engineer Bridge & Structures Office Washington State Department of Transportation Olympia, Washington

More information

ESA Software Community License Type 1 - v1.1

ESA Software Community License Type 1 - v1.1 ESA Software Community License Type 1 - v1.1 1 Definitions 1.1 Contributor means (a) the individual or legal entity that originally creates or later modifies the Software and (b) each subsequent individual

More information

Bridge Type Selection

Bridge Type Selection Bridge Type Selection The major consideration for bridge type selection for bridges on the State Aid system is initial cost. Future maintenance costs, construction time, and location are considered when

More information

Concrete Design Manual

Concrete Design Manual The Reinforced Concrete Design Manual In Accordance with ACI 318-11 SP-17(11) Vol 2 ACI SP-17(11) Volume 2 THE REINFORCED CONCRETE DESIGN MANUAL in Accordance with ACI 318-11 Anchoring to concrete Publication:

More information

MAY 2015 LRFD BRIDGE DESIGN 3-1

MAY 2015 LRFD BRIDGE DESIGN 3-1 MAY 2015 LRFD BRIDGE DESIGN 3-1 3. LOAD AND LOAD FACTORS The loads section of the AASHTO LRFD Specifications is greatly expanded over that found in the Standard Specifications. This section will present

More information

SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP

SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3279 SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP Yuming DING 1, Bruce HAMERSLEY 2 SUMMARY Vancouver

More information

Basics of Reinforced Concrete Design

Basics of Reinforced Concrete Design Basics of Reinforced Concrete Design Presented by: Ronald Thornton, P.E. Define several terms related to reinforced concrete design Learn the basic theory behind structural analysis and reinforced concrete

More information

Since the Steel Joist Institute

Since the Steel Joist Institute SELECTING and SPECIFYING Wesley B. Myers, P.E. An insider s guide to selecting and specifying K-series, LH, DLH-series joists and joist girders Since the Steel Joist Institute adopted the first standard

More information

TABLE OF CONTENTS. Roof Decks 172 B, BA, BV Deck N, NA Deck. Form Decks 174.6 FD,.6 FDV Deck 1.0 FD, 1.0 FDV Deck 1.5 FD Deck 2.0 FD Deck 3.

TABLE OF CONTENTS. Roof Decks 172 B, BA, BV Deck N, NA Deck. Form Decks 174.6 FD,.6 FDV Deck 1.0 FD, 1.0 FDV Deck 1.5 FD Deck 2.0 FD Deck 3. Pages identified with the NMBS Logo as shown above, have been produced by NMBS to assist specifiers and consumers in the application of New Millennium Building Systems Deck products. Pages identified with

More information

Two-Way Post-Tensioned Design

Two-Way Post-Tensioned Design Page 1 of 9 The following example illustrates the design methods presented in ACI 318-05 and IBC 2003. Unless otherwise noted, all referenced table, figure, and equation numbers are from these books. The

More information

Prestressed Concrete I-Beam and TxGirder Haunch Design Guide

Prestressed Concrete I-Beam and TxGirder Haunch Design Guide Prestressed Concrete I-Beam and TxGirder Haunch Design Guide Components of the Haunch Camber: Camber is the upward deflection in the beam after release of the prestressing strands due to the eccentricity

More information

KERKERING BARBERIO & CO., P.A. CLIENT HOSTING AGREEMENT

KERKERING BARBERIO & CO., P.A. CLIENT HOSTING AGREEMENT Thank you for doing business with Kerkering Barberio & Co., P.A. We are committed to providing you with the highest quality services. If, at any time, you have questions or problems please let us know.

More information

RSNA Radiology Reporting Template License

RSNA Radiology Reporting Template License RSNA Radiology Reporting Template License TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions Assignee shall mean any person or entity that assumes full obligations, rights, and

More information

Session 5D: Benefits of Live Load Testing and Finite Element Modeling in Rating Bridges

Session 5D: Benefits of Live Load Testing and Finite Element Modeling in Rating Bridges Session 5D: Benefits of Live Load Testing and Finite Element Modeling in Rating Bridges Douglas R. Heath P.E., Structural Engineer Corey Richard P.E., Project Manager AECOM Overview Bridge Testing/Rating

More information

SECTIONS

SECTIONS STEEL BUILDINGS, INC. Purlin Load Tables ZEE SECTIONS WWW.WHIRLWINDSTEEL.COM This page intentionally left blank. Copyright Whirlwind Steel Buildings, Inc. All Rights Reserved. Descriptions and specifications

More information

formerly Help Desk Authority 9.1.2 Quest Free Network Tools User Manual

formerly Help Desk Authority 9.1.2 Quest Free Network Tools User Manual formerly Help Desk Authority 9.1.2 Quest Free Network Tools User Manual 2 Contacting Quest Software Email: Mail: Web site: info@quest.com Quest Software, Inc. World Headquarters 5 Polaris Way Aliso Viejo,

More information

EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST

EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST Abstract Camelia SLAVE University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti

More information

Web Site Development Agreement

Web Site Development Agreement Web Site Development Agreement 1. Parties; Effective Date. This Web Site Development Agreement ( Agreement ) is between Plug-N-Run, its affiliates, (including but not limited to USA Financial, USA Financial

More information

INTRODUCTION TO BEAMS

INTRODUCTION TO BEAMS CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis

More information

ETABS. Integrated Building Design Software. Concrete Shear Wall Design Manual. Computers and Structures, Inc. Berkeley, California, USA

ETABS. Integrated Building Design Software. Concrete Shear Wall Design Manual. Computers and Structures, Inc. Berkeley, California, USA ETABS Integrated Building Design Software Concrete Shear Wall Design Manual Computers and Structures, Inc. Berkeley, California, USA Version 8 January 2002 Copyright The computer program ETABS and all

More information

CHAPTER 9 LONG TERM MONITORING AT THE ROUTE 351 BRIDGE

CHAPTER 9 LONG TERM MONITORING AT THE ROUTE 351 BRIDGE CHAPTER 9 LONG TERM MONITORING AT THE ROUTE 351 BRIDGE 9.1 INTRODUCTION An important reason that composite piles have not gained wide acceptance in the civil engineering practice is the lack of a long

More information

BETA TESTING SOFTWARE LICENSE AGREEMENT Inventive Designers

BETA TESTING SOFTWARE LICENSE AGREEMENT Inventive Designers BETA TESTING SOFTWARE LICENSE AGREEMENT Inventive Designers www.inventivedesigners.com Inventive Designers licenses this Beta Software Program Product to Licensee subject to the terms contained in this

More information

INTERNATIONAL BUILDING CODE STRUCTURAL

INTERNATIONAL BUILDING CODE STRUCTURAL INTERNATIONAL BUILDING CODE STRUCTURAL S5-06/07 1604.11 (New), 1605 (New) Proposed Change as Submitted: Proponent: William M. Connolly, State of New Jersey, Department of Community Affairs, Division of

More information

The DELTA- T COCKPIT SaaS License Agreement Rev.05 - Nov Rev.14 March 2013

The DELTA- T COCKPIT SaaS License Agreement Rev.05 - Nov Rev.14 March 2013 Rev.14 March 2013 1 PURPOSE OF THIS AGREEMENT Delta Institute S.A. (henceforth referred to as DELTA) has developed and is owner of the DELTA- T COCKPIT, a Software- as- a- Service tool supporting the use

More information

6 1. Draw the shear and moment diagrams for the shaft. The bearings at A and B exert only vertical reactions on the shaft.

6 1. Draw the shear and moment diagrams for the shaft. The bearings at A and B exert only vertical reactions on the shaft. 06 Solutions 46060_Part1 5/27/10 3:51 PM Page 329 6 1. Draw the shear and moment diagrams for the shaft. The bearings at and exert only vertical reactions on the shaft. 250 mm 800 mm 24 kn 6 2. Draw the

More information

LOAD TESTING FOR BRIDGE RATING: DEAN S MILL OVER HANNACROIS CREEK

LOAD TESTING FOR BRIDGE RATING: DEAN S MILL OVER HANNACROIS CREEK REPORT FHWA/NY/SR-06/147 LOAD TESTING FOR BRIDGE RATING: DEAN S MILL OVER HANNACROIS CREEK OSMAN HAG-ELSAFI JONATHAN KUNIN SPECIAL REPORT 147 TRANSPORTATION RESEARCH AND DEVELOPMENT BUREAU New York State

More information

Volume License Agreement

Volume License Agreement An Apple Subsidiary Volume License Agreement The software program(s) listed along with the related documentation on the software download page ( Software ) are licensed, not sold, to the Licensee listed

More information

Structural Performance of Highway Bridges under Given Foundation Settlements

Structural Performance of Highway Bridges under Given Foundation Settlements ASEE 2014 Zone I Conference, April 3-5, 2014, University of Bridgeport, Bridgeport, CT, USA. Structural Performance of Highway Bridges under Given Foundation Settlements Zhan Su*; Qian Wang, PhD, PE, Assistant

More information

TECHNICAL SPECIFICATION SERIES 8000 PRECAST CONCRETE

TECHNICAL SPECIFICATION SERIES 8000 PRECAST CONCRETE TECHNICAL SPECIFICATION SERIES 8000 PRECAST CONCRETE TECHNICAL SPECIFICATION PART 8000 - PRECAST CONCRETE TABLE OF CONTENTS Item Number Page 8100 PRECAST CONCRETE CONSTRUCTION - GENERAL 8-3 8101 General

More information

Design Parameters for Steel Special Moment Frame Connections

Design Parameters for Steel Special Moment Frame Connections SEAOC 2011 CONVENTION PROCEEDINGS Design Parameters for Steel Special Moment Frame Connections Scott M. Adan, Ph.D., S.E., SECB, Chair SEAONC Structural Steel Subcommittee Principal Adan Engineering Oakland,

More information

REPAIR AND STRENGTHENING OF HISTORICAL CONCRETE BRIDGE OVER VENTA RIVER IN LATVIA

REPAIR AND STRENGTHENING OF HISTORICAL CONCRETE BRIDGE OVER VENTA RIVER IN LATVIA 1 REPAIR AND STRENGTHENING OF HISTORICAL CONCRETE BRIDGE OVER VENTA RIVER IN LATVIA Verners Straupe, M.sc.eng., Rudolfs Gruberts, dipl. eng. JS Celuprojekts, Murjanu St. 7a, Riga, LV 1024, Latvia e-mail:

More information

Introduction to Version Control in

Introduction to Version Control in Introduction to Version Control in In you can use Version Control to work with different versions of database objects and to keep the database updated. You can review, manage, compare, and revert to any

More information

Ce 479 Fall 05. Steel Deck and Concrete Slab Composite Construction. J. Ramirez 1

Ce 479 Fall 05. Steel Deck and Concrete Slab Composite Construction. J. Ramirez 1 Ce 479 Fall 05 Steel Deck and Concrete Slab Composite Construction J. Ramirez 1 Types of Floor Deck on Steel Joists/Girders Cast in Place Concrete on Steel Deck Composite Construction - Pages 42-49 SDI

More information

AASHTOWare Bridge Design and Rating Training. STL8 Single Span Steel 3D Example (BrDR 6.6)

AASHTOWare Bridge Design and Rating Training. STL8 Single Span Steel 3D Example (BrDR 6.6) AASHTOWare Bridge Design and Rating Training STL8 Single Span Steel 3D Example (BrDR 6.6) Last Modified: 4/28/2015 STL8-1 AASHTOWare BrDR 6.5 AASHTOWare Bridge Design and Rating Training STL8 Single Span

More information

Bridge Component Concrete Standard

Bridge Component Concrete Standard Bridge Component Concrete Standard Ministry of Forests, Lands and Natural Resource Operations All concrete bridge component products supplied for the Ministry of Forests, Lands and Natural Resource Operations

More information

Section 5A: Guide to Designing with AAC

Section 5A: Guide to Designing with AAC Section 5A: Guide to Designing with AAC 5A.1 Introduction... 3 5A.3 Hebel Reinforced AAC Panels... 4 5A.4 Hebel AAC Panel Design Properties... 6 5A.5 Hebel AAC Floor and Roof Panel Spans... 6 5A.6 Deflection...

More information

Chapter 4 FLOOR CONSTRUCTION

Chapter 4 FLOOR CONSTRUCTION Chapter 4 FLOOR CONSTRUCTION Woodframe floor systems and concrete slab-on-grade floors are discussed in this chapter. Although cold-formed steel framing for floor systems also is permitted by the IRC,

More information

CONSULTING SERVICES AGREEMENT

CONSULTING SERVICES AGREEMENT CONSULTING SERVICES AGREEMENT THIS AGREEMENT ("Agreement") is entered into on / /, between SCWOA ("Consultant"), a CA corporation with its principal place of business located at PO Box 1195, Pacifica,

More information

Designer s NOTEBOOK BLAST CONSIDERATIONS

Designer s NOTEBOOK BLAST CONSIDERATIONS Designer s NOTEBOOK BLAST CONSIDERATIONS For a surface blast, the most directly affected building elements are the façade and structural members on the lower four stories. Although the walls can be designed

More information

User Agreement. Quality. Value. Efficiency.

User Agreement. Quality. Value. Efficiency. User Agreement Quality. Value. Efficiency. Welcome to QVuE, the Leaders Network on Quality, Value and Efficiency website sponsored by The Medicines Company. The information provided in this Webinar Series

More information

Dell Spotlight on Active Directory 6.8.3. Server Health Wizard Configuration Guide

Dell Spotlight on Active Directory 6.8.3. Server Health Wizard Configuration Guide Dell Spotlight on Active Directory 6.8.3 Server Health Wizard Configuration Guide 2013 Dell Software Inc. ALL RIGHTS RESERVED. This guide contains proprietary information protected by copyright. The software

More information

Composite Floor Decks

Composite Floor Decks Precision Metal Forming Composite Floor Decks Steel Floor Decking Systems PMF Floor Decking The most comprehensive range of steel floor decking systems available anywhere in the world. Shallow Composite

More information

Study of Analysis System for Bridge Test

Study of Analysis System for Bridge Test Study of Analysis System for Bridge Test Chen Ke, Lu Jian-Ming, Research Institute of Highway, 100088, Beijing, China (chenkezi@163.com, lujianming@263.net) Summary Analysis System for Bridge Test (Chinese

More information

Draft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 318-14

Draft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 318-14 Draft Table of Contents Building Code Requirements for Structural Concrete and Commentary ACI 318-14 BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318 14) Chapter 1 General 1.1 Scope of ACI 318

More information

APE T CFRP Aslan 500

APE T CFRP Aslan 500 Carbon Fiber Reinforced Polymer (CFRP) Tape is used for structural strengthening of concrete, masonry or timber elements using the technique known as Near Surface Mount or NSM strengthening. Use of CFRP

More information

GUARDRAIL INNOVATION FLOWS FROM HERE

GUARDRAIL INNOVATION FLOWS FROM HERE INNOVATION FLOWS FROM HERE ENSURING SAFETY ON CANADIAN HIGHWAYS The economics, versatility, and performance of Guardrail surpass all other roadside barrier systems. Guardrail provides highly-visible protection

More information

The Design of Reinforced Concrete Slabs

The Design of Reinforced Concrete Slabs EGN-5439 The Design of Tall Buildings Lecture #14 The Design of Reinforced Concrete Slabs Via the Direct Method as per ACI 318-05 L. A. Prieto-Portar - 2008 Reinforced concrete floor systems provide an

More information

Figure 5-11. Test set-up

Figure 5-11. Test set-up 5.5. Load Procedure A uniform load configuration was used for the load tests. An air bag, placed on the top surface of the slab, was used for this purpose, and the load was applied by gradually increasing

More information

Chapter 9 CONCRETE STRUCTURE DESIGN REQUIREMENTS

Chapter 9 CONCRETE STRUCTURE DESIGN REQUIREMENTS Chapter 9 CONCRETE STRUCTURE DESIGN REQUIREMENTS 9.1 GENERAL 9.1.1 Scope. The quality and testing of concrete and steel (reinforcing and anchoring) materials and the design and construction of concrete

More information

Standard Specification for Plain End Seamless and Electric-Resistance-Welded Steel Pipe for High-Pressure Pipe-Type Cable Circuits 1

Standard Specification for Plain End Seamless and Electric-Resistance-Welded Steel Pipe for High-Pressure Pipe-Type Cable Circuits 1 Designation: A 2 96 (Reapproved 200) Standard Specification for Plain End Seamless and Electric-Resistance-Welded Steel Pipe for High-Pressure Pipe-Type Cable Circuits This standard is issued under the

More information

A Case Study Comparing Two Approaches for Applying Area Loads: Tributary Area Loads vs Shell Pressure Loads

A Case Study Comparing Two Approaches for Applying Area Loads: Tributary Area Loads vs Shell Pressure Loads 1 A Case Study Comparing Two Approaches for Applying Area Loads: Tributary Area Loads vs Shell Pressure Loads By Dr. Siriwut Sasibut (Application Engineer) S-FRAME Software Inc. #1158 13351 Commerce Parkway

More information

5 G R A TINGS ENGINEERING DESIGN MANUAL. MBG Metal Bar Grating METAL BAR GRATING MANUAL MBG 534-12 METAL BAR GRATING NAAMM

5 G R A TINGS ENGINEERING DESIGN MANUAL. MBG Metal Bar Grating METAL BAR GRATING MANUAL MBG 534-12 METAL BAR GRATING NAAMM METAL BAR NAAMM GRATNG MANUAL MBG 534-12 5 G R A TNG NAAMM MBG 534-12 November 4, 2012 METAL BAR GRATNG ENGNEERNG DEGN MANUAL NAAMM MBG 534-12 November 4, 2012 5 G R A TNG MBG Metal Bar Grating A Division

More information