A Lagrangian model to analyze time dependent resource allocation inefficiency due to intrinsic responses

Size: px
Start display at page:

Download "A Lagrangian model to analyze time dependent resource allocation inefficiency due to intrinsic responses"

Transcription

1 1 A Lagrangian model to analyze time dependent resource allocation inefficiency due to intrinsic responses By Juha-Pekka Nikkarila, and Juhani S. Hämäläinen Finnish Defence Forces Technical Research Centre (PVTT), Riihimäki, Finland Abstract The request for an effective resource usage has motivated the development of methods and techniques to find an optimal solution of the allocation problem. However, many approaches neglect the time dependency, which is naturally present in dynamic situations. This motivates us to construct a model for resource allocation in terms of functional analysis analogous to Lagrangian mechanics. The proposed model optimizes resource allocation for a given time interval. The model deals with a given set of resources which are allocated to perform a set of prioritized tasks. In particular, we consider the resource consumption in the task exhange, similarly to the energy dissipation in physics due to friction. The purpose of this study and our research question is to examine the optimal solution of the resource allocation problem in the presence of inefficiency. This will be analyzed through numerical examples, where we compare the optimal allocations with and without friction. Friction brought three main differences to the optimal solution: smoother resource exchange, the tasks will be completed slower and less outcome was achieved. We also resolve the amount of the resources consumed due to the changing priorities, and studied how stable the optimal allocation is. The model may be further applied to search for cost-effective resource allocations. 1. Introduction Resource allocation is related to the resource management for example in industry, defence or in economics and it may also be applied in computing resources (Bird and Smith (2011), Chichilnisky and Kalman (1980), Maruyama (1981), Farzin (2006)). Ideally all resources would be available for effective use. However, this is seldom possible, at least when considering the human resources. This encourages us to consider effectively available resources for the given tasks. The simplest model would be to consider some percentage of the resources as effective ones. However, the simplest model neglects the inefficiencies variation which may occur due to several reasons. The reasons could be the needs for learning, the needs for different equipment and for example the physical distance between the tasks. Also the resources have intrinsic inefficiencies due to (partial) skills, motivation, experience etc. In order to consider the described problem, we shall construct a time dependent resource allocation model. The constructed Lagrangian model is based on variational calculus (Cherkaev and Cherkaev (2003), Pars (1962), Hanz (2003)). The model includes the inefficiencies in the task exchange, which are modeled similarly as friction is modeled in physics.

2 2. Lagrangian model of inefficiency in resource allocation We have considered resource allocation in a static situation (Hämäläinen and Åkesson (2012)). Now we introduce a time dependent resource allocation model, which will be written in a functional form and solved numerically with time discretization. Following the similar procedure as in (Hämäläinen and Åkesson (2012)), we define the comparison value CV for one task and allow the included variables to have a time dependencies, for example the priority P (t), the resource suitability T (t) and the cost of a resource C(t). The CV is defined as a definite integral over the given time interval [0, t ], and it represents the outcome of the resources performance CV = t 0 P (t)t (t)x(t)/c(t) dt. (2.1) This generalizes to M tasks and N resources directly by summing the components. The inefficiency of the allocation will be introduced by adding a friction-like term into the Lagrangian. The role of the friction shall be to unfavour the resource exchanges between the tasks, i.e. to smoothen the allocation. The Lagrangian (CV ) to be maximized finally reads as: CV = t 0 M N i=1 j=1 ( P i (t)t ij (t) X ) ij(t) C j (t) bijẋ2 ij(t) dt, (2.2) where the time-dependent terms P i (t), T ij (t) and C j (t) are the priority of the task i, the resource j suitability for the task i and the cost of the resource j, respectively. The usage of the resource is also time dependent X ij (t) (the resource j allocation to conduct the task i). The second part in the functional (2.2) is the friction term where b ij is the friction coefficient for exchanging the resources between the tasks i and j. The corresponding rate of change is given by the term Ẋij(t). The most effective resource allocation functions can be obtained by maximizing Eq. (2.2) (or minimizing its opposite number which we later denote by F ) with respect to the resource function X(t), subject to the constraints. The frictionless case is provided by coefficients b ij equal to zero. The model have three constraints on X(t). Resources cannot be allocated more than 100 percent at any instant of time. Resource will not be allocated to unsuitable tasks,. i.e. if T ij = 0 then X ij = 0. Tasks will be completed if enough resources are available Discretization of the problem In practical calculations, we minimize the opposite number of CV (F ) K M N ( ) F = b ij Ẋij(t 2 k ) P i (t k )T ij (t k )X ij (t k ) t, (2.3) k=1i=1 j=1 where t k = k K t and t = 1 K t and K is the number of the time steps. The discretized constraints are given in a form X ij (t k ) 1 j, t k (2.4) i which means that each resource may be at maximum 100% usage at every time step. The readiness of the i th task after k 2 time steps is given by

3 k 2 R(t) = T ij (t k )X ij (t k ) t (2.5) k=1 j and each task is required to be completed between the total time interval. The third constraint, i.e. no resource allocation for unsuitable tasks, takes the form X ij (t k ) = 0 if T ij (t k ) = 0. (2.6) 3. Numerical example Let us consider an illustrating example of three tasks and three available resources assigned to complete the tasks. For simplicity, we consider a time interval of [0, 1] and assume the following time dependence for the priorities: P 1 (t) = 0.5, P 2 (t) = 1 t, P 3 (t) = 1.5 t 2. (3.1) Note that the definite integral of all priorities over time [0, 1] equals to 1 2 even though their time dependencies differ. The suitability of the resource j for the task i is defined by a matrix element T ij and tells how many times the j th resource can complete the i th task if it is completely allocated to it during the considered time interval. For simplicity, we let the resources have equal costs normalized to 1 i.e. C(t) = 1 j. Finally, the suitability matrix of the example is T = (3.2) where the tasks and the resources are sorted by rows and columns, respectively. The values of the suitability matrix signifies that for example the first resource is 6.25 = times more effective to conduct the third task than the second resource and 5.0 = faster than third resource. Further assumption following the constraints and Eq. (2.5) is that the tasks shall be completed during the following time intervals: the first task [0; 0.8], the second task [0; 1] and the third task [0.6; 0.8]. The friction coefficients are set to constants b = b ij i, j with the numerical values 0 (frictionless case), , 0.04 and Results of the example The time was discretized into 10 time steps and the optimized results were calculated using MATLAB. The results show the influence of friction to the allocation by comparing it to the frictionless case. We considered the resources exchanges, the readiness of the tasks and the completing times of the tasks and calculated the outcome (CV ) of the models. The task completion curves in the optimal allocations are presented in Fig. 1 for variable friction coefficients. For the frictionless allocations the results show that at the beginning all resources are assigned to the second task even though for example the third resource is not efficient on working with the task. This is mainly due to the highest priority of the second task at the beginning and consequently, it is completed already during the third time step. From the 4 th to the 7 th time step all resources are allocated to the first task. At the 8 th and at the 9 th time steps the most of the resources are used to the third task, which is therefore completed, and only the second resource remains

4 Figure 1. Tasks completions for variable friction coefficients. The tasks readiness changes slower when the friction increases. Figure 2. Comparing the optimal resource allocations with and without friction. working on the first task. When the third task is finished all resources are allocated to the first task. The optimal solution (with friction) behaves differently from the frictionless case in three ways. The total outcome of the optimized solution is smaller (CV is without friction and with friction (b = 0.01)), which is due to the costs related to reallocating resources. The resources change slower between the tasks and consequetly, the readiness of the tasks increase slower. Fig. 2 consists of a comparison between the

5 Figure 3. The optimal solution is stiffer when the friction coefficient is larger. optimal resource allocations. The exchange between the tasks is more undesirable in the case of friction enforcing also less suitable resources to work on with the tasks. The effect of the friction coefficient is shown to act similarly as in physics. The exchange between the tasks consumes resources and is therefore more undesirable solution. Variation of the friction coefficients effects on the task completions (Fig. 1) as well as on

6 the optimal allocations. The first resource s allocation variation respect to the friction coefficient is presented in Fig. 3. It is seen how the resource liquidity in tasks exchange decreases when the friction coefficient increases. The optimized solution with friction approaches to the frictionless solution when the friction coefficient approaches to zero. The obtained result is mainly a doublecheck of the computations. We observed that the optimization can not be conducted if the friction coefficient is increased too much, because of the higher cost of the reallocation. However, this would not occur if the numerical values of the model allowed the resources to accomplish the tasks without reallocation. 4. Conclusions and summary We have considered a time dependent resource allocation problem and in particular the inefficiency of the allocation due to friction in the resource exchange. We have constructed a Lagrangian model and demonstrated its usability by numerical examples, which showed how friction leads to a smoother resource exchange. The friction behaves similarly as in physics since it causes slower reallocations of the resources and less outcome. As friction consumes resources, there appear delays in completing the task (readiness curves) compared with the frictionless case, observed in our example as well. In the optimization, the calculated comparison values were decreased when the friction coeffiecient increased. When the coefficient was increased enough, the model turned out to be unsolvable. REFERENCES Hämäläinen J. and Åkesson B A linear algebra based model to support comparison of resource allocation strategies. Proceedings of 5th IMA International Conference on Influence and Conflict. Sandhurst Sarah L. Bird and Burton J. Smith 2011 PACORA: Performance Aware Convex Optimization for Resource Allocation. Conference: HotPar 11, 3rd USENIX Workshop on Hot Topics in Parallelism. G. Chichilnisky and P.J. Kalman 1980 Application of Functional Analysis to Models of Efficient Allocation of Economic Resources., Journal of Optimization Theory and Applications vol. 30, no. 1, January 1980 T. Maruyama (1981) A variational problem relating to the theory of optimal economic growth, Proc. Japan Acad. Ser. Math. Sci. Vol. 57 no. 7 (1981), Y. H. Farzin and K. K. Ahao (2006) When is it Optimal to Exhaust a Resource in a Finite Time?, Working Papers Fondazione Eni Enrico Mattei A. Cherkaev and E. Cherkaev 2003 Calculus of Variations and Applications. Lecture Notes, Draft L.A. Pars 1962 An Introduction to the Calculus of Variations., Dover Publications, Inc., Mineola, New York J. Hanz 2003 The original Euler s calculus-of-variations method: Key to Lagrangian mechanics for beginners.

5.5. Solving linear systems by the elimination method

5.5. Solving linear systems by the elimination method 55 Solving linear systems by the elimination method Equivalent systems The major technique of solving systems of equations is changing the original problem into another one which is of an easier to solve

More information

Nonlinear Programming Methods.S2 Quadratic Programming

Nonlinear Programming Methods.S2 Quadratic Programming Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective

More information

Special cases in Transportation Problems

Special cases in Transportation Problems Unit 1 Lecture 18 Special cases in Transportation Problems Learning Objectives: Special cases in Transportation Problems Multiple Optimum Solution Unbalanced Transportation Problem Degeneracy in the Transportation

More information

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1 (d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

More information

FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT MINING SYSTEM

FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT MINING SYSTEM International Journal of Innovative Computing, Information and Control ICIC International c 0 ISSN 34-48 Volume 8, Number 8, August 0 pp. 4 FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT

More information

Arithmetic and Algebra of Matrices

Arithmetic and Algebra of Matrices Arithmetic and Algebra of Matrices Math 572: Algebra for Middle School Teachers The University of Montana 1 The Real Numbers 2 Classroom Connection: Systems of Linear Equations 3 Rational Numbers 4 Irrational

More information

Solving Systems of Linear Equations Using Matrices

Solving Systems of Linear Equations Using Matrices Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.

More information

Introduction to Engineering System Dynamics

Introduction to Engineering System Dynamics CHAPTER 0 Introduction to Engineering System Dynamics 0.1 INTRODUCTION The objective of an engineering analysis of a dynamic system is prediction of its behaviour or performance. Real dynamic systems are

More information

Question 2: How do you solve a matrix equation using the matrix inverse?

Question 2: How do you solve a matrix equation using the matrix inverse? Question : How do you solve a matrix equation using the matrix inverse? In the previous question, we wrote systems of equations as a matrix equation AX B. In this format, the matrix A contains the coefficients

More information

Parallel Algorithm for Dense Matrix Multiplication

Parallel Algorithm for Dense Matrix Multiplication Parallel Algorithm for Dense Matrix Multiplication CSE633 Parallel Algorithms Fall 2012 Ortega, Patricia Outline Problem definition Assumptions Implementation Test Results Future work Conclusions Problem

More information

Optimal Scheduling for Dependent Details Processing Using MS Excel Solver

Optimal Scheduling for Dependent Details Processing Using MS Excel Solver BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 8, No 2 Sofia 2008 Optimal Scheduling for Dependent Details Processing Using MS Excel Solver Daniela Borissova Institute of

More information

Chapter 10. Key Ideas Correlation, Correlation Coefficient (r),

Chapter 10. Key Ideas Correlation, Correlation Coefficient (r), Chapter 0 Key Ideas Correlation, Correlation Coefficient (r), Section 0-: Overview We have already explored the basics of describing single variable data sets. However, when two quantitative variables

More information

Regression III: Advanced Methods

Regression III: Advanced Methods Lecture 16: Generalized Additive Models Regression III: Advanced Methods Bill Jacoby Michigan State University http://polisci.msu.edu/jacoby/icpsr/regress3 Goals of the Lecture Introduce Additive Models

More information

3. Reaction Diffusion Equations Consider the following ODE model for population growth

3. Reaction Diffusion Equations Consider the following ODE model for population growth 3. Reaction Diffusion Equations Consider the following ODE model for population growth u t a u t u t, u 0 u 0 where u t denotes the population size at time t, and a u plays the role of the population dependent

More information

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming

More information

General Framework for an Iterative Solution of Ax b. Jacobi s Method

General Framework for an Iterative Solution of Ax b. Jacobi s Method 2.6 Iterative Solutions of Linear Systems 143 2.6 Iterative Solutions of Linear Systems Consistent linear systems in real life are solved in one of two ways: by direct calculation (using a matrix factorization,

More information

Penalized regression: Introduction

Penalized regression: Introduction Penalized regression: Introduction Patrick Breheny August 30 Patrick Breheny BST 764: Applied Statistical Modeling 1/19 Maximum likelihood Much of 20th-century statistics dealt with maximum likelihood

More information

DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II. Matrix Algorithms DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

Department of Chemical Engineering ChE-101: Approaches to Chemical Engineering Problem Solving MATLAB Tutorial VI

Department of Chemical Engineering ChE-101: Approaches to Chemical Engineering Problem Solving MATLAB Tutorial VI Department of Chemical Engineering ChE-101: Approaches to Chemical Engineering Problem Solving MATLAB Tutorial VI Solving a System of Linear Algebraic Equations (last updated 5/19/05 by GGB) Objectives:

More information

1 Review of Least Squares Solutions to Overdetermined Systems

1 Review of Least Squares Solutions to Overdetermined Systems cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares

More information

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all.

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all. 1. Differentiation The first derivative of a function measures by how much changes in reaction to an infinitesimal shift in its argument. The largest the derivative (in absolute value), the faster is evolving.

More information

PHYSICAL REVIEW LETTERS

PHYSICAL REVIEW LETTERS PHYSICAL REVIEW LETTERS VOLUME 86 28 MAY 21 NUMBER 22 Mathematical Analysis of Coupled Parallel Simulations Michael R. Shirts and Vijay S. Pande Department of Chemistry, Stanford University, Stanford,

More information

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method 578 CHAPTER 1 NUMERICAL METHODS 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS As a numerical technique, Gaussian elimination is rather unusual because it is direct. That is, a solution is obtained after

More information

STATISTICS AND DATA ANALYSIS IN GEOLOGY, 3rd ed. Clarificationof zonationprocedure described onpp. 238-239

STATISTICS AND DATA ANALYSIS IN GEOLOGY, 3rd ed. Clarificationof zonationprocedure described onpp. 238-239 STATISTICS AND DATA ANALYSIS IN GEOLOGY, 3rd ed. by John C. Davis Clarificationof zonationprocedure described onpp. 38-39 Because the notation used in this section (Eqs. 4.8 through 4.84) is inconsistent

More information

Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS

Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS Sensitivity Analysis 3 We have already been introduced to sensitivity analysis in Chapter via the geometry of a simple example. We saw that the values of the decision variables and those of the slack and

More information

Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

More information

Chapter 21: The Discounted Utility Model

Chapter 21: The Discounted Utility Model Chapter 21: The Discounted Utility Model 21.1: Introduction This is an important chapter in that it introduces, and explores the implications of, an empirically relevant utility function representing intertemporal

More information

Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1)

Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) In discussing motion, there are three closely related concepts that you need to keep straight. These are: If x(t) represents the

More information

Chapter 6: Sensitivity Analysis

Chapter 6: Sensitivity Analysis Chapter 6: Sensitivity Analysis Suppose that you have just completed a linear programming solution which will have a major impact on your company, such as determining how much to increase the overall production

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

ECO 199 B GAMES OF STRATEGY Spring Term 2004 PROBLEM SET 4 B DRAFT ANSWER KEY 100-3 90-99 21 80-89 14 70-79 4 0-69 11

ECO 199 B GAMES OF STRATEGY Spring Term 2004 PROBLEM SET 4 B DRAFT ANSWER KEY 100-3 90-99 21 80-89 14 70-79 4 0-69 11 The distribution of grades was as follows. ECO 199 B GAMES OF STRATEGY Spring Term 2004 PROBLEM SET 4 B DRAFT ANSWER KEY Range Numbers 100-3 90-99 21 80-89 14 70-79 4 0-69 11 Question 1: 30 points Games

More information

DERIVATIVES AS MATRICES; CHAIN RULE

DERIVATIVES AS MATRICES; CHAIN RULE DERIVATIVES AS MATRICES; CHAIN RULE 1. Derivatives of Real-valued Functions Let s first consider functions f : R 2 R. Recall that if the partial derivatives of f exist at the point (x 0, y 0 ), then we

More information

Finite Difference Approach to Option Pricing

Finite Difference Approach to Option Pricing Finite Difference Approach to Option Pricing February 998 CS5 Lab Note. Ordinary differential equation An ordinary differential equation, or ODE, is an equation of the form du = fut ( (), t) (.) dt where

More information

Means, standard deviations and. and standard errors

Means, standard deviations and. and standard errors CHAPTER 4 Means, standard deviations and standard errors 4.1 Introduction Change of units 4.2 Mean, median and mode Coefficient of variation 4.3 Measures of variation 4.4 Calculating the mean and standard

More information

What is Linear Programming?

What is Linear Programming? Chapter 1 What is Linear Programming? An optimization problem usually has three essential ingredients: a variable vector x consisting of a set of unknowns to be determined, an objective function of x to

More information

A STOCHASTIC MODEL FOR THE SPREADING OF AN IDEA IN A HUMAN COMMUNITY

A STOCHASTIC MODEL FOR THE SPREADING OF AN IDEA IN A HUMAN COMMUNITY 6th Jagna International Workshop International Journal of Modern Physics: Conference Series Vol. 7 (22) 83 93 c World Scientific Publishing Company DOI:.42/S29452797 A STOCHASTIC MODEL FOR THE SPREADING

More information

Finite Element Analysis

Finite Element Analysis Finite Element Analysis (MCEN 4173/5173) Instructor: Dr. H. Jerry Qi Fall, 2006 What is Finite Element Analysis (FEA)? -- A numerical method. -- Traditionally, a branch of Solid Mechanics. -- Nowadays,

More information

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column

More information

Prelab Exercises: Hooke's Law and the Behavior of Springs

Prelab Exercises: Hooke's Law and the Behavior of Springs 59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

More information

Review of Fundamental Mathematics

Review of Fundamental Mathematics Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

More information

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system 1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

2.2 Magic with complex exponentials

2.2 Magic with complex exponentials 2.2. MAGIC WITH COMPLEX EXPONENTIALS 97 2.2 Magic with complex exponentials We don t really know what aspects of complex variables you learned about in high school, so the goal here is to start more or

More information

19 LINEAR QUADRATIC REGULATOR

19 LINEAR QUADRATIC REGULATOR 19 LINEAR QUADRATIC REGULATOR 19.1 Introduction The simple form of loopshaping in scalar systems does not extend directly to multivariable (MIMO) plants, which are characterized by transfer matrices instead

More information

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction Module 1 : Conduction Lecture 5 : 1D conduction example problems. 2D conduction Objectives In this class: An example of optimization for insulation thickness is solved. The 1D conduction is considered

More information

Dynamics of the current account in a small open economy microfounded model

Dynamics of the current account in a small open economy microfounded model Dynamics of the current account in a small open economy microfounded model Lecture 4, MSc Open Economy Macroeconomics Birmingham, Autumn 2015 Tony Yates Main features of the model. Small open economy.

More information

Row Echelon Form and Reduced Row Echelon Form

Row Echelon Form and Reduced Row Echelon Form These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

More information

Dynamic Eigenvalues for Scalar Linear Time-Varying Systems

Dynamic Eigenvalues for Scalar Linear Time-Varying Systems Dynamic Eigenvalues for Scalar Linear Time-Varying Systems P. van der Kloet and F.L. Neerhoff Department of Electrical Engineering Delft University of Technology Mekelweg 4 2628 CD Delft The Netherlands

More information

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA This handout presents the second derivative test for a local extrema of a Lagrange multiplier problem. The Section 1 presents a geometric motivation for the

More information

THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING

THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING 1. Introduction The Black-Scholes theory, which is the main subject of this course and its sequel, is based on the Efficient Market Hypothesis, that arbitrages

More information

2.3 Convex Constrained Optimization Problems

2.3 Convex Constrained Optimization Problems 42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

More information

Least-Squares Intersection of Lines

Least-Squares Intersection of Lines Least-Squares Intersection of Lines Johannes Traa - UIUC 2013 This write-up derives the least-squares solution for the intersection of lines. In the general case, a set of lines will not intersect at a

More information

SOLVING LINEAR SYSTEMS

SOLVING LINEAR SYSTEMS SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis

More information

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L - Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates

More information

Chapter 28 Fluid Dynamics

Chapter 28 Fluid Dynamics Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example

More information

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces. Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and non-contact forces. Whats a

More information

The Basics of FEA Procedure

The Basics of FEA Procedure CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

More information

Ch 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43

Ch 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Ch 7 Kinetic Energy and Work Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Technical definition of energy a scalar quantity that is associated with that state of one or more objects The state

More information

On the Interaction and Competition among Internet Service Providers

On the Interaction and Competition among Internet Service Providers On the Interaction and Competition among Internet Service Providers Sam C.M. Lee John C.S. Lui + Abstract The current Internet architecture comprises of different privately owned Internet service providers

More information

CURVE FITTING LEAST SQUARES APPROXIMATION

CURVE FITTING LEAST SQUARES APPROXIMATION CURVE FITTING LEAST SQUARES APPROXIMATION Data analysis and curve fitting: Imagine that we are studying a physical system involving two quantities: x and y Also suppose that we expect a linear relationship

More information

Electric Motors and Drives

Electric Motors and Drives EML 2322L MAE Design and Manufacturing Laboratory Electric Motors and Drives To calculate the peak power and torque produced by an electric motor, you will need to know the following: Motor supply voltage,

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

More information

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written

More information

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89 by Joseph Collison Copyright 2000 by Joseph Collison All rights reserved Reproduction or translation of any part of this work beyond that permitted by Sections

More information

Modeling Mechanical Systems

Modeling Mechanical Systems chp3 1 Modeling Mechanical Systems Dr. Nhut Ho ME584 chp3 2 Agenda Idealized Modeling Elements Modeling Method and Examples Lagrange s Equation Case study: Feasibility Study of a Mobile Robot Design Matlab

More information

SECRET sharing schemes were introduced by Blakley [5]

SECRET sharing schemes were introduced by Blakley [5] 206 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 1, JANUARY 2006 Secret Sharing Schemes From Three Classes of Linear Codes Jin Yuan Cunsheng Ding, Senior Member, IEEE Abstract Secret sharing has

More information

Dynamics. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30

Dynamics. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30 Dynamics Basilio Bona DAUIN-Politecnico di Torino 2009 Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30 Dynamics - Introduction In order to determine the dynamics of a manipulator, it is

More information

Scheduling Algorithm with Optimization of Employee Satisfaction

Scheduling Algorithm with Optimization of Employee Satisfaction Washington University in St. Louis Scheduling Algorithm with Optimization of Employee Satisfaction by Philip I. Thomas Senior Design Project http : //students.cec.wustl.edu/ pit1/ Advised By Associate

More information

2. Information Economics

2. Information Economics 2. Information Economics In General Equilibrium Theory all agents had full information regarding any variable of interest (prices, commodities, state of nature, cost function, preferences, etc.) In many

More information

Note on growth and growth accounting

Note on growth and growth accounting CHAPTER 0 Note on growth and growth accounting 1. Growth and the growth rate In this section aspects of the mathematical concept of the rate of growth used in growth models and in the empirical analysis

More information

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring

More information

Oligopolistic models, because...

Oligopolistic models, because... Overview Network models of spatial oligopoly with an application to deregulation of electricity generation By Benjamin F.Hobbs Operations Research, vol. 34 (3) 1986, 395-409 Heikki Lehtonen 25th February

More information

SECTION VI: FLOOD ROUTING. Consider the watershed with 6 sub-basins. Q 1 = Q A + Q B (Runoff from A & B)

SECTION VI: FLOOD ROUTING. Consider the watershed with 6 sub-basins. Q 1 = Q A + Q B (Runoff from A & B) SECTION VI: FLOOD ROUTING Consider the watershed with 6 sub-basins Q 1 = Q A + Q B (Runoff from A & B) 1 Q 2 = (Q A + Q B ) 2 + Q C + Q D (Routed runoff from Q 1 ) + (Direct runoff from C & D) What causes

More information

Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants

More information

Introduction to Linear Programming (LP) Mathematical Programming (MP) Concept

Introduction to Linear Programming (LP) Mathematical Programming (MP) Concept Introduction to Linear Programming (LP) Mathematical Programming Concept LP Concept Standard Form Assumptions Consequences of Assumptions Solution Approach Solution Methods Typical Formulations Massachusetts

More information

CS 294-73 Software Engineering for Scientific Computing. http://www.cs.berkeley.edu/~colella/cs294fall2013. Lecture 16: Particle Methods; Homework #4

CS 294-73 Software Engineering for Scientific Computing. http://www.cs.berkeley.edu/~colella/cs294fall2013. Lecture 16: Particle Methods; Homework #4 CS 294-73 Software Engineering for Scientific Computing http://www.cs.berkeley.edu/~colella/cs294fall2013 Lecture 16: Particle Methods; Homework #4 Discretizing Time-Dependent Problems From here on in,

More information

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions. Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

More information

Dynamic Process Modeling. Process Dynamics and Control

Dynamic Process Modeling. Process Dynamics and Control Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits

More information

Applications to Data Smoothing and Image Processing I

Applications to Data Smoothing and Image Processing I Applications to Data Smoothing and Image Processing I MA 348 Kurt Bryan Signals and Images Let t denote time and consider a signal a(t) on some time interval, say t. We ll assume that the signal a(t) is

More information

Numerical integration of a function known only through data points

Numerical integration of a function known only through data points Numerical integration of a function known only through data points Suppose you are working on a project to determine the total amount of some quantity based on measurements of a rate. For example, you

More information

Resistivity. V A = R = L ρ (1)

Resistivity. V A = R = L ρ (1) Resistivity Electric resistance R of a conductor depends on its size and shape as well as on the conducting material. The size- and shape-dependence was discovered by Georg Simon Ohm and is often treated

More information

v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors.

v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors. 3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with

More information

Adding and Subtracting Positive and Negative Numbers

Adding and Subtracting Positive and Negative Numbers Adding and Subtracting Positive and Negative Numbers Absolute Value For any real number, the distance from zero on the number line is the absolute value of the number. The absolute value of any real number

More information

1.5 SOLUTION SETS OF LINEAR SYSTEMS

1.5 SOLUTION SETS OF LINEAR SYSTEMS 1-2 CHAPTER 1 Linear Equations in Linear Algebra 1.5 SOLUTION SETS OF LINEAR SYSTEMS Many of the concepts and computations in linear algebra involve sets of vectors which are visualized geometrically as

More information

Brief Introduction to Vectors and Matrices

Brief Introduction to Vectors and Matrices CHAPTER 1 Brief Introduction to Vectors and Matrices In this chapter, we will discuss some needed concepts found in introductory course in linear algebra. We will introduce matrix, vector, vector-valued

More information

Circuit Analysis using the Node and Mesh Methods

Circuit Analysis using the Node and Mesh Methods Circuit Analysis using the Node and Mesh Methods We have seen that using Kirchhoff s laws and Ohm s law we can analyze any circuit to determine the operating conditions (the currents and voltages). The

More information

FRICTION, WORK, AND THE INCLINED PLANE

FRICTION, WORK, AND THE INCLINED PLANE FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle

More information

GINI-Coefficient and GOZINTO-Graph (Workshop) (Two economic applications of secondary school mathematics)

GINI-Coefficient and GOZINTO-Graph (Workshop) (Two economic applications of secondary school mathematics) GINI-Coefficient and GOZINTO-Graph (Workshop) (Two economic applications of secondary school mathematics) Josef Böhm, ACDCA & DERIVE User Group, nojo.boehm@pgv.at Abstract: GINI-Coefficient together with

More information

LECTURE: INTRO TO LINEAR PROGRAMMING AND THE SIMPLEX METHOD, KEVIN ROSS MARCH 31, 2005

LECTURE: INTRO TO LINEAR PROGRAMMING AND THE SIMPLEX METHOD, KEVIN ROSS MARCH 31, 2005 LECTURE: INTRO TO LINEAR PROGRAMMING AND THE SIMPLEX METHOD, KEVIN ROSS MARCH 31, 2005 DAVID L. BERNICK dbernick@soe.ucsc.edu 1. Overview Typical Linear Programming problems Standard form and converting

More information

An Introduction to Applied Mathematics: An Iterative Process

An Introduction to Applied Mathematics: An Iterative Process An Introduction to Applied Mathematics: An Iterative Process Applied mathematics seeks to make predictions about some topic such as weather prediction, future value of an investment, the speed of a falling

More information

A Multiplier and Linkage Analysis :

A Multiplier and Linkage Analysis : A Multiplier and Linkage Analysis : Case of Algeria - 287 Dr. MATALLAH Kheir Eddine* Abstract The development strategy for the Algerian economy in the 1980s and 1990s was based on the establishment of

More information

C(t) (1 + y) 4. t=1. For the 4 year bond considered above, assume that the price today is 900$. The yield to maturity will then be the y that solves

C(t) (1 + y) 4. t=1. For the 4 year bond considered above, assume that the price today is 900$. The yield to maturity will then be the y that solves Economics 7344, Spring 2013 Bent E. Sørensen INTEREST RATE THEORY We will cover fixed income securities. The major categories of long-term fixed income securities are federal government bonds, corporate

More information

Operation Count; Numerical Linear Algebra

Operation Count; Numerical Linear Algebra 10 Operation Count; Numerical Linear Algebra 10.1 Introduction Many computations are limited simply by the sheer number of required additions, multiplications, or function evaluations. If floating-point

More information

Engineering Problem Solving as Model Building

Engineering Problem Solving as Model Building Engineering Problem Solving as Model Building Part 1. How professors think about problem solving. Part 2. Mech2 and Brain-Full Crisis Part 1 How experts think about problem solving When we solve a problem

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

AGGREGATION AND PROJECTION OF SUSTAINABILITY INDICATORS: A NEW APPROACH

AGGREGATION AND PROJECTION OF SUSTAINABILITY INDICATORS: A NEW APPROACH AGGREGATION AND PROJECTION OF SUSTAINABILITY INDICATORS: A NEW APPROACH Elisa Lanzi Fondazione Eni Enrico Mattei 3 rd OECD World Forum Busan, South Korea Thu 29 th October 1. Introduction Sustainability

More information

Efficient Curve Fitting Techniques

Efficient Curve Fitting Techniques 15/11/11 Life Conference and Exhibition 11 Stuart Carroll, Christopher Hursey Efficient Curve Fitting Techniques - November 1 The Actuarial Profession www.actuaries.org.uk Agenda Background Outline of

More information

Managerial Economics Prof. Trupti Mishra S.J.M. School of Management Indian Institute of Technology, Bombay. Lecture - 13 Consumer Behaviour (Contd )

Managerial Economics Prof. Trupti Mishra S.J.M. School of Management Indian Institute of Technology, Bombay. Lecture - 13 Consumer Behaviour (Contd ) (Refer Slide Time: 00:28) Managerial Economics Prof. Trupti Mishra S.J.M. School of Management Indian Institute of Technology, Bombay Lecture - 13 Consumer Behaviour (Contd ) We will continue our discussion

More information

Several Views of Support Vector Machines

Several Views of Support Vector Machines Several Views of Support Vector Machines Ryan M. Rifkin Honda Research Institute USA, Inc. Human Intention Understanding Group 2007 Tikhonov Regularization We are considering algorithms of the form min

More information